CH 12: Simple Linear Regression Model Part 1

1. The Simple Linear Regression Model (Population):

\[y = \beta_0 + \beta_1 x + \varepsilon \]

where \(\beta_0 \) and \(\beta_1 \) are the population parameters. Moreover, \(\beta_0 \) is the y-intercept; \(\beta_1 \) is the slope; and \(\varepsilon \) is the random error in \(y \).

2. The Simple Linear Regression Model (Sample):

(A) Scatter diagram:

Given paired observations \((x_i, y_i)\), a scatter diagram uses the \(x \) and \(y \)-axes to represent the data.

(B) We use \(r \) (correlation coefficient) to measure the strength of the linear relation between the \(x \) variable and \(y \) variable:

\[r = \frac{\sum(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum(x_i - \bar{x})^2 \sum(y_i - \bar{y})^2}} \]

(C) We want to find the relationship between \(x \) and \(y \) by fitting a line to the data set.

eq12.3: Estimated Simple Regression Equation: \(\hat{y} = b_0 + b_1 x \)

(D) Linear regression equation:

At each observation, the predicted value of \(y \) is given by: \(\hat{y}_i = b_0 + b_1 x_i \)

where \(b_0 \) and \(b_1 \) are regression coefficients. Moreover,

\(b_0 \) is the y-intercept: the average value of \(y \) when \(x = 0 \).

\(b_1 \) is the slope.

\(\hat{y}_i \) is the predicted value of \(y \) for observation \(i \).

\(x_i \) is the value of \(x \) for observation \(i \).

(E) We use the least squares method to compute \(b_0 \) and \(b_1 \):

(a) In this case, we minimize \(\sum(y_i - \hat{y}_i)^2 \).

(b) Using differential calculus, we can obtain the following results:

eq12.6: The Slope \(b_1 = \frac{\sum(x_i - \bar{x})(y_i - \bar{y})}{\sum(x_i - \bar{x})^2} \)

eq12.7: The Y-intercept: \(b_0 = \bar{y} - b_1 \bar{x} \)

EX1 Given are five observations for two variables \(x \) and \(y \):

<table>
<thead>
<tr>
<th>(x)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>(3)</td>
<td>(7)</td>
<td>(5)</td>
<td>(11)</td>
<td>(14)</td>
</tr>
</tbody>
</table>

(a) Develop a scatter diagram and approximate the relationship between \(x \) and \(y \) by drawing a straight line through the data.

(b) Compute \(b_0 \) and \(b_1 \).

(c) Intercept the regression equation and predict the average value of \(y \) when \(x = 5 \).

3. Three important measures of variation

(1) Sum of squares Due to Error (SSE): measure of the error in using the estimated regression equation to estimate the values of the dependent variable in the sample.

\[\text{eq12.8: Sum of squares Due to Error: } \text{SSE} = \sum(y_i - \hat{y}_i)^2 \]

(2) Total sum of squares (SST): Measure of variation of the \(y_i \) values around their mean \(\bar{y} \).

\[\text{eq12.9: Total sum of squares: } \text{SST} = \sum(y_i - \bar{y})^2 \]

(3) Sum of squares Due to Regression (SSR): measure of variation attributable to the relationship between \(X \) and \(Y \).

\[\text{eq12.10: Sum of Squares Due to Regression: } \text{SSR} = \sum(\hat{y}_i - \bar{y})^2 \]

\[\text{eq12.11: Relationship Among SST,SSR,and SSE: } \text{SST} = \text{SSR} + \text{SSE} \]

4. Coefficient of Determination (Notation: \(r^2 \)): A measure of the goodness of fit of the estimated regression equation. It can be interpreted as the proportion of the variability in the dependent variable \(y \) that is explained by \(x \) in the estimated regression equation.

\[\text{eq12.12: Coefficient of determination: } r^2 = \frac{\text{SSR}}{\text{SST}} \]

5. Standard error of estimate (Notation: \(s \)): Measures how much the data vary around the regression line. Its the square root of the mean square error (MSE).

\[\text{eq12.16: Standard error of the estimate: } s = \sqrt{\frac{\text{SSE}}{n-2}} \]

EX 2 Given \(\text{SSR} = 66 \), \(\text{SST} = 88 \) and \(n = 22 \), (a) compute the coefficient of determination and interpret its meaning. (b) Find the standard error of estimate \(s \).
6. Population Model Assumptions:

\[y_i = \beta_0 + \beta_1 x_i + \varepsilon \]

where \(\beta_0 \) and \(\beta_1 \) are the population parameters. Moreover, \(\beta_0 \) is the y-intercept; \(\beta_1 \) is the slope; and \(\varepsilon \) is the random error in \(y \) (assumed to be normally distributed with \(E(\varepsilon) = 0 \) and \(\text{var}(\varepsilon) = \sigma^2 \)).

