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In this paper, a previously developed 2-dimensional disease model is studied, which can

be used for both epidemiologic modeling and in-host disease modeling. The main atten-

tion of this paper is focused on various dynamical behaviors of the system, including Hopf

and generalized Hopf bifurcations which yield bistability and tristability, Bogdanov–Takens

bifurcation, and homoclinic bifurcation. It is shown that the Bogdanov–Takens bifurcation

and homoclinic bifurcation provide a new mechanism for generating disease recurrence,

that is, cycles of remission and relapse such as the viral blips observed in HIV infection.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical models in epidemiology and in-host disease share common features, dividing a population of individuals
(epidemiology) or cells (in-host) into discrete classes relevant to the disease dynamics, and typically describing their dy-
namics with a system of ordinary differential equations (ODEs). A key feature of such systems is the incidence function,
which defines the spread of the infection to susceptibles.

For example, in classical epidemiological models, the incidence rate is often assumed to take the form βSI
N , where S(t) is

the number of susceptible individuals, I(t) is the number of infectives and β is a constant, the transmission rate [1]. When
N, the population size, is constant, this incidence function is also simply written as βSI. Similarly, for in-host models, the
rate at which uninfected cells become infected is often described as βxy, where x(t) reflects the uninfected cell density and
y(t) denotes the density of infected cells [2].

Bilinear incidence functions of this form have been used extensively and are well-studied in the mathematical literature.
As described in greater detail elsewhere [3], a number of possibilities for non-linear incidence functions have also been
studied in some detail, including the general form βIpSq, where p and q are positive constants [4–9], and several more
complex forms [4,10].

Because of physical limitations on the number of new infections possible as disease prevalence increases, a common
feature of many incidence functions is their concavity with respect to the number of infectives. In particular, the incidence
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rate f(S, I, N) typically satisfies the condition

∂2 f (S, I, N)

∂ I2
≤ 0.

Taking advantage of this common feature, Korobeinikov and Maini [3] derived elegant results for all concave incidence
functions, showing the global asymptotic stability of the disease-free equilibrium when the basic reproduction number R0 ≤
1, and global asymptotic stability of the endemic equilibrium when R0 > 1, for the standard SIRS model [1] with a constant
population size. In other words, the concavity of the incidence rate guarantees the uniqueness and stability of the endemic
equilibrium in these models, and these powerful results apply to any concave incidence function.

In contrast, we have recently analyzed a number of ODE models with convex incidence functions. If incidence is convex,
or “synergistic”, the rate at which new infections occur can increase supralinearly with disease prevalence. This situation
can arise in a number of realistic scenarios. For example, in in-host models of the human immunodeficiency virus (HIV),
increasing the extent of the infection involves greater damage to the immune system, and can thus increase the incidence
rate [11]. Similarly, in autoimmune disease, increases to the autoimmune response against self tissue can cause a positive
feedback loop which will further increase the incidence rate [12]. While these two examples both arise in in-host disease
modeling, catastrophic outbreak or pandemic conditions could also result in convex epidemiological incidence. In particular,
an outbreak that is severe enough to compromise health care infrastructure (increasing hospital crowding and front-line
worker exposure rates, for example) could involve a supralinear increase in incidence rates with disease prevalence.

In this contribution, we analyze in detail the possible dynamical behaviors of a simple 2-dimensional disease model
with a convex, or synergistic, incidence function. The system we analyze is a standard non-dimensionalized SI model which
arises in both epidemiology and in-host modeling: it assumes a birth rate into the susceptible population, death rates for
both populations, and an incidence rate between the two. The incidence function we study has an analytical form which
has arisen in a number of models previously analyzed [11–15]. Its behavior is such that when the infective population I
is small, incidence increases linearly with I; when I is large, incidence also increases linearly, but with a steeper slope. A
convex region of the function connects these limiting behaviors.

In marked contrast to the powerful general conclusions obtained for concave incidence functions [3], we find that a wide
range of dynamical behaviors are possible when incidence is synergistic. In particular, as previously analyzed in related
higher-dimensional models [13–15], we note the appearance of recurrent infection, that is, cycles consisting of long periods
close to the disease free equilibrium, punctuated by brief bursts of disease. This pattern of recurrence occurs in many dis-
eases, including the intriguing pattern of “viral blips” in HIV, as well as the recurrent episodes characteristic of autoimmune
diseases, such as multiple sclerosis [16], multifocal osteomyelitis [17,18], lupus [19], eczema [20], and psoriasis [21]. In this
contribution, we explore several mechanisms which can underly these physiologically relevant patterns of infection, finding
that when the incidence function is convex, bistable equilibrium solutions, Hopf and generalized Hopf bifurcations and, in
particular, homoclinic bifurcations may all contribute to disease recurrence.

In related work, Ruan and Wang [22] analyzed a reduced SI model, which has a zero disease-free equilibrium and a
positive endemic equilibrium. In this model, R0 = 0, although it can be shown that the disease can still persist. In [22], the
authors also considered Hopf bifurcation, Bogdanov–Takens bifurcation and homoclinic orbits. The structure of the model
in [22] is mathematically appealing, such that the authors could transform the model to a Liénard system and then prove
the uniqueness of the limit cycle from Hopf bifurcation. Moreover, their analysis of the homoclinic orbit takes the standard
form (e.g., see [23]). In contrast, the model we study in this contribution has been derived from physical considerations and
has known realistic parameter ranges, however this model cannot be transformed to a Liénard system, and the analysis of
homoclinic orbits does not follow the standard form.

The rest of the paper is organized as follows. In next section, we give a detailed dynamical analysis of the simple 2-
dimensional disease model. In Section 3, Hopf and generalized Hopf bifurcations are studied in detail, which may be the
main features underlying complex dynamical behaviors. Then, in Section 4, Bogdanov–Takens bifurcation and homclinic bi-
furcation are investigated, giving rise to another scenario/mechanism for generating blips. Finally, conclusions and discussion
are given in Section 5.

2. Dynamics of the 2-D disease model

Consider the 2-dimensional system:

dX

dτ
= 1 − D X −

(
B + AY

Y + C

)
X Y,

dY

dτ
=

(
B + AY

Y + C

)
X Y − Y, (2.1)

where all parameters, A, B, C and D take positive real values. This system was originally derived as an in-host model of HIV
dynamics [11], but has been reduced in dimension and non-dimensionalized using quasi-steady state assumptions as de-
scribed in [13,14]. Although arising from in-host disease modeling, the reduced 2-D system is also equivalent to the SIRS
model studied in [3], taking the recovery rate, α of [3], to be zero. At appropriate parameter values, system (1) thus repre-
sents either an in-host infection (susceptible and infected cells), or an SIR epidemiological model (susceptible and infected
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individuals). The key difference between system (1) and the class of models studied in [3] is that the incidence function
in system (1), XY (B + AY/(Y + C)), is convex. Our goal is to understand the dynamical behaviors made possible by this
convexity.

In [13,14], this 2-dimensional model is not analyzed in detail. For example, well-posedness of solutions of this system
and the global stability of the disease-free equilibrium were not considered; and a trapping region was proved only for
fixed parameter values when B > D. In the following subsections, we will provide general proofs for the above mentioned
problems with no additional restriction on the positive parameter values.

2.1. Well-posedness and trapping region of solutions

We first prove the positiveness of solutions of system (2.1), and further show that the solutions are bounded, attracted
to a region. We have the following result.

Theorem 2.1. Solutions of system (2.1) are non-negative provided the initial conditions are non-negative, and further these solu-
tions are eventually attracted to a bounded region G, in the shape of a right triangle, bounded by the X-axis, the Y-axis and the
line L: X + Y = max{1, 1

D } + ε (0 < ε ≪ 1).

Proof. Using the first equation of system (2.1), with the formulae of variation of parameters, we obtain the solution for X(τ )
as

X(τ ) = X(0)e−
∫ τ

0 [D+(B+ AY (s)
Y (s)+C

)Y (s)]ds +
∫ τ

0
e−

∫ τ
s [D+(B+ AY (u)

Y (u)+C
)Y (u)]duds, (2.2)

which clearly indicates that X(τ ) > 0 for τ > 0 if X(0) ≥ 0.
For the solution of Y(τ ), we note that Y = 0 (i.e., the X-axis) is an invariant solution trajectory of the system. Thus, any

solution starting from an initial point with X(0) > 0, Y(0) > 0 must be kept in the first quadrant of the X–Y plane due to the
uniqueness of solutions of the system.

Next, we show that all solutions are eventually attracted into the bounded region G defined in the theorem. To achieve
this, first note that system (2.1) has two equilibrium solutions obtained by setting dX

dτ = dY
dτ = 0: one is the disease-free

equilibrium, E0 = ( 1
D , 0), which is a boundary equilibrium, and other is the endemic equilibrium, E1 = (X1,Y1), which is an

interior equilibrium, where

Y1 = 1 − DX1, (2.3)

and X1 is determined from the quadratic polynomial equation:

Q(X ) = D(A + B)X2 − (A + B + D + BC)X + C + 1

= 1

D
[(A + B)(1 − DX )2 − (A + B − D − BC)(1 − DX ) − C(B − D)]

= 0. (2.4)

The existence of E1 depends on the values of the parameters.
First, consider the X-axis. Note that E0 = ( 1

D , 0) is located on the X-axis, with two eigenvalues, ξ1 = −D and ξ2 = B
D − 1,

and their corresponding eigenvectors are v1 = (1, 0) and v2 = (1, D
B (1 − D) − 1), respectively. Moreover, v1 is in the direc-

tion of the X-axis, which can be shown to be a solution trajectory of the system. With a negative eigenvalue, the trajectory
along the X-axis converges to the point E0. Thus, the X-axis is a separator (invariant manifold) of the dynamical system, and
so no trajectory can cross it due to the uniqueness of solutions. Hence, every trajectory entering the region G cannot escape
from this boundary – the X-axis.

On the Y-axis, it is easy to obtain dX
dτ = 1 and dY

dτ = −Y, showing that all trajectories cross the Y-axis from left to right.
Finally, we want to prove that all trajectories which cross the line L actually move into the region G. To show this, note

that the direction of the line L is (1,−1), and so the normal direction of the line in its gradient direction is (1, 1). Define

S(Y ) = (1, 1) •
(

dX

dτ
,

dY

dτ

)
= dX

dτ
+ dY

dτ
,

where the dot denotes inner product (or dot product). We need to show S(Y) < 0 for 0 < Y < max{1, 1
D } + ε. Simplifying

S(Y) yields

S(Y ) = dX

dτ
+ dY

dτ
=

[
1 − DX −

(
B + AY

Y + C

)
X Y

]
+

(
B + AY

Y + C

)
XY − Y

= 1 − D X − Y = 1 − D X −
[

max
{

1,
1

D

}
+ ε − X

]

= −ε + 1 − max
{

1,
1

D

}
+ (1 − D)X
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=

{
−ε +

(
1 − 1

D

)
+ (1 − D)X, D < 1

−ε, D = 1
−ε − (D − 1)X, D > 1

}
for 0 < X < max

{
1,

1

D

}
+ ε

≤ −ε min{1, D} < 0.

Note that one may set ε = 0 for D ̸= 1. Hence, for all positive parameter values, there always exists a trapping region G,
bounded by the X-axis, the Y-axis, and the line L, and all trajectories move into G when crossing the Y-axis and the line L,
and once they enter G, they cannot escape from the X-axis. !

In the following, we consider the dynamical behavior of system (2.1) according to the conditions: B < D, B > D and B = D.
Note that system (2.1) is actually equivalent to the model studied in [3] when Y is small so that Y2 ≈ 0. In this case, system
(2.1) has bilinear incidence, which is concave, and the local R0 = B

D . Thus, we expect that the disease-free equilibrium, E0,
when Y is in fact small, is locally stable when B < D, and becomes a saddle point when B > D.

2.2. Dynamical behavior of (2.1) when B < D

First, we study the dynamical behavior of system (2.1) when B < D. In particular, we want to investigate the global
stability of the disease-free equilibrium E0. For convenience, define

H1 " A + B − D − BC − 2
√

C(A + B)(D − B), (B < D). (2.5)

We have the following result.

