Given a function \(f(x) = x^4 - 4x^3 + 10 \).

(i) Compute the 1st & 2nd derivatives.

\[
\begin{align*}
 f'(x) &= 4x^3 - 12x^2, \\
 f''(x) &= 12x^2 - 24x \\
 &= 4x(x-3) \\
 &= 12x(x-2)
\end{align*}
\]

(ii) Draw a chart below, for the function \(f \), indicating the values of \(x \) corresponding to critical points & inflection points.

<table>
<thead>
<tr>
<th>Functions</th>
<th>Critical Numbers</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x) = x^4 - 4x^3 + 10)</td>
<td>(f'(x) = 0), (x = 0, x = 3)</td>
<td>1st derivative signs (increasing/decreasing)</td>
</tr>
<tr>
<td>(f(x) = 4x^2(x-3))</td>
<td>(f''(x) = 0), (x = 0, x = 2)</td>
<td>2nd derivative signs (concavity)</td>
</tr>
<tr>
<td>(f''(x) = 12x(x-2))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From the above table, we see there is a relative minimum at \(x = 3 \) and inflection points at \(x = 0 \) and \(x = 2 \) (because the 2nd derivative changes sign at these points), and a horizontal tangent at \(x = 0 \) (because the first derivative is zero).

(iii) Using the chart, indicate where the function \(f \) is increasing, decreasing, concave down and concave up, respectively.

\(f \) is increasing \(x \in (3, +\infty) \)

\(f \) is decreasing \(x \in (-\infty, 0) \)

Concave up \(x \in (-\infty, 0) \cup (2, +\infty) \)

Concave down \(x \in (0, 2) \)
To find the y-value of the critical points and the inflection points, evaluate f at $x=0$, 2, and 3.

- $f(0) = 10$. Point of inflection $(0, 10)$
- $f(2) = -6$. Point of inflection $(2, -6)$
- $f(3) = -17$. Relative minimum at $(3, -17)$

(iv) Sketch the graph of the function f.

Conclude the above information.
1. Given \(f(x) = \frac{1}{3}x^3 - 9x + 2 \)

1st derivatives \(f'(x) = x^2 - 9 = (x+3)(x-3) \)
2nd derivatives \(f''(x) = 2x \).

(a) Find all critical numbers:
solve \(f'(x) = 0 \), we have \((x+3)(x-3) = 0 \), then \(x_1 = 3, x_2 = -3 \).

(b) Find where the function is increasing and decreasing

\[
\begin{array}{c|c|c|c}
\text{Increasing} & \text{Decreasing} & \text{Increasing} \\
\text{Sign of } f'(x) & + & - & + \\
\end{array}
\]

the function \(y = f(x) \) is increasing in the interval \((-\infty, -3) \cup (3, \infty)\)
decreasing in the interval \((-3, 3)\).

(c). Find the \(x \) coordinate all points of inflection.

Solve \(f''(x) = 0 \), we have \(x = 0 \).

\(x \in (-\infty, 0) \), that is \(x < 0 \), \(f''(x) = 2x < 0 \), \(f(x) \) is Concave down
\(x \in (0, +\infty) \), that is \(x > 0 \), \(f''(x) = 2x > 0 \), \(f(x) \) is Concave up.

Therefore the inflection point is \((0, f(0)) = (0, 2) \).

the \(x \) coordinate of inflection is \(x = 0 \).
4. Given $f(u) = 3u^4 - 2u^3 - 12u^2 + 18u - 5$.

1st derivative $f'(u) = 12u^3 - 6u^2 - 24u + 18 = 6(2u^3 - u^2 - 4u + 3)$.

$= 6(2u^3 - u^2 - 3u + 3)$

$= 6 \left[u \ (2u^2 - 1u - 1) \right]^{2}_{-1}$

$= 6 \left[u \ (2u^2 - 1u - 1) \right] = 6 \left[u \ (2u - 1) \right] \ (u - 1)$

$= 6(2u + 3)(u - 1) = 6(2u + 3)(u - 1)^2$

$f''(u) = (12u^3 - 6u^2 - 24u + 18)' = 36u^2 - 12u - 24$

$= 12(3u^2 - u - 2)$

$= 12(3u + 2)(u - 1)$

(a) Determine where the function is increasing and decreasing.

Solve $f'(u) = 0$, we have $u = -\frac{3}{2}, u = 1$.

$f(x)$ is decreasing \rightarrow increasing \rightarrow increasing

Sign of $f'(u)$: $-\frac{3}{2}$ $+u=1$ $+$

The function $y = f(x)$ is increasing on the interval $\left(-\frac{3}{2}, +\infty \right)$

decreasing on the interval $\left(-\infty, -\frac{3}{2} \right)$

(b) Determine where the function is concave up and concave down.

Solve $f''(u) = 0$, we have $u = -\frac{3}{2}, u = 1$.

Shape of $f(x)$ is concave up \rightarrow concave down \rightarrow concave up.

Sign of $f''(u)$: $-\frac{3}{2}$ $-u=1$ $+$

Therefore, the function $y = f(x)$ is concave up on the interval $\left(-\infty, -\frac{3}{2} \right)$

concave down on the interval $\left(-\frac{3}{2}, 1 \right)$.

The inflection points are $\left(-\frac{3}{2}, f(-\frac{3}{2}) \right)$ and $\left(1, f(1) \right)$.