Note:

7. Testing for Significance: We use \(t \)-test for the slope \(\beta_1 \) to determine the existence of a significant linear relationship between the \(x \) and \(y \) variables.

Step 1: State \(H_0 \) vs. \(H_1 \).

Step 2: Compute the test statistic and critical value.

\[t_{\text{cal}} = \frac{b_1}{s_{b_1}} \text{ with } (n-2) \text{ degrees of freedom} \]

Step 3: Make a decision using either \(p \)-value approach or the critical value approach.

EX 3 Given \(SSR = 27.51 \), \(SST = 41.27 \), \(\sum (x_i - \bar{x})^2 = 18.38 \), \(\bar{y} = 3.0 + 0.5x_i \), and \(n = 20 \). Use the \(t \) test to test the existence of a linear relationship between \(x \) and \(y \) (\(\alpha = 0.05 \)).

Step 1: State \(H_0 \) and \(H_1 \).

Step 2 Compute the test statistic

EX 3 (cont.) Find the 95% confidence interval for the true slope \(\beta_1 \).

8. \(F \) test for significance in simple linear regression

Step 1: State \(H_0 \) and \(H_1 \).

Step 2 Compute the test statistic

\[F = \frac{MSR}{MSE} \]

Step 3 Make a decision

9. The 100(1 - \(\alpha \))% confidence interval for the slope \(\beta_1 \):

\[b_1 \pm t_{n-2\beta_1} \]

EX 4: To study the relationship between the size of a store \((x, \text{in 1000 square feet}) \) and its annual sales \((y, \text{in $1,000,000}) \). We randomly selected 14 store and obtained the following data: \(\hat{y} = 0.964 + 1.670x \), \(SST = 116.95 \), \(SSR = 105.75 \), and \(\sum (x_i - \bar{x})^2 = 37.924 \). Obtain a 95% confidence interval of the average annual sales for a store that is 4000 square feet (with \(\bar{x} = 2.921 \)).

Step 1: Find \(\hat{y} \)

Step 2: Find the standard error of the estimate \(s \):

Step 3 find the critical value \(t_{n-2}/2 \)

Step 4: Find the confidence interval

10. 100(1 - \(\alpha \))% CI for the mean value of \(y \) \((E(y^*)) \) for a given value of \(x^* \):

\[y^* \pm t_{n-2/2} s_p \]

with \(s_p = s \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2}} \)

EX 4: To study the relationship between the size of a store \((x, \text{in 1000 square feet}) \) and its annual sales \((y, \text{in $1,000,000}) \). We randomly selected 14 store and obtained the following data: \(\hat{y} = 0.964 + 1.670x \), \(SST = 116.95 \), \(SSR = 105.75 \), and \(\sum (x_i - \bar{x})^2 = 37.924 \). Obtain a 95% confidence interval of the average annual sales for a store that is 4000 square feet (with \(\bar{x} = 2.921 \)).

Step 1 : find \(\hat{y} \)

Step 2: find the standard error of the estimate \(s \):

Step 3 find the critical value \(t_{n-2/2} \)

Step 4: Find the confidence interval

11. How to read Excel computer output for the simple regression model.

<table>
<thead>
<tr>
<th>coefs.</th>
<th>stand. error</th>
<th>t-test</th>
<th>p-value</th>
<th>lower 95%</th>
<th>upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept 0.964</td>
<td>0.526</td>
<td>1.832</td>
<td>0.004</td>
<td>-0.182</td>
<td>2.111</td>
</tr>
<tr>
<td>x value 1.670</td>
<td>0.157</td>
<td>10.641</td>
<td>1.267E-7</td>
<td>1.328</td>
<td>2.012</td>
</tr>
</tbody>
</table>