
An Overview of the Trilinos Project

MICHAEL A. HEROUX

ROSCOE A. BARTLETT

VICKI E. HOWLE

ROBERT J. HOEKSTRA

JONATHAN J. HU

TAMARA G. KOLDA

RICHARD B. LEHOUCQ

KEVIN R. LONG

ROGER P. PAWLOWSKI

ERIC T. PHIPPS

ANDREW G. SALINGER

HEIDI K. THORNQUIST

RAY S. TUMINARO

JAMES M. WILLENBRING

ALAN WILLIAMS

Sandia National Laboratories

and

KENDALL S. STANLEY

Oberlin College

The Trilinos Project is an effort to facilitate the design, development, integration and ongoing
support of mathematical software libraries within an object-oriented framework for the solution
of large-scale, complex multi-physics engineering and scientific problems. Trilinos addresses two
fundamental issues of developing software for these problems: (i) Providing a streamlined pro-
cess and set of tools for development of new algorithmic implementations and (ii) promoting
interoperability of independently developed software.

Trilinos uses a two-level software structure designed around collections of packages. A Trilinos
package is an integral unit usually developed by a small team of experts in a particular algorithms
area such as algebraic preconditioners, nonlinear solvers, etc. Packages exist underneath the
Trilinos top level, which provides a common look-and-feel, including configuration, documentation,
licensing, and bug-tracking.

Here we present the overall Trilinos design, describing our use of abstract interfaces and default
concrete implementations. We discuss the services that Trilinos provides to a prospective package
and how these services are used by various packages. We also illustrate how packages can be
combined to rapidly develop new algorithms. Finally, we discuss how Trilinos facilitates high-
quality software engineering practices that are increasingly required from simulation software.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Com-
pany, for the United States Department of Energy under Contract DE-AC04-94AL85000.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2004 ACM 0098-3500/2004/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004, Pages 1–27.

2 · Michael A. Heroux et al.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra;

G.4 [Mathematics of Computing]: Mathematical Software; D.2.13 [Software Engineering]:
Reusable Software

General Terms: Algorithms, Design, Performance, Reliability

Additional Key Words and Phrases: Software framework, Interfaces, Software Quality Engineering

1. INTRODUCTION

Research efforts in advanced solution algorithms and parallel solver libraries have
historically had a large impact on engineering and scientific computing. Algorithmic
advances increase the range of tractable problems and reduce the cost of solving
existing problems. Well-designed solver libraries provide a mechanism for leveraging
solver development across a broad set of applications and minimize the cost of solver
integration. Emphasis is required in both new algorithms and new software in order
to maximum the impact of our efforts.

Sandia has developed scalable solver algorithms and software for many years.
Often this development has been done within the context of a specific application
code, providing a good robust solver that meets the particular needs of that applica-
tion. Even Aztec [Tuminaro et al. 1999], one of the most important general-purpose
solvers developed at Sandia, was developed specifically for MPSalsa [Salinger et al.
1996; Shadid et al. 1995] and only later extracted for use with other applications.
Unfortunately, even though application-focused solvers tend to be very robust and
can often be made into very effective general-purpose solvers, the opportunity to
re-use the basic set of tools developed for one solver in the development of another
solver becomes very difficult.

The Trilinos Project grew out of this group of established numerical algorithms
efforts at Sandia, motivated by a recognition that a modest degree of coordination
across these efforts could have a large positive impact on the quality and usability
of the software we produce and therefore enhance the research, development and
integration of new solver algorithms into applications. With the advent of Trilinos,
the degree of effort required to develop new parallel solvers has been substantially
reduced, because our common infrastructure provides an good starting point for new
development. Furthermore, many applications are standardizing on the Trilinos
matrix and vector classes. As a result, these applications have access to all Trilinos
capabilities without interface modifications.

Trilinos has a two-level design where the fundamental building block is a pack-
age. Although package is a common term, we define it rigorously within Trilinos.
Specifically, each package is a numerical library (or collection of libraries) that is:

—Focused on important, state-of-the-art algorithms in its problem regime. For
example: algebraic preconditioners, nonlinear solvers, scalable data models, etc.

—Developed by a small team of domain experts.
—Self-contained, with minimal dependencies on other packages.
—Configurable, buildable, tested and documented on its own.

These packages can be distributed within Trilinos or separately. The Trilinos frame-
ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

An Overview of Trilinos · 3

work provides a common look-and-feel that includes configuration, documentation,
licensing, and bug tracking. There are also guidelines and tools for adding new
packages to Trilinos.

The Trilinos project encompasses a variety of efforts that are to some extent
self-contained but at the same time inter-related. The Trilinos design allows in-
dividual packages to grow and mature autonomously to the extent the algorithms
and package developers dictate. This document provides an overview of the project,
focusing on the project philosophy and description, and providing the reader with a
summary of the project in its current state. Section 2 discusses work that is related
to Trilinos. Integration of a package into Trilinos, and what Trilinos can provide to
a package, will be discussed in Section 3. Section 4 discusses the current collection
of Trilinos packages. Section 5 presents some code fragments that illustrate the in-
teroperability of Trilinos packages. This section also discusses the Meros package in
greater detail because it illustrates how multiple Trilinos packages can be combined
to quickly provide production implementations of state-of-the-art algorithms. Fi-
nally, Section 6 discusses the role of Trilinos to improve software quality and reduce
the cost of software quality assurance processes, an increasingly important aspect
of computer modeling and simulation for science and engineering.

