CH 5: Discrete Probability Distributions

Part 1: Discrete Probability Distribution

1. Basic Concepts
(A) Random Variable (x): is a numerical description of the outcome of an experiment.

EX 1 Tossing a fair coin twice. Let x be the random variable associated with the number of heads of the experiment. List all possible outcomes for x.
(B) Discrete Random Variable: A random variable that may assume either a finite number of values or an infinite sequence of values.
(C) Continuous Random Variable: A random variable that may assume any numerical value in an interval or collection of intervals.

EX 2 Determine if the following random variable is discrete or continuous.
(1) Number of cars arriving at a tollbooth in two-hour period.
(2) Amount of time spent trying to find a parking spot on campus.
(D) Probability distribution: A description of how the probabilities are distributed over the values of the random variable.
(E) We usually use a table or a chart to represent the discrete probability distributions.

All
Possible
Variables

x	$f(x)$
x_{1}	$f\left(x_{1}\right)=P\left(x=x_{1}\right)$
x_{2}	$f\left(x_{2}\right)=P\left(x=x_{2}\right)$
\vdots	\vdots
x_{N}	$f\left(x_{N}\right)=P\left(x=x_{N}\right)$

Associated probabilities $\sum f(x)=1$ $f(x) \geq 0$

EX 1 (cont) Construct the probability distribution for the experiment with random variable x (\# of heads).
(F) We can use the probability distribution table to calculate some given probabilities. Step 1: Write the probability statement.

Step 2: Find the probability.

EX 3. Probability distribution for the number of automobiles sold during a day at a car dealer is given. Find the following probabilities:

x	$f(x)$
0	0.1
1	0.2
2	0.4
3	0.2
4	0.1

(1) x is exactly 1 .
(2) x is at most 2 .
(3) x is between 2 and 3 (the end points are included).
(4) x is at least 1 .
2. Given the probability distribution table, compute the expectation (mean, expected value), variance and standard deviation.

$$
\begin{gather*}
\text { Mean: } E(x)=\mu=\sum x f(x) \tag{eq5.4}\\
\text { Variance: } \sigma^{2}=\sum(x-\mu)^{2} f(x) \tag{eq5.5}\\
\text { Standard Deviation: } \sigma=\sqrt{\sigma^{2}}=\sqrt{\sum(x-\mu)^{2} f(x)}
\end{gather*}
$$

EX 3 (Cont). Compute the mean (expected value), the variance, and the standard deviation of random variable x.

EX 4 A trip Insurance policy pays $\$ 1000$ to the customer in case of a loss due to theft. If the risk of such a loss is assured to be 1 in 200 . What is a fair premium?

CH 5: Discrete Probability Distributions

Part 2: Binomial Distribution

1. Characteristics of a Binomial Distribution:
(A) The experiment consists of a sequence of n identical trials.
(B) Each trial is classified into one of the two outcomes (Success/Failure).
(C) The probability of a success p is the same for each trial. The probability of a failure for each trial is $1-p$.
(D) The trials are independent.

EX 5.Tossing a coin 3 times. Let us assume that getting a head is a success. This experiment is a binomial distribution.

EX 6.Selecting random multiple choice with 10 questions, each question has 4 possible answer. This is also a binomial distribution.

2. Binomial Distribution Formula

Given a binomial distribution with n trials and success probability p, then the probability of x successes is (called binomial probability function)

$$
\begin{equation*}
f(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \tag{eq5.12}
\end{equation*}
$$

Where: $\binom{n}{x}=\frac{n!}{x!(n-x)!} \quad($ Note: $n!=n *(n-1) *(n-2) * \ldots 2 * 1 ; 0!=1 ; 1!=1)$.
$x=$ the number of successes in the sample $(x=0,1, \ldots, n)$.
$n=$ the number of trials.
$p=$ Probability of success, $\quad 1-p=$ Probability of failure
EX 5(cont.) Compute the probability of all possible outcomes using Eq.5.12

EX 6(cont.) Find the probability of getting exactly 6 questions right.

EX 7. A roofing contractor estimates that after the "quick fix" job on leaking roofs is done, 15% of the roofs will still leak. He fixed eight roofs, find the probability that at least two of these roofs will still leak.
3. Binomial Mean, Variance, and Standard Deviation

$$
\begin{equation*}
\text { Mean: } E(x)=\mu=n p \tag{eq5.13}
\end{equation*}
$$

$$
\begin{equation*}
\text { Variance: } \operatorname{Var}(x)=\sigma^{2}=n p(1-p) \tag{eq5.14}
\end{equation*}
$$

$$
\text { Standard Deviation: } \sigma=\sqrt{n p(1-p)}
$$

EX 8 Suppose that past history shows that 7% of the production is defective, 200 samples are selected, find the mean, the variance, and the standard deviation of the problem.