Theorem 2.2. When B < D, the disease-free equilibrium E0 of system (2.1) is globally asymptotically stable if H1 < 0, under
which the endemic equilibrium E1 does not exist. Otherwise, there exist two disease equilibria – one of them is a saddle point
while the other may be a stable (or an unstable) node or focus – and no definite conclusion can be made regarding the global
stability of E0.

Proof. First, it is easy to see that when B < D, the disease-free equilibrium E0 is a stable node since both eigenvalues are
negative. In order to prove this theorem, we also need the information about the disease equilibrium E1. Solving Eq. (2.4)
yields two roots:

X± = (A + B + D + BC) ±
√

'

2D(A + B)
, (2.6)

where

' = (A + B + D + BC)2 − 4(C + 1)D(A + B)

= (A + B − D − BC)2 − 4C(A + B)(D − B), (2.7)

which implies that the existence condition for X± when B < D is given by

' = (A + B − D − BC)2 − 4C(A + B)(D − B)

= [A + B − D − BC + 2
√

C(A + B)(D − B)] H1 > 0. (2.8)

Now, based on H1, we discuss the existence condition of biologically meaningful solutions X±.

(i) When H1 ≥ 0, it yields ' ≥ 0, for which 0 < X− ≤ X+ < 1
D , implying that the disease equilibrium E1 has two solutions

E1+: (X+,Y+) and E1−: (X−,Y−). In particular, when H1 = 0, 0 < X− = X+ < 1
D , indicating a saddle-node bifurcation to

occur from the equilibrium E1.
(ii) When H1 < 0, there are two cases.

(iia) If −2
√

C(A + B)(D − B) < A + B − D − BC < 2
√

C(A + B)(D − B), then ' < 0, and so there is no real solution for X±.
Thus, equilibrium E1 does not exist.

(iib) If A + B − D − BC ≤ −2
√

C(A + B)(D − B) under which ' ≥ 0, we then have X+ ≥ X− ≥ 1
D , showing that there do

not exist biologically meaningful equilibria E1.

The above discussions show that a biologically meaningful equilibrium E1 does not exist if H1 < 0 (with B < D), and in
this case, there exists only one stable equilibrium E0 on the boundary of the trapping region G. By index theory, this means
that all trajectories of system (2.1) must converge to the stable node E0, and so the disease-free equilibrium E0 is globally
asymptotically stable if H1 < 0 when B < D.

Remark 2.1. The condition B ≥ D guarantees the existence of unique disease equilibrium E1, for which the disease-free
equilibrium E0 is a saddle point. (When B = D, E0 is a degenerate saddle point, which will be proved later in Section 2.4.)
When B < D, the disease equilibrium E1 may or may not exist. The additional condition H1 ≥ 0 (with B < D) guarantees
the existence of two disease equilibria E1± (E1− = E1+ when B = D). It can be easily seen from (2.5) that when B < D, H1

≥ 0 implies A + B − D − BC > 0, i.e., A > (D − B) + BC, indicating that A must pass through a threshold value to generate the
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disease equilibrium solution E1. This is clear from the second equation of (2.1), which can be rewritten as dY
dτ = [(BX − 1) +

AXY
Y+C ]Y, that the first term BX − 1 < 0 for X < 1

D and B < D. Thus, dY
dτ < 0 with small values of A for all values of X, implying

that Y will die out. When the value of A exceeds its threshold, dY
dτ becomes positive at least for some values of X, which

makes Y gain a steady state and thus the disease equilibrium E1 exists. Biologically, the threshold value of the contact rate,
A, means that the interaction between X and Y produces sufficient infection such that Y persists.

In the remainder of the proof, we assume that B < D and H1 ≥ 0. If H1 > 0, then 0 < X− < X+ < 1
D , which implies that

two biologically meaningful equilibrium solutions exist for E1. When H1 = 0, we have 0 < X− = X+ < 1
D = X0, which means

that there is only one solution for equilibrium E1. To find the stability of the equilibrium E1, evaluating the Jacobian matrix
of system (2.1) at E1 results in

J(E1) =

⎡

⎢⎢⎣
−D −

(
B + AY

Y+C

)
Y −

(
B + AY

Y + C

)
X − ACXY

(Y + C)2
(

B + AY

Y + C

)
Y

(
B + AY

Y + C

)
X + ACXY

(Y + C)2
− 1

⎤

⎥⎥⎦

(X,Y )=(X1,Y1)

=

⎡

⎢⎣
− 1

X1
−1 − ACX1Y1

(Y1 + C)2

1

X1
− D

ACX1Y1

(Y1 + C)2

⎤

⎥⎦. (2.9)

Then, the characteristic equation of E1 is given by

ξ 2 − Tr(J) ξ + det(J) = 0, (2.10)

where

det(J) = − ACY1

(Y1 + C)2
+

(
1

X1
− D

)(
1 + ACX1Y1

(Y1 + C)2

)

= 1

X1
− D − CD

Y1 + C

AY1

Y1 + C
X1

= 1

X1
− D − CD

Y1 + C

(
1

X1
− B

)
X1

= 1

(1 − DX1 + C)X1

1

D
[(D + BC)(1 − DX1)

2 + 2C(D − B)(1 − DX1) + C(B − D)]

= − (1 − DX1)

(1 − DX1 + C)X1
[(A + B + D + BC)X1 − 2(1 + C)] (by using (2.4))

= − (1 − DX1)

2D(A + B)(1 − DX1 + C)X1
[
√

'(
√

' ± (A + B + D + BC)], (2.11)

in which Y1 = 1 − DX1 and (2.6) have been used. Since it is assumed that H1 > 0, i.e. ' = (A + B + D + BC)2 − 4(C + 1)D(A +
B) > 0, we have

det(J) < 0 for X1 = X+, and det(J) > 0 for X1 = X−. (2.12)

When det(J) < 0, the two eigenvalues of the characteristic polynomial (2.10) are real with opposite signs, and thus the
equilibrium point E1+ = (X+,Y+) is a saddle point.

To consider the property of another equilibrium point E1− = (X−,Y−), we need to calculate Tr(J) as follows:

Tr(J) = − 1

X1
+ ACX1Y1

(Y1 + C)2

= − 1

X1
+ CX1

Y1 + C

(
1

X1
− B

)

= −(1 − DX1) − C + CX1(1 − BX1)

X1(Y1 + C)

= − 1

X1(Y1 + C)
[BCX2

1 − (C + D)X1 + C + 1]

= − 1

(Y− + C)
[(BC − DA − DB)X− + (A + B + BC − C)]

= − 1

2D(A + B)(Y− + C)
[AD(A + B − C) + BC(DA + DB + BC)

− (D − B)(A + B)(C + D) + (DA + DB − BC)
√

'], (2.13)
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Table 1

Classification of E1− (H1 ≥ 0).

H2 < 0 H2 > 0 H2 = 0

H3 < 0 SF UF Elementary center

H3 > 0 SN UN -—

H3 = 0 DSN DUN Double-zero

which can be positive or negative, depending upon the values of parameters. Therefore, the equilibrium point E1− may be a
stable (or an unstable) node or focus.

Summarizing the above results, we have shown that when B < D, the boundary equilibrium E0 is a stable node. Moreover,
when H1 < 0, a biologically meaningful disease equilibrium E1 does not exist and E0 is the unique equilibrium solution, so
it is globally asymptotically stable by applying Theorem 2.1. When H1 ≥ 0, there exist two disease equilibria, E1+ and E1−
(E1− coincides E1+ if H1 = 0, giving rise to a saddle-node bifurcation), and E1+ is a saddle point, while E1− may be a stable
(or an unstable) node or focus. In this case, no conclusion can be made regarding for the global stability of the disease-free
equilibrium E0. !

When det(J) > 0, we may use Tr(J) and det(J) to further classify the equilibrium point E1−. For convenience, let

H2 " (D − B)(A + B)(C + D) − AD(A + B − C) − BC(DA + DB + BC)

− (DA + DB − BC)
√

', (A + B + D + BC −
√

' > 0), (2.14)

and

H3 " Tr2(J) − 4 det(J), (A + B + D + BC −
√

' > 0). (2.15)

Thus, Tr(J) has the same sign of H2, and det(J) has the same sign of A + B + D + BC −
√

', but H2 and A + B + D + BC −
√

'
only depends upon the parameters A, B, C and D.

Then, E1− can be classified according to the signs of H2 and H3, as shown in Table 1, where SF, UF, SN, UN, DSN and SUN
stand for Stable Focus, Unstable Focus, Stable Node, Unstable Node, Degenerate Stable Node and Degenerate Unstable Node,
respectively.

So far, the above analysis and conclusions are for the 4-dimensional parameter space (A, B, C, D), where the parameters
are assumed to take arbitrary positive real values. However, in real applications these parameters are not free to be chosen
due to certain physical restrictions. The typical realistic parameter values used in [13,14] to demonstrate different dynamical
behaviors of system (2.1) are taken as

A = 0.364, C = 0.823, D = 0.057, B = 0.060, (2.16)

for which viral blips. Although these parameter values are used to study the blips phenomenon, we should consider possible
parameter values near these values, rather than considering the all values in the positive cone of the parameter space.
Searching the whole 4-dimensional parameter space may show some interesting dynamical behavior, but may most likely
not realistic.

Note that B = D = 0.057 is the transcritical point between the equilibrium solutions E0 and E1, and the oscillating be-
havior (blips) shown in [13,14] is for B > D. Here, we want to change the parameter values near the above set of values
for B < D to demonstrate more interesting dynamical behaviors, in particular, the bistable equilibrium solutions, Hopf and
generalized Hopf bifurcations, and Bogdanov–Takens (BT) bifurcation. In order to give a more clear view of analysis, rather
than giving a more generic picture for the 4-dimensional parameter space, we will choose two parameters and fix the other
two parameters to explore all possible dynamical behaviors in the two parameter space. Since in [13,14] the parameter B
(B > D) has been treated as a bifurcation parameter to explore the blips phenomenon, and D is related to B by defining
the reproductive number as R0 = B

D . Therefore, in this paper, we will take the parameters A and C as bifurcation parame-
ters and investigate their effects on dynamical behavior, since these two parameters involved in the β(X, Y) function play
a very important role in the modeling. To achieve this, we fix B = 0.054, and choose two values for D = 0.057, 0.087, and
then plot the three curves H1 = H2 = H3 = 0 on the A–C plane, as shown in Figs. 1 and 2, where the red curve, blue curve
and green curve correspond to H1 = 0, H2 = 0 and H3 = 0, respectively. Figures 1 and 2 clearly indicate the regions cor-
responding to the classification shown in Table 1. If we vary the parameters B and D, we will obtain more such figures,
showing rich patterns of dynamical behaviors. It should be noted from Fig. 1(a) that the very narrow region bounded by the
red curve and green curve corresponds to H1 > 0, H2 > 0 and H3 > 0, and thus taking parameter values from this region
generate an unstable node E1−. Each point on the curve Tr(J) = 0 yields a Hopf critical point, leading to bifurcation of limit
cycles. At the intersection point of the blue curve (H2 = 0) and the green curve (H3 = 0), as shown in Figs 1(b) and 2(b),
Tr(J) = det(J) = 0, giving rise to a BT bifurcation, characterized by a double-zero eigenvalue. Thus, by using Figs. 1 and 2,
we can easily find different values of A and C to get different types of the equilibrium E1−. Also note from these two figures
that the BT bifurcation point, marked by a circle, is actually the intersection point of all three curves H1 = H2 = H3 = 0. A
number of sets of these parameter values and their corresponding classification of E1− are given in Table 2. In this sec-
tion, we present the results for the non-degenerate cases (H2 H3 ̸= 0), and leave the degenerate cases, leading to Hopf and
generalized Hopf bifurcations, and BT bifurcation, to be considered later in Sections 3 and 4.
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Fig. 1. (a) Plot of the three curves H1 = 0 (in red), H2 = 0 (in blue) and H3 = 0 (in green), on the A-C plane for B = 0.054, D = 0.057, with signs of H1, H2

and H3 indicated; and (b) a zoomed in region near the origin. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article).

Fig. 2. (a) Plot of the three curves H1 = 0 (in red), H2 = 0 (in blue) and H3 = 0 (in green), on the A-C plane for B = 0.054, D = 0.087, with signs of H1, H2

and H3 indicated; and (b) a zoomed in region near the origin. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article).

