1. Basic Concepts

- (A) Interval estimate (Confidence Interval): An estimate of a population parameter that provides an interval believed to contain the value of the parameter. Note: the interval estimate has the form: point estimate \pm margin of error.
- (B) Confidence level: The probability of including the population parameter within the confidence interval at $100(1 \alpha)\%$. Say 95%, 99%, etc.
- (C) α is called the level of significance. In this case, it is the probability that the interval estimation procedure will generate an interval that does not contain the parameter.
- (D) Why does it work?
- 2. Case I: $100(1 \alpha)\%$ confidence interval estimation of the mean μ (σ known).
 - (A) formula:

$$\overline{x} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \tag{eq8.1}$$

Note: We assume: (a) The population is normally distributed or n is large; (b) The population standard deviation σ is known. (c) $Z_{\alpha/2}$ is called the critical value and $Z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$ is the margin of error for the estimation.

(B) $Z_{\alpha/2}$ notation:

 $Z_{\alpha/2}$ = the right-tail (upper tail) probability $\alpha/2$ point of the standard normal; i.e., the area to the right of $Z_{\alpha/2}$ is $\alpha/2$.

- EX 1 Find the values of $Z_{\alpha/2}$ for 90%, 95% and 99% (1) 90%
 - (2) 95%

(3) 99%

(C) Using the formula

EX 2 The computer paper is expected to have a standard deviation of 0.02 inch. 100 sheets are selected and the mean is 10.998 inches. Set up a 95% confidence interval estimates of the population mean paper length.

- 3. Case II: $100(1 \alpha)\%$ confidence interval estimation of the mean μ (σ unknown).
 - (A) Formula:

$$\overline{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}} \tag{eq8.2}$$

where s is the sample standard deviation.

(B) Student's t distribution: Let x_1, x_2, \ldots, x_n be a random sample from a normal population with mean μ and standard deviation σ , then $t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$ is called the t-distribution with (n-1) degrees of freedom.

(C) $t_{\alpha/2}$ notation

(D) How to read the *t*-table:

CH 8: Interval Estimation

Part 2: Confidence Interval (CI) (cont.)

(E) How to use formula (eq 8.2)

$$\overline{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}} \tag{eq8.2}$$

EX 3 Suppose that a sample of 100 sales invoices is selected from the population of sales invoices during the month and the sample mean is 110.27 and the sample variance is 838.10. Set up a 95% confidence intervals for the mean μ .

- 4. Case III: $100(1 \alpha)\%$ confidence interval estimation for the proportion p.
 - (A) We use the sample proportion \bar{p} to estimate the population proportion p combined with the margin of error term.
 - (B) The sample proportion is defined as $\bar{p} = \frac{x}{n}$, where x is the number of elements in the sample that possess the characteristic of interest and n is the sample size.
 - (C) In Chapter 7 we indicated that the sampling distribution of \bar{p} can be approximated by a normal distribution whenever $np \geq 5$ and $n(1-p) \geq 5$. We use $Z_{\alpha/2}$ for the critical value.
 - (D) Formula for the $100(1-\alpha)\%$ confidence interval for the population proportion p:

$$\bar{p} \pm Z_{\alpha/2} \sqrt{\frac{\bar{p}(1-\bar{p})}{n}} \tag{eq8.6}$$

- (E) How to use (eq8.6)
 - Step 1: Find the sample proportion $\bar{p} = \frac{x}{n}$.

Step 2: Find the critical value $Z_{\alpha/2}$.

- Step 3: Compute the confidence interval.
- EX 4 A company wants to determine the frequency of occurrence of invoices error. Suppose that in a sample of 100 sales invoices, 10 contain errors. Construct a 90% confidence interval for the true proportion of error.

EX 5 Out of 268 interviewed, 83 people said that they would buy a certain product. Use a 95% confidence interval to estimate the true proportion of the customer who would buy the product.