Texas Tech University
Site Index
TTU Home Departments Mathematics & Statistics

Publications


Articles (Refereed)

  • Bumpus, J'Lee; Williams, G. Brock, Conformal Welding on Tori. Journal of Analysis. 21 (2013), 57-72.
  • Aguirre, Zenaida; Ortiz, Rebecca; Williams, G. Brock; Lamp, David; Cremeans, Leslie, Building teachers' capacity to integrate math and science content: Implications for professional learning models. Journal of Science Teacher Education, Accepted.
  • Bumpus, J'Lee; Williams, G. Brock, Discrete Welding on Riemann Surfaces. Complex Analysis and Operator Theory. 7 (2013), 1481-1493.
  • Williams, G. Brock, Constructing conformal maps of triangulated surfaces. Journal of Mathematical Analysis and Applications. 390 (2012), no. 1, 113-120.
  • Barnard, Roger W.; Murphy, Eric M.; Williams, G. Brock, Circle packing complex earthquakes. Annales Academiæ Scientiarum Fennicæ. Mathematica. 36 (2011), no. 2, 423-447.
  • Barnard, Roger W.; Martin, David; Williams, G. Brock, Hyperbolically convex functions and the generalized Fekete-Szegö functional. Journal of Mathematical Analysis and Applications. 384 (2011), no. 2, 366-374.
  • Williams, G. Brock, Circle packing coordinates for the moduli space of tori. Proceedings of the American Mathematical Society. 139 (2011), no. 7, 2577-2585.
  • Barnard, Roger W.; Hume, Casey; Williams, G. Brock, On a conjecture of Fournier, Ma, and Ruscheweyh for bounded convex functions. Journal of Analysis. 18 (2010), 25-51.
  • Barnard, Roger W.; Murphy, Eric M.; Williams, G. Brock, Euclidean earthquakes. Complex Variables and Elliptic Equations. 54 (2009), no. 7, 639-652.
  • Barnard, Roger W.; Murphy, Eric M.; Williams, G. Brock, Some results on spaces of packable Riemann surfaces. Journal of Analysis. 15 (2007), 1-15.
  • Barnard, Roger W.; Cole, Leah; Pearce, Kent; Williams, G. Brock, The sharp bound for the deformation of a disc under a hyperbolically convex map. Proceedings of the London Mathematical Society (3) 93 (2006), no. 2, 395-417.
  • Williams, G. Brock, A circle packing measurable Riemann mapping theorem. Proceedings of the American Mathematical Society 134 (2006), no. 7, 2139-2146.
  • Dennis, David; Williams, G. Brock, Layered circle packings International Journal of Mathematics and Mathematical Sciences. 2005, no. 15, 2429-2440.
  • Williams, G. Brock Discrete conformal welding. Indiana University Mathematics Journal. 53 (2004), no. 3, 765-804.
  • Barnard, Roger W.; Pearce, Kent; Williams, G. Brock, Three extremal problems for hyperbolically convex functions. Computational Methods and Function Theory. 4 (2004), no. 1, 97-109.
  • Williams, G. Brock Noncompact surfaces are packable. Journal d'Analyse Mathématique. 90 (2003), 243-255.
  • Barnard, Roger W.; Williams, G. Brock, Combinatorial excursions in moduli space. Pacific Journal of Mathematics. 205 (2002), no. 1, 3-30.
  • Williams, G. Brock, Earthquakes and circle packings. Journal d'Analyse Mathématique. 85 (2001), 371-396.
  • Williams, G. Brock Approximation of quasisymmetries using circle packings. Discrete & Computational Geometry. 25 (2001), no. 1, 103-124.

Proceedings (Refereed)

  • Sass, Christopher T.; Stephenson, Kenneth; Williams, G. Brock, Circle packings on conformal and affine tori. Computational algebraic and analytic geometry, Contemporary Mathematics Series, 572, American Mathematical Society, Providence, RI, 2012, 211- 220.
  • Williams, G. Brock, Circle packings, quasiconformal mappings and applications. Quasiconformal mappings and their applications, Narosa, New Delhi, 2007, 327-346.
  • Williams, G. Brock, Using LearnStar in Calculus and Teacher Preparation Courses, Proceedings of the Seventeenth Annual International Conference on Technology in Collegiate Mathematics, Pearson Education, 2006, 268-272.
  • Harris, Gary, G. Brock Williams, Using a Commercial Web Tool to Supplement Face-to-Face Instruction, Proceedings of the Fourteenth Annual International Conference on Technology in Collegiate Mathematics, Addison Wesley, Boston, MA, 2002, 97-101.
th Annual International Conference on Technology in Collegiate Mathematics, Addison Wesley, Boston, MA, 2002, 97-101.