Hence, when B < D and H1 ≥ 0, for positive parameter values, there may exist bistable equilibrium solutions E0 and E1,
and bifurcation of limit cycles or even homoclinic orbits from the BT bifurcation.

In the following, we will further investigate the bistable equilibrium solutions in more details using simulation, and then
try to provide some biological explanation. For completeness, we also show the results for the cases H1 < 0 and H1 = 0,

see Table 2, where A(1) = 0.09559649, A(2) = 0.26302225. Note that the results for the two sets of values in rows three and
eight (see Table 2) are obtained by taking a point from the narrow region of Fig. 1(a) and a point from the narrow region of
Fig. 1(b), respectively. We shall present the simulations for the sets of values in Table 2 in the rows 4, 5, 6, 7, 8 and 11, and
the corresponding points in the (A, C) parameter space are marked by the black points in Figs. 1 and 2. Also, in Figs. 1(b)
and 2(b), the saddle-node (SD) bifurcation (usually saddle-node bifurcation is denoted by SN, which has been used for Stable
Node in this paper), determined by H1 = 0, and the Hopf (HF) bifurcation, determined by H2 = 0, are indicated, and the BT
bifurcation is marked by a circle.

2.2.1. A = 0.364, C = 0.823, D = 0.057, B = 0.054
For this set of parameter values, system (2.1) has three equilibrium solutions: E0 = (X0,Y0) = (17.5439, 0), E1+ =

(X1+,Y1+) = (17.4056, 0.0079) and E1− = (X1−,Y1−) = (4.3959, 0.7494). It can be shown that E0 is a stable node, E1+ is a
saddle point, while E1− is an unstable focus. The phase portrait is shown in Fig. 3, indicating that there do not exist limit
cycles, and the disease-free equilibrium E0 attracts all solution trajectories in the first quadrant of the X–Y plane, which do
not start from E1−, or E1+, or the stable manifold of E1+,
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Table 2

Classification of E1− for given parameter values (D > B = 0.054).

A C D E1− Eigenvalues H1 Class

0.100 1.050 0.057 No E1, E0 exist −0.0570, −0.0526 < 0 SN

A(1) 0.950 0.057 (15.122, 0.1380) 0.0940, 0 = 0 DUN

0.100 0.950 0.057 (13.901, 0.2076) 0.0999, 0.0327 > 0 UN

0.364 0.823 0.057 (4.3959, 0.7494) 0.0858 ± 0.3747i > 0 UF

0.464 0.523 0.057 (2.9509, 0.8318) −0.0072 ± 0.5132i > 0 SF

0.260 0.823 0.087 No E1, E0 exist −0.0870, −0.3793 < 0 SN

A(2) 0.823 0.087 (8.1300, 0.2927) 0.2908, 0 = 0 DUN

0.264 0.823 0.087 (7.8326, 0.3186) 0.2719, 0.0165 > 0 UN

0.364 0.823 0.087 (4.9202, 0.5719) 0.1150 ± 0.2556i > 0 UF

0.364 0.250 0.087 (3.0732, 0.7326) −0.0566 ± 0.4655i > 0 SF

5.200 0.223 0.087 (0.2331, 0.9797) −1.8817,−2.2251 > 0 SN

Fig. 3. Simulated phase portrait of system (2.1) for A = 0.364, C = 0.823, D = 0.057, B = 0.054, showing the global stability of E0: (a) depicting three

equilibrium points E0, E1+, E1−; and (b) showing E0, E1+ in a zoomed in region.

2.2.2. A = 0.464, C = 0.523, D = 0.057, B = 0.054
For this set of parameter values, system (2.1) still has three equilibrium solutions: E0 = (X0,Y0) = (17.5439, 0), remains

unchanged from the previous case since D is not changed, and is a stable node; E1+ = (X1+,Y1+) = (17.4800, 0.0036) is
still a saddle point, but now E1− = (X1−,Y1−) = (2.9509, 0.8318) becomes a stable focus. The phase portrait for this case is
depicted in Fig. 4, which shows an unstable limit cycle enclosing the stable focus E1−. Thus, for this set of parameter values,
there exist bistable equilibrium solutions E0 and E1−. The attracting region for E1− is the region inside the limit cycle, while
the area outside the limit cycle is the attracting region for E0.

To view the bistable equilibrium solutions, we plot the bifurcation diagram in the A-X plane for fixed values: C =
0.523, D = 0.057, B = 0.054, as shown in Fig. 5, where the solid red line and blue curve denote the stable equilibria E0

and E1−, respectively, while the dashed blue line represents the unstable equilibrium E1+. A saddle-node bifurcation point
is seen between E1− and E1+, which is actually the underlying cause for the existence of bistable equilibrium solutions. In
fact, the saddle-node bifurcation point is the turning point on the solution curve E1.

2.2.3. A = 0.264, C = 0.823, D = 0.087, B = 0.054
For this set of parameter values, system (2.1) has three equilibrium solutions: E0 = (X0,Y0) = (11.4943, 0), a stable node;

E1+ = (X1+,Y1+) = (8.4127, 0.2681), a saddle point; and E1− = (X1−,Y1−) = (7.8326, 0.3186), an unstable node. The phase
portrait for this case is given in Fig. 6, showing that there do not exist limit cycles, and the disease-free equilibrium E0

attracts all solution trajectories in the first quadrant of the X–Y plane, which do not start from E1−, or E1+, or the stable
manifold of E1+,

2.2.4. A = 5.200, C = 0.223, D = 0.087, B = 0.054
For this set of parameter values, system (2.1) still has three equilibrium solutions: E0 = (X0,Y0) = (11.4943, 0), a sta-

ble node; E1+ = (X1+,Y1+) = (11.4778, 0.0014), a saddle point; and E1− = (X1−,Y1−) = (0.2331, 0.9797), a stable node. The
phase portrait for this case is depicted in Fig. 7, which shows no limit cycles to exist, but there still exist bistable equilib-
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Fig. 4. Simulated phase portrait of system (2.1) for A = 0.464, C = 0.523, D = 0.057, B = 0.054, showing the bistable equilibria E0 and E1− and an unstable

limit cycle: (a) depicting three equilibrium points E0, E1+, E1−; and (b) showing E0, E1+ in a zoomed in region.

Fig. 5. (a) Bifurcation diagram for the bistable equilibrium solutions for B = 0.054, C = 0.823, D = 0.057; and (b) a zoomed in region near the equilibrium

E0.

Fig. 6. Simulated phase portrait of system (2.1) for A = 0.264, C = 0.823, D = 0.087, B = 0.054, showing the global stability of E0: (a) depicting three

equilibrium points E0, E1+, E1−; and (b) showing E0, E1+ in a zoomed in region.
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Fig. 7. Simulated phase portrait of system (2.1) for A = 5.2, C = 0.223, D = 0.097, B = 0.064, showing the bistable equilibria E0 and E1−: (a) depicting three

equilibrium points E0, E1+, E1−; and (b) showing E0, E1+ in a zoomed in region.

Fig. 8. Simulated phase portrait of system (2.1) for A = 0.26302225, C = 0.823, D = 0.087, B = 0.054, showing the global stability of E0: (a) depicting two

equilibrium points E0, E1; and (b) showing E0, E1 in a zoomed in region.

rium solutions E0 and E1−. The attracting regions for E0 and E1− are separated by the two trajectories passing through the
saddle point E1+. A similar bifurcation diagram like that given in Fig. 5 can be obtained.

2.2.5. A = 0.26302225, C = 0.823, D = 0.087, B = 0.054 (H1 = 0)
For this set of parameter values, H1 = 0 under which E1+ = E1− = E1 = (8.1300, 0.2927), which is a degenerate node con-

sisting of a stable manifold, as shown in Fig. 8, and thus the disease-free equilibrium E0 = (11.4943, 0) attracts all solution
trajectories in the first quadrant of the X-Y plane, which do not start from E1 and its stable manifold.

2.2.6. A = 0.260, C = 0.823, D = 0.087, B = 0.054 (H1 < 0)
For this set of parameter values, H1 = −0.002136 < 0 under which E1 does not exist, and so the disease-free equilib-

rium E0 = (11.4943, 0) is globally asymptotically stable. The simulated phase portrait is similar to Fig. 8(a) but without the
existence of E1.

The most interesting phenomenon found in this section for B < D is the bistable equilibrium solutions E0 and E1. E0 is al-
ways a stable node, while E1− may be a stable focus (see Fig. 4) or a stable node (see Fig. 7). The separator between the two
attracting regions of the two stable equilibria is either an unstable limit cycle (see Fig. 4) or the saddle trajectories. Dynam-
ically, this bistable phenomenon is due to the existence of a saddle-node bifurcation on the equilibrium solution E1, which
has two branches, one of them is stable and the other is unstable. Biologically, this phenomenon is not fully understood.
System (2.1) was developed from an in-host model of HIV infection, and there has been evidence of possible bistability in
this disease. In particular, the equilibrium viral load, or “viral set point” can differ by orders of magnitude among patients.
Several authors have previously suggested bistable equilibrium solutions as an explanation for the phenomenon [24].
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It is also noted from Figs. 3, 6 and 8 that when E1− is unstable (either focus or node), the equilibrium E0 seems globally
asymptotically stable. This may be explained as follows: first, it can be seen from Fig. 1 that when the parameters A and C
are varied to cross the blue curve, defined by H2 = 0, from the bottom-right to the top-left (e.g., in the negative direction
of the A-axis), the equilibrium E1− changes from a stable focus (SF) to an unstable focus (UF). Hopf bifurcation occurs when
the parameters are varied to cross the blue curve. The simulations shown in Figs. 4 and 3 correspond to the two points
chosen from the SF region and UF region, respectively, implying that the Hopf bifurcation is subcritical. This is why an
unstable limit cycle is shown in Fig. 4, while there is no limit cycle in Fig. 3 and so all trajectories converge to the stable
node E0. Similarly, the simulations shown in Figs. 6 and 8 imply that when the parameters A and C are varied to cross the
blue curve (H2 = 0 in Fig. 2) from the bottom-right to the top-left, a subcritical Hopf bifurcation occurs. The proof for the
two subcritical Hopf bifurcations will be given in Section 3.

2.3. Dynamical behavior of (2.1) when B > D

Now, we discuss the dynamical behavior of system (2.1) for B > D. In this case, E0 becomes a saddle point, while E1

always exists, since Eq. (2.4) always has two roots for

' = (A + B + D + BC)2 − 4(C + 1)D(A + B)

= (A + B − D − BC)2 + 4C(A + B)(B − D)

> (A + B − D − BC)2 (due to B > D)

≥ 0,

and thus 0 < X− < X+. Further, noticing from (2.4) that Q(0) = C + 1 > 0 and Q( 1
D ) = −C( B

D − 1) < 0 (B > D), we have

0 < X− <
1

D
< X+.

Thus,

X1 = X− = (A + B + D + BC) −
√

'

2D(A + B)
, since X1 ∈

[
0,

1

D

]
,

which guarantees that 0 ≤ Y1 = 1 − DX1 ≤ 1.
Since E0 is a saddle point (unstable), and X1+ > 1

D (which yields Y1+ < 0) is not biologically meaningful, bistable equilibria
cannot exist bistable equilibria for this case B > D. To find the stability of E1 (i.e., E1−) when B > D, we first show that
det(J) > 0. This can be obtained using (2.11) as follows:

det(J) = 1

X1
− D + CD

Y1 + C
(BX1 − 1)

>
1

X1
− D + CD

Y1 + C
(DX1 − 1) (B > D)

=
(

1

X1
− D

)(
1 − CDX1

Y1 + C

)
(0 < DX1 < 1, 0 < Y1 < 1)

>

(
1

X1
− D

)(
1 − CDX1

C

)

= 1

X1
(1 − DX1)

2 > 0.

Therefore, all the formulae derived in the previous section for E1− (when B < D) and the results shown in Table 1 can be
applied here to classify the type of the equilibrium E1− (when B > D). Similarly, we may fix B and D and then plot the two
curves H2 = H3 = 0 on the A–C plane to identify the possible parameter values which yield different qualitative behavior of
system (2.1). Note that now for B > D we do not need the condition H1 > 0 since ' > 0 is guaranteed when B > D. Two
sets of values for (B, D) = (0.057, 0.060), (0.087, 0.090) are chosen to plot the figures. However, it is found that these two
figures are quite similar, implying that, unlike the case B < D, here slightly varying B and D does not change the behavior
of the system. Hence, we only present the result for (B, D) = (0.057, 0.060), as shown in Fig. 9. It can be seen that for this
case, there is no saddle-node bifurcation, nor BT bifurcation, since H1 > 0 for all parameter values.

