CH 15: Multiple Regression: Part 1 The Model

- 1. Review of the simple linear regression model
 - (A) The population
 - (B) The prediction equation (regression equation)

In this chapter, we are interested in developing a model with more than one independent variable (multiple regression).

2. Multiple regression model: describes the relationship between one dependent variable (y) and two or more independent variables (x_1, x_2, \ldots, x_p) in a linear function. Note: p is the number of independent variables.

(A) The population model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \varepsilon$$

(B) The multiple regression equation:

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

(C) The prediction equation (estimated multiple linear regression equation)

eq15.3:
$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_p x_p$$

Where b_0, b_1, \ldots, b_p are the regression coefficients: $(b_0 \text{ is the } y \text{ intercept and } b_1, \ldots, b_p$ are the slopes.)

- (1) b_0, b_1, \ldots, b_p are the estimates of $\beta_0, \beta_1, \ldots, \beta_p$.
- (2) The least squares method is used to minimize $\sum (y_i \hat{y}_i)^2$ (for the *i*th observation) to provide the values of b_0, b_1, \ldots, b_p .
- (D) The interpretation of the regression coefficients:
 - (1) The y intercept (b_0) : The estimated average value of y when all the independent variables satisfy $x_1 = x_2 = \cdots = x_p = 0$.
 - (2) The slope $(b_i \text{ and } i = 1, 2, ..., p)$: Estimate the average of y changes by b_i for each one-unit increase in x_i holding constant the effect of all other independent variables.

EX1 To study the relationship amount the number of Omni-Powerbars sold in a month (y), the price of the Omni-Powerbar $(x_1, \text{ in cents})$, and the monthly budget of promotion $(x_2, \text{ in }\$)$, thirty-four stores were selected and resulting in the following computer output of the multiple regressions model:

- a). What is the value of p (the number of independent variable)?
- b). What is the prediction equation?
- c). Interpret of meaning of b_1 .
- d). Interpret the meaning of b_2 .

e). Predict the average number of bars sold for a store that has a sales price of \$.79 and the promotion expenditures of \$400.

3. Multiple Coefficient of Determination:

Multiple coefficient of determination measures the proportion of total variation in y explained by all independent variables x_1, x_2, \ldots, x_p .

eq15.8: Multiple Coefficient of Determination:
$$R^2 = \frac{SSR}{SST}$$

eq15.9: Adjusted Multiple Coefficient of Determination: $R_a^2 = 1 - (1 - R^2) \frac{n - 1}{n - p - 1}$

EX 1 (cont). From a computer output we find out that $R^2 = 0.7577$, interpret this result.

CH 15: Multiple Regression: Part 2 Hypotheses Test and Confidence Intervals

1. The multiple linear regression model and equation (Population):

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \varepsilon$$
$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

where $\beta_0, \beta_1, \ldots, \beta_k$ are the population parameters. Moreover, β_0 is the *y*-intercept; $\beta_j, j = 1, \ldots, k$ is the slope; and ε is the random error in *y* (assumed to be normally distributed with $E(\varepsilon) = 0$ and $var(\varepsilon) = \sigma^2$).

2. *t*-test for the slope β_i :

To determine the existence of a significant linear relationship between the x and y variables. In this case, a hypothesis test of whether β_j is equal to zero or not.

Step 1: State H_0 vs. H_1 .

Step 2: Compute the test statistic The test statistic:

Eq 13.15:
$$t_{cal} = \frac{b_i}{S_{b_i}}$$

with (n - p - 1) degrees of freedom.

Note:

p is the number of independent variables;

 b_i is the slope of variable x_i , holding constant the effects of all other independent variables; S_{b_i} is the standard error of the slope b_i .

Step 3: Make a decision using p-value approach or the critical value approach.

p-value approach: Reject H_0 if *p*-value $\leq \alpha$

Critical value approach ($CV = \pm t_{\alpha/2}$): Reject H_0 if $t_{cal} \leq -t_{\alpha/2}$ or if $t_{cal} \geq t_{\alpha/2}$

Note: If we reject H_0 , the corresponding independent is significant in explaining y, and should be included in the model. Otherwise, it should not be included in the model.

3. The $100(1-\alpha)\%$ confidence interval for the true slope β_i

$$b_i \pm t_{\alpha/2} S_{b_i}$$

with n - p - 1 degrees of freedom

EX 2 The firm wants predict the sales (y, in \$1,000's) using the market value $(x_1, \text{ in }\$1,000\text{'s})$, the total assets $(x_2, \text{ in }\$1,000\text{'s})$, and the number of employees (x_3) . To do so, thirty-four firms were selected and the following Excel Output was obtained:

(a) If the firm wants to test whether the coefficient on Market value is significant, what is the relevant test statistic? What decision should be made? (Use the critical value approach with $\alpha = 0.05$).

(b) If the firm wants to test whether the coefficient on total assets is significant, what is the relevant *p*-value? What decision should be made? (Use the *p*-value approach with $\alpha = 0.05$).

- (c) Find the 95% confidence interval for the true slope of the number of employees (β_3) .
- 4. Which multiple regression model to choose?
 - (a) The multiple of coefficient determination
 - (b) The standard error of estimate

EX 2 (cont.)