It is also seen from Fig. 9 that for most of the parameter values, H3 < 0, in particular for not very large values of A. This
means that for most of parameter values, E1 is a focus. Further, it can be shown that for the points bounded by the blue
curve (H2 = 0, i.e. Tr(J) = 0) the equilibrium E1 is an unstable focus. Therefore, for these parameter values, by Theorem 2.1,
we can conclude that there exists at least one stable limit cycle inside the trapping region G. When the parameter values
are taken from the region outside the region bounded by the blue curve, the equilibrium E1 is the unique equilibrium inside
the trapping region G, and thus the equilibrium E1 is globally asymptotically stable.

Now, we are ready to prove the following theorem.

Theorem 2.3. When B > D and H2 > 0, system (2.1) has at least one stable limit cycle, and the limit cycle must not bifurcate
from a homoclinic orbit.



174 P. Yu et al. / Commun Nonlinear Sci Numer Simulat 37 (2016) 163–192

Fig. 9. (a) Plot of two curves H2 = 0 (in blue) and H3 = 0 (in green), on the A-C plane for B = 0.060, D = 0.057, with signs of H2 and H3 indicated; and

(b) a zoomed in region near the origin. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article).

Fig. 10. Simulated blips of system (2.1) for A = 0.364, C = 0.823, D = 0.057, B = 0.060: (a) time history showing blips; and (b) phase portrait showing a

limit cycle.

Proof. First, we show that the positive equilibrium E1 = E1− = (X1,Y1) is inside the trapping region G, defined in
Theorem 2.1. That is, the point E1 should be below the line L: X + Y = max(1, 1

D ) + ε. Note that Y1 = 1 − DX1 for 0 < X1 < 1
D ,

implying that the point (X1, Y1) is on the line, defined by DX + Y = 1, which is obviously below the line L.
To prove that limit cycles do not bifurcate from a homoclinic orbit, first note that the only possible homoclinic orbit

comes from the saddle point E0 when B > D. Thus, it suffices to show that there do not exist homoclinic orbits passing
through this singular point. Otherwise, suppose there exists a homoclinic orbit passing through this point, then the homo-
clinic orbit must leave this point along the direction of the eigenvector v2 = (1, D

B (1 − D) − 1) and return to this point along
the direction of the eigenvector v1 = (1, 0), that is, the direction of the X-axis. In other words, the homoclinic orbit must
return to the saddle point along the X-axis. But we have already shown that the X-axis itself is a solution trajectory, and
thus other trajectories, in particular, the one leaving the saddle point along the v2 direction, cannot connect to the X-axis
due to the uniqueness of solutions.

The proof of Theorem 2.3 is complete. !

To end this section, we present three simulations for the common parameter values: D = 0.057, B = 0.060; but for
(A,C) = (0.364, 0.823), (0.364, 0.350) and (5.2, 0.2), respectively. The first simulation is shown in Fig. 10, which yields a
blip-like oscillation, as has been discussed in [13,14]. The simulations for the second and third cases are depicted in Fig. 11(a)
and (b), respectively. Fig. 11(a) shows that E1 is asymptotically stable and all trajectories starting from the initial points in-
side an unstable limit cycle converge to this equilibrium E1; while trajectories outside the unstable limit cycle converge to a
separator of the saddle point E0. Fig. 11(b) indicates that E1 is globally asymptotically stable without the existence of limit
cycles.
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Fig. 11. Simulated phase portrait of system (2.1) when (B, D) = (0.060, 0.057): (a) for (A,C) = (0.364, 0.352) showing the trajectories inside an unstable

limit cycle convergent to the stable equilibrium E1; and (b) for (A,C) = (5.2, 0.2) showing the global stability of E1 without existence of limit cycles.

The results shown in Figs. 10 and 11 clearly indicate that the Hopf bifurcation which occurs on the left branch of the
blue curve in Fig. 9 is supercritical (when, say, A is increasing to cross the blue curve), generating the stable limit cycle
(blips) shown in Fig. 10, and the bifurcation which occurs on the right branch of the blue curve (see Fig. 9) is subcritical
(when, say, A is decreasing to cross the blue curve), leading to the unstable limit cycle shown in fig. 11(a). The proof for the
supercritical and subcritical Hopf bifurcations will be given in Section 3.

2.4. Dynamical behavior of (2.1) when B = D

We now turn to the case B = D. First note that when B = D, the equilibrium E1+ = (X+,Y+) coincides with the disease-
free equilibrium E0, while the other equilibrium E1− = (X−,Y−) = ( 1+C

A+D , A−DC
A+D ). In order to have X− < 1

D , we require A + D >

D + DC, or A > DC. Note that when A < DC, the equilibrium E1− does not exist; and when A = DC, the equilibrium E1− also
coincides with E0. So for the generic case, we assume A > DC in this subsection.

To find the stability of E0 for this case, we note that the two eigenvalues associated with this equilibrium now become
−D and 0, which is a critical case and the application of center manifold theory is required to determine its stability. To
achieve this, we introduce an affine transformation, given by

(
X
Y

)
=

(
1

D
0

)
+

[
1 1
0 −D

](
u1

u2

)
, (2.17)

into (2.1) to obtain a system, expanded around (u1, u2) = (0, 0), as

du1

dτ
= −Du1 + D(D − 1)u1u2 + 1

C
(A − DC)(1 − D)u2

2 + AD

C
(1 − D)u1u2

2 + · · · ,

du2

dτ
= Du1u2 − 1

C
(A − DC) u2

2 − AD

C
u1u2

2 + · · · , (2.18)

whose linear part is now in the Jordan canonical form with eigenvalues −D and 0. To find the center manifold, let u1 =
h(u2) = a2u2

2 + O(u3
2) and then use (2.18) to find a2 = (1−D)(A−DC)

DC . Therefore, the center manifold up to second order is
given by

WC =
{

(u1, u2) | u1 = (1 − D)(A − DC)

DC
u2

2 + O(u3
2)

}
,

and the differential equation describing the dynamics on the center manifold is

du2

dτ
= −1

C
(A − DC) u2

2 + (1 − D)(A − DC)

C
u3

2 + O(u4
2). (2.19)

Since Y = −Du2 > 0, we only consider u2 < 0. Note that the leading term in (2.19) is − 1
C (A − DC) u2

2 with a negative co-
efficient, implying that u2 is decreasing from a negative initial value (and so Y is increasing from a positive initial value).
Hence, the equilibrium E0 is a degenerate saddle point, similar to the case when B > D.

Next, we consider the stability of E1−. Evaluating the Jacobian (2.9) at this equilibrium yields

J(E1−) =

⎡

⎢⎣
− A + D

1 + C
− A + 2AC − DC2

A(1 + C)
A − DC

1 + C

C(A − DC)

A(1 + C)

⎤

⎥⎦,
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Fig. 12. (a) Plot of the three curves H∗
1 = 0 (in red), H∗

2 = 0 (in blue) and H∗
3 = 0 (in green), on the A-C plane for B = D = 0.057, with the regions indicated

for the classifications SF, UF, SN and UN; and (b) a zoomed in region near the turning point. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article).

which in turn results in two eigenvalues, given by

ξ± =
−[C(A − DC) − A(A + D)] ±

√
[C(A − DC) − A(A + D)]2 − 4A(1 + C)(A − DC)2

2A(1 + C)
. (2.20)

Hence, under the condition A > DC, the equilibrium E1− is asymptotically stable (unstable) if C(A − DC) − A(A + D) < 0 (>0),
which is a node (focus) when [C(A − DC) − A(A + D)]2 − 4A(1 + C)(A − DC)2 > 0 (<0). In order to find parameter values for
these four categories, let

H∗
1 " HB=D

1 = A − DC,

H∗
2 " HB=D

2 = C(A − DC) − A(A + D),

H∗
3 " HB=D

3 = [C(A − DC) − A(A + D)]2 − 4A(1 + C)(A − DC)2.

Then choosing B = 0.057, we plot the three curves H∗
1 = H∗

2 = H∗
3 = 0 on the A-C plane, as shown in Fig. 12, from which it is

easy to find the parameter values which correspond to different classifications of the equilibrium E1−. Since the equilibrium
E0 is a degenerate saddle node and only one solution exists for E1, this case B = D is similar to the case B > D. Thus, in
general, if E1 is unstable (either a focus or a node), then there must exist stable limit cycles; if E1 is stable, then it is globally
asymptotically stable. When the parameter values of A and C are chosen from the blue curve (see Fig. 12) defined by H∗

2 = 0,

Hopf bifurcation occurs, leading to limit cycles. This will be further discussed in the next section.

3. Hopf and generalized Hopf bifurcations

In this section, we consider bifurcation of limit cycles due to Hopf and generalized Hopf bifurcations. There are three
types of Hopf bifurcations, which occur from the critical blue line H2 = 0 for B < D (see Figs. 1 and 2) and B > D (see
Fig. 9), and from the critical blue line H∗

2 = 0 for B = D (see Fig. 12). First we give a detailed analysis for the case B = D, and
then summarize the results for other cases with representative simulations.

3.1. Hopf bifurcation

We first consider Hopf bifurcation, starting from the case: B = D = 0.057, for which the Hopf critical points are located
on the blue curve defined by H∗

2 = 0 (see Fig. 12) is determined from the equation A(A + D) − C(A − DC) = 0, from which
we solve for C to obtain

C± =
500 ±

√
A(19300A − 3249)

57 A
,

(
A >

3249

193000

)
, (3.1)

where we use B = D = 57
1000 to facilitate symbolic computation. Note that the leftmost point on the blue curve is given by

(A,C) = ( 3249
193000 , 57

386 ). The solutions C− and C+ correspond to the points (see Fig. 12(b)) on the upper and lower branches
of the H∗

2 = 0 curve, respectively. In order to apply normal form theory to calculate the first-order focus value (or the first



P. Yu et al. / Commun Nonlinear Sci Numer Simulat 37 (2016) 163–192 177

Lyapunov constant), we introduce an affine transformation, given by

(
X
Y

)
=

⎛

⎝
1000(1 + C)

1000A + 57
1000A − 57C

1000A + 57

⎞

⎠ +

⎡

⎣
1 0

−A(1000A + 57)

1000 + 2000AC − 57C2

−1000A(1 + C)ωc

1000 + 2000AC − 57C2

⎤

⎦
(

u1

u2

)
,

where ωc = 1000A−57C

1000
√

A(1+C)
> 0 (since 1000A − 57C > 0 due to Y > 0), into (2.1) to yield a system to be expanded around

(u1, u2) = (0, 0) up to third-order terms, and then apply the Maple program for computing the normal forms associated
with Hopf and generalized Hop bifurcations [25] to this system to obtain the normal form in polar coordinates up to third-
order terms as follows:

dr

dτ
= r [v0 µ + v1 r2 + o(r4)],

dθ
dτ

= ωc + t0 µ + t1 r2 + o(r4), (3.2)

where µ is a perturbation parameter to measure the distance from a critical point on the blue curve H∗
2 = 0 along the

positive direction of the A-axis. v0 and v1 are the zero-order and the first-order focus values. The first equation of (3.2)
can be used to perform bifurcation analysis and the sign of v1 determines whether the Hopf bifurcation is supercritical or
subcritical. The values v0 and t0 can be found from a linear analysis, while v1 and t1 are obtained by applying the Maple
program. The calculation shows that

v0 = 57C2 − 1000A2

2000A2(1 + C)
, t0 = 1000A + 57C

4000A
√

A(1 + C)
, (3.3)

and the output of the Maple program gives v1− and v1+, corresponding to C− and C+, respectively, as

v1± = − 3249(1000A + 57)3

8000000000A(500A + Am)(500A + 57 − Am)3(557000A + 60249 − 1000Am)3

× [(386499928503500000000000A5 + 86140825778098500000000A4

+ 7051942944965614500000A3 + 223356947766097675500A2

− 3214238968494000000A + 38317671392498001)

± (879676636999000000000A4 + 203371596920829000000A3

+ 17848597867145253000A2 + 759905488695261807A + 24859340130996000) Am].

where Am =
√

A(193000A − 3249). It can be shown that v1+ < 0 for A > 3249
193000 ≈ 0.0168. For v1−, it has two real roots: A =

0.0184 and A = 0.9210 such that v1− > 0 ∀A ∈ (0.0184, 0.9210) and v1− < 0 ∀A ∈ (0.0168, 0.0184)cup(0.9210,∞). Moreover,
it can be shown that v0 > 0 when C = C+ for any values of A > 0.0168, and there is a critical point on C−, defined by
A = 0.0260, such that when C = C−, v0 > 0 for A ∈ (0.0168, 0.0260) but v0 < 0 for A > 0.0260. Therefore, we can combine
the information on the signs of v0 and v1 to precisely determine whether a Hopf bifurcation is supercritical or subcritical. In
fact, on the upper branch C+ of the blue curve H∗

2 = 0, all Hopf bifurcations are supercritical, while on the lower branch C−,

the Hopf bifurcation is supercritical for A ∈ (0.0168, 0.0184) ∪ (0.9210, ∞), and subcritical for A ∈ (0.0184, 0.9210), as shown
in Fig. 12, where the two points on the blue curves, at A = 0.0184 and A = 0.9210 are marked by ∗, where ‘supH’ and ‘subH’
represent supercritical and subcritical Hopf bifurcations, respectively.

It should be pointed out that since E0 is a degenerate saddle point, for any point inside the region bounded by the blue
curve, there must exist stable limit cycles due to Poincaré–Bendixson theory no matter whether E1 is an unstable focus or
node. This seems to imply a contradiction for the subcritical Hopf bifurcation from the lower branch of the blue curve for A
∈ (0.0184, 0.9210), giving rise to unstable limit cycles below the curve. But on the other side, there exist stable limit cycles.
This is because the unstable limit cycle is from a local (Hopf) bifurcation, while the stable limit cycle comes from a global
bifurcation. Several representative parameter sets (A, C) are chosen for this case when B = D = 0.057 as follows:

(A,C) = (0.1, 1.55), (0.3, 3.5), (0.42, 0.50), (0.39, 0.50),

which are marked on Fig. 12 by black points (the last two are at the same place), and the corresponding simulations are
shown in Figs. 13 and 14. Note that all of them show the existence of limit cycles. The first two cases confirm that the Hopf
bifurcations emerging from the upper branch of the blue curve are indeed supercritical (with the focus value v1+ < 0), and
so the bifurcating limit cycles are stable (see Fig. 13). The last two points are very close, with one below the curve and one
above the curve. The third one yields a typical subcritical Hopf bifurcation and the bifurcating limit cycle is unstable (see
Fig. 14(a)). The last one is not generated by Hopf bifurcation though the critical point is near the blue curve. It is a big limit
cycle, generated due to Poincaré–Bendixon theory, and it is stable since it encloses an unstable focus (see Fig. 14(b)).

Similarly, we can consider the cases B < D and B > D and determine whether the Hopf bifurcations are supercritical
or subcritical. Without giving detailed calculations, we summarize the results as follows. For the case with B = 0.054 < D =
0.057, the blue curve actually has a turning point at A = 729

49000 ≈ 0.014878 while the BT bifurcation point is above this point
at A = 0.014881, as shown in Fig. 16(a) in the next section. On the lower branch of the blue curve, the focus value for
the Hopf bifurcation (see the blue curve in Fig. 1) is shown to have the property that v1 > 0 for A ∈ (0.014981, 0.9455)
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Fig. 13. Simulations of system (2.1) when B = D = 0.057, showing stable limit cycles: (a) (A,C) = (0.1, 1.55) with E1 being an unstable focus; and (b)

(A,C) = (0.3, 3.5) with E1 being an unstable node.

Fig. 14. Simulations of system (2.1) when B = D = 0.057, showing (a) an unstable limit cycle for (A,C) = (0.42, 0.50) with E1 being a stable focus; and (b)

a stable limit cycle for (A,C) = (0.39, 0.50) with E1 being an unstable focus.

Fig. 15. Simulation of two limit cycles for system (2.1) when B = D = 0.057, A = 0.01846287, C = 0.11969000: (a) three trajectories with moving directions

indicated; and (b) two limit cycles with the inner unstable and outer stable.
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Fig. 16. The BT bifurcation diagram around the critical points: (a) (B, D, A,C) = ( 27
500 , 57

1000 , 3078507
206879500 , 61731

827518 ), and (b) (B, D, A,C) =
( 27

500 , 87
1000 , 118428267

2237439500 , 219501
8949758 ).

and v1 < 0 for A ∈ (0.014878, 0.014981) ∪ (0.9455, ∞). On the upper branch of the blue curve, v1 < 0 for A ∈ (0.014878,
0.014881). Hence, when (A,C) = (0.364, 0.823), the Hopf bifurcation is subcritical, and the bifurcating limit cycle is unstable,
as the example shown in Fig. 4. We expect that a Hopf bifurcation is supercritical when choosing a point with A > 0.9455.
For the case with B = 0.054 < D = 0.087 (see Fig. 2), only the upper branch of the blue curve is the solution, which does
not contain the turning point, as shown in Fig. 16(b) (in the next section). It is found that the focus value v1 > 0 for A ∈
(0.0393, 1.1708) and v1 < 0 for A > 1.1708. But for this case, the BT bifurcation point is at A = 0.0529, and the portion for A
< 0.0529 yields H1 < 0. Therefore, for this case, v1 > 0 for A ∈ (0.0529, 1.1708). Several typical simulations can be seen in
Figs. 3, 4, 6, 7 and 8.

Finally, we consider the case B = 0.060 > D = 0.057 and confirm the conclusion that we made at the end of Section 2.3.
Note that for this case H1 > 0 for all positive parameter values. Compared to the case B < D, now there are two branches
on the blue curve (see Fig. 9). For the upper branch, it can be shown that v1+ < 0 for A > 0.0189, and the Hopf bifurcation
emerging from the upper branch of the blue curve is supercritical and so the bifurcating limit cycles are stable (see the blips
example in Fig. 10). For the lower branch of the blue curve, it can be shown that the focus value v1− > 0 for A ∈ (0.0214,
0.8964) and v1− < 0 for A ∈ (0.0189, 0.0214) ∪ (0.8964, ∞). Hence, the Hopf bifurcation from the lower branch of the blue
curve is subcritical for A ∈ (0.0214, 0.8964), giving rise to unstable limit cycles (an example is shown in Fig. 11). When A ∈
(0.0189, 0.0214) ∪ (0.8964, ∞), the Hopf bifurcation becomes supercritical and so the bifurcating limit cycles are stable. This
is similar to the case B = D (see Fig. 12 where supercritical and subcritical Hopf bifurcations are indicated), and thus we
omit the details.

By comparing the Figs. 1, 2, 9 and 12, we have observed an important difference between the different cases: although
all the blue curves are defined by a quadratic polynomial in A and C, the case B < D shows no turning point on the blue
curve, while the cases B ≥ D do have a turning point on the blue curve. As a matter of fact, if we zoomed in the area around
the BT point in Figs. 1 and 2 (see Fig. 16 in the next section), we will see the turning point for the case B = 0.054, D = 0.057
since the blue curve contains the turning point, while the blue curve for the case B = 0.054, D = 0.087 does not include the
turning point. Summarizing the above results, we have the following theorem.

Theorem 3.1. For system (2.1), there always exists Hopf bifurcation which occurs from the disease equilibrium E1, for suitable
positive parameter values. The bifurcations may be supercritical or subcritical, and a limit cycle bifurcating from a supercritical
(subcritical) Hopf critical point is stable (unstable), which encloses an unstable (a stable) focus point – the equilibrium E1.

3.2. Generalized Hopf bifurcation

Now we consider possible generalized Hopf bifurcations which may occur from system (2.1), leading to bifurcation of
multiple (two) limit cycles from a Hopf bifurcation point. The condition for generalized Hopf bifurcation is that the first-
order focus value vanishes, i.e., v1 = 0. In other words, on the Hopf bifurcation curve (the blue curves in Figs. 1, 2, 9 and
12), such a critical point is identified when the Hopf bifurcation changes from supercritical to subcritical, or vice versa.

Again, we first consider the case B = D = 57
1000 , for which there are two generalized Hopf critical points lo-

cated on the lower branch of the blue curve (see Fig. 12): A(1)
gH = 0.0184 and A(2)

gH = 0.9210, where the subscript

‘gH’ denotes ‘generalized Hopf’. Note that in computation we take the accuracy up to 30 decimal points (A(1)
gH =

0.0184128746264075106899349611404, A(2)
gH = 0.921012043225272084984762668632), but only present the results up to 4

decimal points for brevity. The corresponding critical values of C are given by C−(A) in Eq. (3.1) as C(1)
gH = C−(A(1)

gH ) = 0.1199
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and C(2)
gH = C−(A(2)

gH ) = 1.0456. Then the first equation of the normal form (3.2) associated with the critical point (A(1)
gH ,C(1)

gH )

is given by

dr

dτ
= r [v0 µ + v1 r2 + v2 r4 + o(r6)], (3.4)

where v1 = 0 and v2 = − 0.1076 × 10−3, called the second-order focus value, is obtained by using the Maple program [25].
Note that we now take the unfolding term from perturbing the parameter C as C = C−(A) + µ. Thus, we can perturb A from

A(1)
gH to get v1 > 0 such that v1 ≪ |v2|, and then find v0µ < 0 satisfying |v0µ| ≪ v1. This gives two limit cycles bifurcating

from the critical point (A(1)
gH ,C(1)

gH ). For this case, by perturbing C we have

v0 = A(1057 + 1000A) − 57C(2 + C)

2000A(1 + C)2
.

To obtain v1 > 0, we perturb A = A(1)
gH to A∗ = A(1)

gH + 0.00005 = 0.01846287, for which C∗ = C−(A∗) = 0.11969100 and so v0

= 0.11653286. Now for the Hopf bifurcation associated with the critical values (A∗, C∗), we obtain v1 ≈ 0.13257095 × 10−4

and v2 ≈ −0.10838198 × 10−3. Further, we choose µ = −10−6 < 0, i.e. C is decreased to pass through the critical point (A∗,
C∗), yielding v0µ ≈ −0.11653286 × 10−6. Finally, we obtain the normal form for this generalized Hopf bifurcation, up to
5th-order terms, in the form of

dr

dτ
= r [0.11653286 × (−10−6) + 0.13257096 × 10−4r2 − 0.10838198 × 10−3r4],

giving two real positive roots, r1 ≈ 0.09763824 and r2 ≈ 0.33583483, which approximate the amplitudes of the two limit
cycles. Since v2 < 0, the larger limit cycle is stable while the smaller limit cycle is unstable, and the equilibrium solution at
this critical point is a stable focus.

In order to show the existence of the two limit cycles predicted above, first note that at the parameter values B = D =
0.057, A = A∗, C = C∗ − 10−6, the Jacobin matrix evaluated at the fixed point E− = (14.8376281, 0.1542552) has eigenvalues
− 0.11918442 × 10−6 ± 0.08096077 i, confirming that this fixed point is a stable focus. But the convergence speed of nearby
trajectories to this stable focus is very very slow. Next, we only need to show that there exists a stable limit cycle around
this point since v2 < 0, and expect that the convergence speed is also very slow. Therefore, there exists one unstable limit
cycle between the stable focus and the stable limit cycle, as shown in Fig. 15. It can be seen from this figure that the
analytical predictions, r1 ≈ 0.10 and r2 ≈ 0.34, give very good approximations for the amplitudes of the two simulated limit
cycles, see Fig. 15(b).

Following the above procedure, we can also obtained two limit cycles bifurcating from the other critical point A(2)
gH . We

give the normal form for this case below without giving details for brevity. Taking A = A∗ = A(2)
gH − 10−9, C = C∗ = C−(A∗)

yields

dr

dτ
= r [0.21278281 × (−10−9) + 0.93716102 × 10−7r2 − 0.87730535 × 10−5r4],

which has two real positive roots, r1 ≈ 0.05721775 and r2 ≈ 0.08607204, approximating the amplitudes of the two limit
cycles bifurcating from this critical point (A = A∗,C = C∗). Again, since v2 < 0, the larger limit cycle is stable and the smaller
limit cycle is unstable, and the equilibrium point is a stable focus. For simulation, we should take A = A∗ = 0.9210120422,

C = C∗ − 10−9 = 1.0456736673, which yields the eigenvalues at the equilibrium point E− = (2.09166511, 0.88077509) as
−0.22645814 × 10−5 ± 0.62756454i, and a similar figure to Fig. 15.

Similarly, we can obtain the five normal forms corresponding to the two critical points for the case of B = 0.054 < D =
0.057, one critical point for the case of B = 0.054 < D = 0.087, and two critical points for the case of B = 0.060 > B = 0.057.
We first define the five cases followed by the corresponding five normal forms.

(a) B = 0.054 < D = 0.057 with A = A(1)
gH = 0.0149805591

(b) B = 0.054 < D = 0.057 with A = A(2)
gH = 0.9454739030

(c) B = 0.054 < D = 0.087 with A = AgH = 1.1708464105

(d) B = 0.060 > D = 0.057 with A = A(1)
gH = 0.0213860900

(e) B = 0.060 > D = 0.057 with A = A(2)
gH = 0.8963921091

(a)
dr

dτ
= r[0.20278804 × (−10−6) + 0.89169329 × 10−4r2 − 0.14900851 × 10−2r4]

= 0 .⇒ r1 = 0.04866092 (US), r2 = 0.23973712 (S);

(b)
dr

dτ
= r[0.21515679 × (−10−10) + 0.94588780 × 10−8r2 − 0.22142107 × 10−6r4]

= 0 .⇒ r1 = 0.04909881 (US), r2 = 0.20076919 (S);

(c)
dr

dτ
= r[0.21521113 × 10−9 − 0.93765555 × 10−6r2 + 0.12177368 × 10−3r4]
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= 0 .⇒ r1 = 0.01538841 (S), r2 = 0.08638971 (US);

(d)
dr

dτ
= r[−0.04825749 × 10−9 + 0.15893286 × 10−6r2 − 0.58166912 × 10−4r4]

= 0 .⇒ r1 = 0.01865320 (US), r2 = 0.04883049 (S);

(e)
dr

dτ
= r[−0.00236277 × 10−8 + 0.92766615 × 10−7r2 − 0.16897622 × 10−4r4]

= 0 .⇒ r1 = 0.01636337 (US), r2 = 0.07226452 (S),

where US and S denote unstable limit cycle and stable limit cycle, respectively.
Summarizing the above results we have the following result.

Theorem 3.2. For system (2.1), there always exists generalized Hopf bifurcation leading to two limit cycles bifurcating from the
disease equilibrium E1, for suitable positive parameter values. One of the two limit cycles is stable while the other is unstable.

This theorem indicates that regardless whether B < D or B = D or B > D, the system can always exhibit complex dynamics
including different types of bistability or even tristablity. More precisely, for Cases (a) and (b) (for which B < D), the disease-
free equilibrium E0 is a stable node, the disease equilibrium E1− is a stable focus (another disease equilibrium E1+ is a saddle
point), and there exist a stable limit cycle, as well as an unstable limit cycle between the stable limit cycle and the stable
focus. This indeed shows tristability involving two stable equilibrium solutions and one stable periodic solution. Therefore,
the first quadrant of the X–Y plane can be divided into three trapping regions, each corresponding to one of the three stable
solutions. Case (c) (again B < D) shows a bistable situation, since for this case the disease equilibrium E1− is an unstable
focus, and there exist two limit cycles enclosing this unstable focus, with the inner one stable. The disease-free equilibrium
E0 is still a stable node. For Cases (d) and (e) (for which B > D) and the two cases when B = D, we can see that the
disease-free equilibrium E0 now becomes a saddle point (a degenerate saddle point for B = D) and there is only one disease
equilibrium E1 which is a stable focus. There are two limit cycles enclosing the stable focus and the outer one is stable. So
this again shows a bistability but it involves one stable equilibrium solution and one stable periodic solution, different from
the Hopf bifurcation case.

The above discussion implies that the real situation could be very complex, showing the co-existence of a stable disease-
free equilibrium, stable disease equilibria, and even stable oscillating motion, all of which are possible depending upon the
initial conditions. Moreover, note that the above seven cases (five cases plus two cases for B = D) are obtained for fixed
parameter values of B and D. Hence, such phenomena are not uncommon, but quite rich if the parameters B and D are also
allowed to be varied.

4. Bogdanov–Takens bifurcation

Finally, we consider possible Bogdanov–Takens (BT) bifurcations in system (2.1), characterized by a critical point with a
double-zero eigenvalue. First, we have noticed that it is not possible to have a double-zero singularity at E0 = ( 1

D , 0) since

it has eigenvalues ξ1 = −D and ξ2 = B
D − 1, implying that it can have at most one zero eigenvalue when B = D. Secondly, for

the case B > D, on the equilibrium solution E1−, det(J) > 0 which cannot have a double-zero eigenvalue. Thirdly, for the case

B = D, again the equilibrium solution E1− cannot have a double-zero critical point since when Tr(J) = 0, det(J) = A3(1+C)
(A+C2)2 > 0.

Thus, the only possibility comes from the case B < D on the equilibrium E1−, which is observed from Figs. 1 and 2. In fact,
it can be seen from (2.11) that det(J) = 0 requires ' = 0, together with (2.14) to solve A and C to obtain the solutions for
B = 27

500 , D = 57
1000 as

BT1 = (B1, D1, A1,C1) =
(

27

500
,

57

1000
,

3078507

206879500
,

61731

827518

)
(4.1)

which is marked as a circle in Fig. 1, and for B = 27
500 , D = 87

1000 as

BT2 = (B2, D2, A2,C2) =
(

27

500
,

87

1000
,

118428267

2237439500
,

219501

8949758

)
. (4.2)

which is marked by a circle in Fig. 2. For a clear view, the zoomed areas around the two BT bifurcation points in Figs. 1 and
2 are shown in Fig. 16(a) and (b), respectively. As has been discussed in Section 3 that near the BT bifurcation points, the
Hopf bifurcation is supercritical when B = 0.054, D = 0.057; while it is subcritical when B = 0.054, D = 0.087, which result
in stable and unstable limit cycles, respectively. Thus, we will present the results for both cases.
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4.1. Case B = 0.054, D = 0.057

We first consider the case B = 0.054, D = 0.057. We will derive the normal form associated with the BT1 bifurcation, and
then use the normal form to carry out bifurcation analysis. To achieve this, we introduce the following transformations:

(
X
Y

)
=

⎛

⎝
943

57
57

1000

⎞

⎠ +

⎡

⎣
− 1000

943
0

57

943
1

⎤

⎦
(

u1

u2

)
,

(
A

C

)
=

⎛

⎝
3078507

206879500
61731

827518

⎞

⎠ +
(

µ1

µ2

)
, (4.3)

into (2.1) and expanding the resulting system around the point (u1, u2,µ1,µ2) = (0, 0, 0, 0) up to second order terms yields
the system:

du1

dτ
= u2 + f (u1, u2,µ1,µ2),

du2

dτ
= f (u1, u2,µ1,µ2)

≡ 390174737

1013000000
µ1 − 413759

9500000
µ2 − 171196510081

58491633000
µ1µ2 + 171196510081

517272748500
µ2

2

+
(

315698117

513084500
µ1 − 22326849399

450404618500
µ2

)
u1 +

(
619297507081

58491633000
µ1 − 827518

955259
µ2

)
u2

− 1624500

900809237
u2

1 + 3990000

900809237
u1u2 + 541500

955259
u2

2. (4.4)

Next, we apply the near-identity nonlinear transformation (up to second order), given by

u1 = y1 + 2685896921

19000000
β̄1 +

(
2774136507391115169073729

22529079489117000000000
β̄1 − 5624557927591883

413759000000000
β̄2

)
y1

+ 257312250

900809237
y2

1 + 19238822633

2865777000
y1y2 + 6868613670961379723

72599684000000000
y2

2

u2 = y2 − β̄1 − 739146260609762232437

2514827202000000000
β̄2

1 + 6014732664591883

413759000000000
β̄1β̄2

+
(

17614322633

2865777000
β̄1 − 57

1000
β̄2

)
y1 +

(
739146260609762232437

2514827202000000000
β̄1 − 6014732664591883

413759000000000
β̄2

)
y2

+ 1624500

900809237
y2

1 + 541500

955259
y1y2 + 17614322633

2865777000
y2

2, (4.5)

and the parameterization,

µ1 = − 55157609919

171196510081
β̄1 + 55157609919

171196510081
β̄2 µ2 = −8836997403671

342393020162
β̄1 + 975576403671

342393020162
β̄2,

to (4.4) to obtain the normal form:

dy1

dτ
= y2,

dy2

dτ
= β̄1 + α β̄2 y1 + β̄2 y2 − a1 y2

1 + a2 y1y2, (4.6)

where

α = 57

1000
, a1 = 1624500

900809237
, a2 = 741000

900809237
.

In order to further simplify system (4.6), we introduce the following scalings with an additional shift:

y1 = m1 x1 + y10, y2 = m2 x2, τ1 = m3 τ,
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into (4.6) to obtain

dx1

dτ1
= x2,

dx2

dτ1
= β1 + β2 x2 − x2

1 + x1 x2. (4.7)

Here,

y10 = αβ̄2

2a1
= 900809237

57000000
β̄2,

m1 = a1

a2
2

= 900809237

338000
, m2 =

a2
1

a3
2

= 51346126509

8788000
, m3 = a1

a2
= 57

26
,

β1 =
a4

2(4a1β̄1 + α2β̄2
2 )

4a4
1

= 228488000

2926729211013
β̄1 + 28561

812250000
β̄2

2 ,

β2 = a2(2a1 + a2α)

2a2
1

β̄2 = 13169

28500
β̄2. (4.8)

Thus, the relation between the original perturbation parameters (µ1, µ2) and the new perturbation parameters (β1, β2) is
given by

β1 = 11817370799

392997970672875
µ1 − 23634741598

6950981876155875
µ2

+ 4889543524423441(465105126509 µ1 − 5806064202 µ2)2

2471158479247966697284172250000000000000000
,

β2 = 2501738616510085303

1551818245500000000
µ1 − 5448792271

270750000000
µ2, (4.9)

It should be noted that due to the large values of m1 and m2, very small values of (x1, x2) can result in very large values of
(y1, y2) and so (u1, u2), which are perturbations from the BT critical point (AT, CT). Therefore, we should take small values
of x1 and x2 when solving system (4.7). Also note in (4.9) that the coefficients of µ1 and µ2 are small, so we should choose
very small values for the perturbation parameters β1 and β2. Moreover, since in general µ2 should take negative values
(see Fig. 16(a)), we will show in the following that β1 must take positive values.

Now, we use the normal form (4.7) to analyze the BT bifurcation. First, we note that in almost all existing articles or
books, the unfolding terms (i.e. the terms with the coefficient β1 or β2) are usually taken as in a generic form with no
direct relation to the original physical system parameters, which may cause difficulty in bifurcation analysis when solving
practical problems. Here, we involve perturbation parameters in the nonlinear transformation to obtain the explicit unfolding
terms (in terms of β1 and β2), which have a direct relation to the original system parameters A and C, and thus facilitate a
realistic dynamical study. It is also noted that the standard normal form for BT bifurcations, given in the existing literature,
either in the form of [23],

ẋ1 = x2,

ẋ2 = β1 + β2x2 + x2
1 + x1x2, (4.10)

or in the form of [26]

ẋ1 = x2,

ẋ2 = β1 + β2x1 + x2
1 − x1x2. (4.11)

Our system (4.7) is in the line of (4.10) though there is sign difference for the term x2
1. We use a negative sign in our system

is to keep the sign of the original system, which does not affect the analysis.
The two equilibrium solutions of (4.7) are given by

E± = (x1±, 0), where x1± = ±
√

β1, (β1 ≥ 0). (4.12)

The condition β1 ≥ 0 can be actually determined from (2.4) and (4.9) as

H1 ≈ 3063807

206879500
µ1 − 173223

103439750
µ2 ≈ 9632559468266793081

19558174097693764
β1,

indicating that H1 ≥ 0 must yield β1 ≥ 0.
To find the stability of the two equilibrium solutions, we use the Jacobian of (4.7) to obtain the characteristic polynomial

λ2 − Tr λ + det, where

Tr = β2 + x1 and det = 2 x1.
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Fig. 17. Bifurcation set and phase portraits of system (4.7).

Defining ' = Tr2 − 4 det, we have

Tr+ = β2 + x1+ = β2 +
√

β1, det+ = 2
√

β1 > 0, (4.13)

implying that the equilibrium E+: (x1+, 0) is either a focus or node, which is stable (unstable) when β2 +
√

β1 < 0 (>0).
Similarly, for the equilibrium E−: (x1−, 0) we have

Tr− = β2 + x1− = β2 −
√

β1, det− = 2 x1− = −2
√

β1 < 0, (4.14)

indicating that E− is always a saddle point. The bifurcation set (only for β1 ≥ 0) and corresponding phase portraits are
shown in Fig. 17 (the phase portrait for β1 < 0 is trivial). Note that the Hopf bifurcation near the critical point (denoted by
the dashed blue curve in Fig. 17) is obtained from Tr+ = 0 as

β1 = β2
2 (β2 < 0). (4.15)

There is another curve in Fig. 17, shown in red, which denotes the bifurcation of homoclinic loop (see, for example [23,26]).
Before we derive the equation for the bifurcation of the homoclinic loop, we consider the Hopf bifurcation which occurs

from the dashed blue curve. The Hopf critical point on this curve can be defined as β2H = −
√

β1, and then introducing the

transformation: x1 =
√

β1 + x̃1, x2 = ωc x̃2 into (4.7) results in the system:

dx̃1

dτ1
= ωc x̃2 ≡ f̃ (x̃1, x̃2),

dx̃1

dτ1
= −ωc x̃1 − 1

ωc
x̃2

1 + x̃1x̃2 ≡ g̃(x̃1, x̃2),

where ωc = (2
√

β1)1/2. Thus, the first focus value v1 is given by

v1 = − 1

16ω2
c

(− g̃x̃1 x̃1
g̃x̃1 x̃2

) = − 1

16ωc
× 2

ωc
= − 1

8ω2
c

< 0,

indicating that the Hopf bifurcation is supercritical, and bifurcating limit cycles are stable, as shown in Fig. 17 (see the
ellipse in green). The Hopf bifurcation near the BT critical point is not surprising since the original system does have Hopf
bifurcations which occur from the blue curve, as shown in Fig. 16. In fact, as discussed in Section 3, we can similarly use the
original system to show that the Hopf bifurcations from the blue curve (see Fig. 16) are indeed supercritical, which agrees
with the conclusion obtained above, and so the bifurcating limit cycles are stable.

Next, we consider homoclinic loops which may bifurcate near the BT critical point. Here, we apply the technique of
rescaling, as used in [23] to find the approximation equation for the homoclinic curve. Set

x1 = ε2w1, x2 = ε3w2, β1 = ε4ν1, β2 = ε2ν2, (0 ≤ ε ≪ 1), (4.16)
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Fig. 18. The phase portrait of (4.18) with ν1 = 1, showing a homoclinic loop ,.

and rescale time t = ετ1, so that (4.7) can be rewritten (up to ε order) as

dw1

dt
= w2,

dw2

dt
= ν1 + εν2w2 + εw1w2 − w2

1. (4.17)

Now, letting ε = 0 in (4.17) yields a Hamiltonian system:

dw1

dt
= w2,

dw2

dt
= ν1 − w2

1. (4.18)

with Hamiltonian

H(w1, w2) = −ν1 w1 + 1

3
w3

1 + 1

2
w2

2. (4.19)

Taking ν1 = 1, which corresponds to β1 ≥ 0, we have two fixed points: (w1, w2) = (±1, 0), with (1, 0) being a center and
(−1, 0) a saddle point, as shown in Fig. 18.

The solution on the saddle loop , based at the point (w1, w2) = (2, 0) is given by

(w1(t), w2(t)) = (3 sech2t − 1, 3
√

2 sech2t tanht). (4.20)

Thus, the first-order Melnikov function M(t0) on the vector filed ε q(w1, w2) ∂
∂w2

, where q(w1, w2) = ν2w2 + w1w2, is inde-

pendent of time, and can be calculated as [27]

M(ν2) =
∮

,
Hw2

q(w1, w2) dt =
∫ ∞

−∞
w2(t) [ν2w2(t) + w1(t)w2(t)] dt

= 18 ν2

∫ ∞

−∞
sech4t tanh2t dt + 18

∫ ∞

−∞
(3 sech2t − 1) sech4t tanh2t dt.

Then, solving M ≡ 0 for the saddle connection yields

ν2 ≈ −
∫ ∞
−∞(3 sech2t − 1) sech4t tanh2t dt

∫ ∞
−∞ sech4t tanh2t dt

= −
∫ ∞
−∞(2 tanh2t − 5 tanh4t + 3 tanh6t) sech2t dt

∫ ∞
−∞(tanh2t − tanh4t) sech2t dt

= = −5

7
,

which implies β2 ≤ 0 as expected. Here, the formula:

∫ ∞

−∞
tanhkt sech2t dt = tanhk+1t

k + 1

∣∣∣∣
∞

−∞
=

{
2

k + 1
, k = even,

0, k = odd,

has been used. Finally, noticing ν1 = 1, and β1 = ε4, β2 = ε2 ν2, we obtain the approximate bifurcation curve for the homo-
clinic loop as

Homo: β1 = 49

25
β2

2 , β2 ≤ 0. (4.21)
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The true bifurcation curve is tangent to the semi-parabola at β1 = β2 = 0. Combining this with Eq. (4.15) for Hopf bifur-
cation, we indeed see that a second bifurcation curve, denoted as ‘Homo’, is located above the Hopf bifurcation curve and
tangent to it (and to β1 = 0) at (β1,β2) = (0, 0), and the phase portrait on this bifurcation set has a saddle loop, as shown
in Fig. 17. The sign taken by the Melnikov function M for β1 < 49

25 β2
2 (or > 49

25 β2
2 , respectively) gives the relative position of

the stable and unstable manifolds (separators of the saddle). More precisely, one can use (4.7) to show that the eigenvalues
of the system evaluated on the saddle point E− are

λ1,2 = 1

2

[
β2 −

√
β1 ±

√(
β2 −

√
β1

)2

+ 8
√

β1

]
,

which yields the “saddle quantity”, given by

λ1 + λ2 = β2 −
√

β1 < 0 (β2 < 0).

This implies that the homoclinic orbit is stable (an ω-limit set, attracting the nearby points). Alternatively, we may apply
the approach given in [27] to obtain an expansion of the Melnikov function near the homoclinic orbit, which can be used
to prove the stability of the homoclinic orbit. Further, it can be shown (see [23]) that in the region between the Hopf
bifurcation curve ‘supH’ and the Homoclinic bifurcation curve ‘Homo’ (see Fig. 17) the system has a unique attracting limit
cycle for each pair of parameter values (β1, β2).

To demonstrate the bifurcation phenomena discussed above, we show simulations using the original system (2.1), rather
than the normal form Eq. (4.7), which gives a more realistic observation. We take seven sets of perturbations on the pa-
rameters A and C near the BT1 critical point (see Fig. 16(a)) as A = A1 + µ1, C = C1 + µ2, where A1 and C1 are given in (4.1).
These seven sets of perturbations denote seven points in the bifurcation diagram (see Fig. 16) on a same vertical line (see
the green line in Fig. 16(a)) with the same coordinate A = A1 − 0.000001, and different coordinates C = C1 + µ2 with µ2

given from top to the bottom as follows:

µ2 = −0.0000094, −0.000098, −0.0000106, −0.00003,−0.0000414239, −0.0000875, −0.0001.

It is noted that the equilibrium E1− is a stable focus at the top and the bottom points, but is an unstable focus at the
other five points. Here, we have found an interesting phenomenon that since the Hopf bifurcation curve has a turning point
and all nearby points can lead to stable limit cycles in the region where the equilibrium E1− is an unstable focus, there
exist two homoclinic loops when one goes through the five points along the vertical line starting with the second point
from the top. However, the above normal form theory for the BT bifurcation and the result given in Fig. 17 only show
one homoclinic loop. This is not surprising since the normal form for the BT1 bifurcation is only applicable for the study
of dynamics around the BT1 point and thus it only predicts the top homoclinic loop. Due to the perturbations being very
small, the convergence of the simulating trajectories is very slow. Moreover, the direction of the trajectories near the saddle
point is hard to distinguish. Therefore, in order to give a clear view, we, based on the simulating phase portraits which have
been rotated by a angle of π

55 , present seven schematic diagrams with exaggerated convergence speed and the part near the
saddle point. Since the simulations for the top and bottom points are similar, we will only present one figure for these two
points (see Fig. 19(a)). Of course, they are different quantitatively and the simulation for the bottom point is much clearer
than that of the top one. The Fig. 19(b)–(f) correspond to the other five points from top to the bottom. The relation between
the original coordinates (X, Y) and the new coordinates (X̄, Ȳ ) shown in Fig. 19 is given by

X̄ = cos
(

π
55

)
X − sin

(
π
55

)
Y, Ȳ = sin

(
π
55

)
X + cos

(
π
55

)
Y.

In the next example for B = 0.054, D = 0.087, we will see true simulating phase portraits, which clearly show the Hopf
bifurcation and homoclinic bifurcation.

4.2. Case B = 0.054, D = 0.087

Now we turn to study the case B = 0.054, D = 0.087. As we have discussed, a particular difference between this case and
previous case is that now the Hopf bifurcation near the BT2 critical point is subcritical, and thus the bifurcating limit cycles
are unstable. This difference can cause dramatically different meanings in the biological explanation of this phenomenon.

Since the solution procedure is similar to the previous case, we will skip some detailed steps and only present the main
results in the following. Using a series of transformations, similar to (4.3), (4.5) and (4.8), we obtain the following normal
form:

dx1

dτ1
= x2,

dx2

dτ1
= β1 + β2 x2 − x2

1 − x1 x2. (4.22)

The solution formulae are the same as that given in (4.12). Again, we can similarly argue that β1 ≥ 0, and as a matter of
fact, H1 ≥ 0 implies β1 ≥ 0. The linear stability of these two equilibrium solutions show that (x1−, 0) is a saddle point,
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Fig. 19. Simulations of system (2.1) when B = 0.054, D = 0.057, A = 0.01487968 for (a) C = 0.07458837 or C = 0.07449777, showing stable focus E1−, (b)

C = 0.07458797, showing unstable focus E1− and a stable limit cycle, (c) C = 0.07458717, showing unstable focus E1− and a stable homoclinic loop, (d)

C = 0.07456777, showing unstable focus E1− and a stable limit cycle, (e) C = 0.0745563461, showing unstable focus E1− and a stable homoclinic loop, (f)

C = 0.07449777, showing unstable focus E1− and a stable limit cycle.

while (x1+, 0) is stable (unstable) if β2 −
√

β1 < 0 (>0). The Hopf bifurcation near the BT2 critical point is determined as

β1 = β2
2 (β2 ≥ 0), (4.23)

and the bifurcation is subcritical, since the first focus value can be obtained as v1 = 1
8 ω2

c
> 0. Similarly we can obtain the

homoclinic bifurcation which occurs from the curve:

Homo: β1 = 49

25
β2

2 , β2 ≥ 0. (4.24)

The bifurcation set and corresponding phase portraits are depicted in Fig. 20, which is quite different from the case B =
0.054, D = 0.057 (see Fig. 17). Simulations based on the original system (2.1) for this case are shown in Fig. 21, where the
perturbation (µ1, µ2), on the parameters A and C, take the following values:

(0.004, 0.0085), (0.004, 0.00807), (0.004, 0.0073813), (0.004, 0.007),
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Fig. 20. Bifurcation set and phase portraits of system (4.22).

Fig. 21. Simulations of system (2.1) when B = 0.054, D = 0.087 for (a) A = 0.0569302656, C = 0.0330259146, showing an unstable focus E1− with one

trajectory divergent to the saddle point E1+, (b) A = 0.0569302656, C = 0.0325959146, showing stable focus E1− enclosed by an unstable limit cycle, (c) A =
0.0569302656, C = 0.0319072146, showing a homoclinic loop enclosing a stable focus, and (d) A = 0.0569302656, C = 0.0315259146, showing convergence

of the trajectory starting from the saddle point E1+ to the stable focus E1− .
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which represent four points on the same vertical green line in the bifurcation diagram, shown in Fig. 16(b).
It is seen from Fig. 21(a) that the phase portrait for the first perturbation, corresponding to a point above the Hopf

bifurcation curve (see the blue curve in Fig. 20), shows a unstable focus E1− and there exists one trajectory starting from
the saddle point E1+ and converging to this focus as τ → − ∞.

Figure 21(b) shows the phase portrait for the second perturbation, corresponding to a point between the Hopf bifurcation
curve (the blue curve in Fig. 20) and the homoclinic bifurcation curve (the red curve in Fig. 20), shows an unstable limit
cycle (see the green curve in Fig. 20) and trajectories starting near this limit cycle either converge to the stable focus E1− or
to the stable node E0 (which is not shown in Figs. 20 and 21) as τ → +∞.

Figure 21(c) shows a homoclinic loop under the third perturbation, corresponding to a point on the homoclinic bifur-
cation curve, which encloses the stable focus E1−, and all trajectories inside this homoclinic loop coverage to the focus as
τ → +∞. We can use a very similar approach as that used for system (4.7) to consider the homoclinic orbit of system (4.22).
In fact, it is easy to use (4.22) to obtain the eigenvalues of the system evaluated on the saddle point E− as

λ1,2 = 1

2

[
β2 +

√
β1 ±

√(
β2 +

√
β1

)2

+ 8
√

β1

]
,

from which we obtain the saddle quantity,

λ1 + λ2 = β2 +
√

β1 > 0 (β2 > 0),

implying that the homoclinic orbit is unstable (an α-limit set).
Finally, Fig. 21(d) shows a phase portrait for the fourth perturbation, corresponding to a point below the homoclinic

bifurcation curve, which encloses the stable focus E1−. It is seen from Fig. 21 that the saddle connection before and after the
homoclinic loop (Fig. 21(c)) change the way to connect the focus or the limit cycle. Note that unlike the bifurcation shown
in Fig. 16(a) where there are two homoclinic loops which occur from the green line, here there is only one homoclinic loop
since no more Hopf bifurcation happens when the parameter C is decreased to cross the Hopf critical line along the green
line (see Fig. 16(b)).

Summarizing the results obtained in this section we have the following theorem.

Theorem 4.1. For system (2.1), when B < D and H1 > 0, there always exists Bogdanov–Takens bifurcation, which occurs from
the precritical disease bifurcation solution, leading to homoclinic bifurcation near a Hopf bifurcation, with homoclinic loop being
either stable or unstable.

4.3. A new mechanism for generating blips

A detailed study for a 4-dimensional system has been given in [13,14], shows a mechanism for generating the blips
phenomenon, and four conditions are proposed in a hypothesis, which guarantee the existence of blips. In [13,14], blips are
also shown to exist in two 3-dimensional models as well as in the 2-dimensional model (2.1). An important condition for
the existence of blips is Hopf bifurcation, which is the source of oscillation. Very recently, another mechanism has been
identified in [15], which is also related to Hopf bifurcation. These two mechanisms have a common property that both of
them generate oscillations with large changes in both amplitude and frequency, and they both appear on the post-critical
disease bifurcation solution. It has also been noted that these two mechanisms have a fundamental difference: the former
guarantees blips to occur near a transcritical bifurcation point; while the later yields blips far away from a transcritical
bifurcation point, which are not guaranteed. The second mechanism needs further investigation.

In order to discuss a new mechanism of generating blips, in the following we list Hypothesis 1 from [13,14], and propose
a second Hypothesis based on the results obtained in [15].

Hypothesis 1. [13,14] The following four conditions are needed for an in-host infection model to generate viral blips:

(i) there exist at least two equilibrium solutions;
(ii) there exists a transcritical bifurcation at an intersection of the two equilibrium solutions;

(iii) there is a Hopf bifurcation which occurs from one of the equilibrium solutions; and
(iv) large oscillations (or, more generally, global, persistent motions) can occur near the transcritical critical point.

Hypothesis 2. [15] The following four conditions are needed for an in-host infection model to generate viral blips: condi-
tions (i)–(iii) are the same as that given in Hypothesis 1; and

(iv) large oscillations (or, more generally, global, persistent motions) can occur far away from the transcritical and Hopf
critical points.

We use the bifurcation diagrams shown in Fig. 22(a) and (b) (which are Fig. 3.3(a) and (b) in [14]) to illustrate
Hypothesis 1, and the bifurcation diagram in Fig. 22(c) (which is Fig. 3.1(a) in [15]) to explain Hypothesis 2, where R and
A are state variables, B and α are parameters. E0 and E1 denote the disease-free and disease equilibrium solutions. The
green lines indicate where the blip-like oscillations occur. It is clear from Fig. 22(a) and (b) that the blips appear near the
transcritical point, and may or may not appear near the Hopf critical point, where both E0 and E1 are unstable, illustrating
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Fig. 22. Bifurcation diagrams illustrating Hypotheses: (a) and (b) for Hypothesis 1, (c) for Hypothesis 2 and (c) Hypothesis 3.

condition (iv) in Hypothesis 1. Fig. 22(c) (where the second Hopf critical point ‘Hopf2’ is outside the figure) shows that the
blips occur far away from the transcritical and Hopf bifurcation points.

Through the study given in this section on the BT bifurcation, we have found a third mechanism for generating blips, due
to the BT bifurcation, explained as follows. First of all, note that the trajectory starting from a point on the homoclinic loop
will reach the saddle point either as τ → +∞ or τ → −∞. Therefore, it can be seen from Fig. 17 that near the homoclinic
bifurcation curve, for certain parameter values, the bifurcating stable limit cycles can be large close to the saddle separators
and thus such a stable limit cycle will move extremely slowly near the saddle point but will move fast when it is away from
the saddle point – giving rise to the blips phenomenon. A schematic bifurcation diagram for the case, which is depicted in
Fig. 19 when B = 0.054, D = 0.057, A = 0.01487968, is shown in Fig. 22(d). Also note from Figs. 20 and 21 that when the
limit cycle inside the saddle separators is unstable, the trajectories starting near the unstable limit cycle may converge to
the stable focus E1−, or to the stable node E0 but will take very long time since it will go through a route close to the
saddle point though not generating blips in this case.

The big difference between the first two mechanisms and the new mechanism is that the first two mechanisms result
in very large oscillations in both amplitude and frequency, while the new mechanism only causes significant changes in
frequency, but very little variation in the amplitude. The biological implication of the new mechanisms is interesting and
may explain some real situations, namely, in some situations a patient may not feel obvious changes nor will measurable
changes in disease progression be apparent, but nonetheless the patient may be experiencing recurrent disease without any
significant observation. In other situations, neither the infected individual nor the clinician may be able to detect whether
the infection has been cured, since complete recovery may take an extremely long time. In both cases, the patient is in an
uncertain situation. To describe these scenarios, we have the following hypothesis.

Hypothesis 3. The following four conditions are needed for an in-host infection model to generate viral blips or to take an
extremely long time to recover (converge to the disease-free equilibrium): conditions (i)–(iii) are the same as that given in
Hypothesis 1; and
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(iv) there exists Bogdanov–Takens bifurcation, leading to homoclinic loops near a Hopf bifurcation, which may yield blips
with very small changes in amplitude, or extremely slow convergence to the disease-free equilibrium.

5. Conclusion and discussion

In this paper, we have given a detailed dynamical study of a 2-dimensional disease model, which can be used not only for
in-host disease modeling, but also for epidemiologic modeling. We have shown that when the reproduction number, R0 = B

D ,

is varied near R0 = 1, the system exhibits rich dynamical behaviors, including equilibrium solutions which exchange their
stability at the transcritical point R0 = 1. Both Hopf and generalized Hopf bifurcations can occur regardless whether R0 < 1
or R0 ≥ 1, which lead to bistability or even tristability. In particular, our study has indicated that when R0 < 1, the system
can have Bogdanov–Takens bifurcation leading to more complex dynamical behavior such as homoclinic orbit bifurcation.
This special bifurcation may provide a new scenario/mechanism for generating recurrence or the viral blips phenomenon,
summarized in Hypothesis 3.

Hypothesis 3 is completely different from Hypotheses 1 and 2, and may provide an explanation for interesting clinical
phenomena. In many disease models, the concept of R0 is straightforward, i.e. if R0 < 1, the disease cannot invade or persist,
and the disease only exists for R0 > 1. In reality, disease dynamics are more complex, and our model indeed reflects this
complexity. Hypothesis 3 allows for the possibility that even if control or therapy reduces R0 below one, a disease may per-
sist indefinitely with low level oscillations, or may die out, but with an extremely slow time course of decay. The possibility
of disease persistence when R0 < 1 is a feature of backward bifurcation [28–30], an issue which we are investigating for
this model and related disease models as well [31].

Mathematically, the most interesting dynamical behavior of our model is the Bogdanov–Takens bifurcation leading to
homoclinic loops, which in turn provides a new mechanism for explaining a very different blips phenomenon. In particular,
this phenomenon does not have obvious changes in the amplitude of the oscillating motion. This can only happen when
B < D (i.e. R0 < 1). However, this condition, B < D, is not enough, the additional condition H1 ≥ 0, which guarantees the
existence of disease equilibrium, E1, must also be satisfied. Intuitively, if B < D, then the epidemic cannot get started because
near the disease-free equilibrium, E0, the behavior of the model is similar to that studied in [3], and thus no oscillation can
occur with R0 < 1. However, H1 ≥ 0, as mentioned in Remark 2.1, implies that the contact rate A exceeds its threshold such
that the infected cells, denoted by Y, are sufficiently infectious such that the epidemic can sustain itself once started even if
B < D. Therefore, this leads, after getting over an initial threshold, to potential bistable equilibrium solutions and even more
complex dynamical behavior.

One question which is not discussed in this paper but is closely related to our study is the so-called fast-slow motion
arising from singular perturbation problems which contain “fast” and “slow” manifolds (e.g., see [32] and references therein).
The oscillations appearing in a singular perturbed system are specific periodic solutions, which are similar to the blips
motion studied in [13–15]. Then, a question arises: what result can we expect if we use the singular perturbation method
to analyze our system, compared to that obtained using the simple method introduce in [13]? In fact, the 2-dimensional
model (2.1) studied in this paper is reduced from a 3-dimensional model by applying the quasi-steady state assumption
[13]. The 3-dimensional model indeed contains a 1-dimensional fast manifold and 2-dimensional slow manifold. In [13], we
used our method to perform a detailed parametric study to show the blips phenomenon in a very large parameter region,
confirmed by simulating the 3-dimensional dynamical system. Thus, we believe that applying the singular perturbation
method to the 3-dimensional system will unlikely show more complex dynamical behavior than what we obtained using
the simple approach. The 2-dimensional model (2.1), on the other hand, describes dynamical behavior of the system on the
slow manifold. For some parameter values, we have shown [13] that the system exhibits blips oscillation. If we want to
apply the singular perturbation technique to study the 2-dimensional model (2.1) to find the blips (fast-slow motion), we
must carefully choose some parameter scaling to make an ε to appear in this equation so that one equation becomes a fast
manifold and the other becomes slow manifold. But this process is quite technique and requires some particular condition
to be satisfied. Certainly, what kind of problems which can be analyzed by the singular perturbation method but not our
approach are remain open, and will be our future research project. Also, we would like to extend the study in this work for
the 2-dimensional (A, C) parameter space to the 4-dimensional (A, B, C, D) parameter space in order to get a more generic
picture, and find out what is the maximal number of limit cycles which can bifurcate from a Hopf critical point due to the
increase of the number of parameters.

Finally, we would mention that the ideas and methodologies presented in this paper can be used to analyze other types
of in-host disease models as well as epidemiologic models. We hope that they can also be generalized to study functional
differential systems (e.g. with time delays), or even other physical or engineering systems which exhibit similar “blips-like”
phenomenon.
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