2. RELATED WORK

General-purpose solver libraries have been used successfully across a broad set of
applications and computer systems. EISPACK [Smith et al. 1976], LINPACK [Don-
garra et al. 1979] and LAPACK [Anderson et al. 1995] are just a few of the many
libraries that have made a tremendous impact, providing robust portable solvers
to a broad set of applications. More recently, libraries such as PETSc [Balay et al.
1998b; 1998a; 1997], ScaLAPACK [Blackford et al. 1997], PLAPACK [Alpatov
et al. 1997] and Aztec [Tuminaro et al. 1999] have enabled development of parallel
applications by giving users access to parallel distributed memory solvers that are
easy-to-use and robust.

The purpose of the Trilinos project is to foster development of new solver libraries
by minimizing the costs of new development, while still leveraging the investment in
established libraries such as those just mentioned. These two goals are accomplished
by active research and development of new libraries and by use of the Trilinos pack-
age architecture. Although Trilinos is unique in design, a number of other projects
have some similarities. In particular, PETSc, the Common Component Architec-
ture (CCA) [Forum 2004], the Matrix Template Library (MTL) [A. Lumsdaine
2004] and POOMA [Oldham 2002] share attributes with Trilinos.

2.1 Trilinos and PETSc

Trilinos is similar to PETSc in that both provide libraries for constructing and us-
ing sparse and dense distributed matrices and vectors. Also, both projects provide
solver libraries for linear, nonlinear, time-dependent and eigenvalue problems. Trili-
nos differs from PETSc in that Trilinos is written primarily in C++, has an explicit
modular architecture and each package is interoperable with other packages but not
interdependent. Most Trilinos packages are data-neutral in design and in fact could
easily use PETSc libraries to provide a variety of capabilities via straight-forward
implementation of documented abstract interfaces, without modifying PETSc or

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

4 · Michael A. Heroux et al.

Trilinos source code.

2.2 Trilinos and the Common Component Architecture

The Trilinos package architecture, which is the primary difference between Trili-
nos and PETSc, is the primary similarity between Trilinos and the CCA. Like the
CCA, the Trilinos package architecture supports interoperability of independent
pieces of software. However, the CCA uses an advanced runtime environment to
manage the coupling of components, whereas Trilinos uses configure-enabled con-
ditional compilation and the polymorphism that is inherent in the C++ language.
Both approaches are essential and very compatible. In fact, the modularity and
independence of Trilinos packages make them easy to wrap as CCA components.

2.3 Trilinos and MTL

The Trilinos packages Epetra and Tpetra are similar to MTL. All three are written
in C++ and provide numerical linear algebra objects that can be used to implement
numerical algorithms. MTL makes more aggressive use of template facilities in
C++ and allows more elegant and flexible implementations. However, portability
of MTL is a major issue since a number of C++ compilers do not support some
of the features used by MTL. Another difference is that MTL provides its own
functionality that is similar to the BLAS, whereas Epetra and Tpetra rely on BLAS
libraries for performance. A final major difference is that MTL executes on serial
machines only. Epetra and Tpetra support distributed memory objects and provide
parallel data repartitioning capabilities [Boman et al. 2004].

2.4 Trilinos and POOMA

Trilinos and POOMA are similar in that they both provide serial and parallel
distributed memory linear algebra objects, along with automatic support of in-
terprocessor communication. POOMA differs from Trilinos in its focus on arrays
and overloaded operator syntax, which make grid-based calculations and explicit
methods easy to implement. In fact, much of POOMA terminology uses grid con-
cepts. POOMA also focuses only on basic linear algebra computations. No implicit
solvers are provided, although grid-based implicit solvers can be easily built us-
ing POOMA objects. Trilinos packages such as Epetra and Tpetra can be used
for grid-based computations, but their primary focus is on irregular, unstructured
computations. Other Trilinos packages access linear algebra services via abstract
vector and operator interfaces. Therefore, POOMA object could be used via these
interfaces.

2.5 Trilinos and Other Solver Libraries

Trilinos provides significant new solver capabilities as self-contained Trilinos pack-
ages. It also provides an explicit, documented, modular architecture that facilitates
interoperability. This allows Trilinos to easily use other solver libraries and to also
provide, via any individual Trilinos package, solver capabilities to other libraries.
External solver libraries are made Trilinos-compatible, not by integrating them into
Trilinos, but by augmenting the capabilities of the external library. This difference
in design philosophy is subtle but important, especially for scalable growth in pack-
age count. Using this approach, Trilinos will never become a large monolithic piece
ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

An Overview of Trilinos · 5

of software, something that is very important as the volume of solver software
continues to grow.

3. TRILINOS PACKAGE ARCHITECTURE AND SERVICES

In our experience mathematical libraries tend to be written by small teams of
domain experts. For example, approximately 25 staff members (not including stu-
dents) contribute to Trilinos development across approximately 25 different pack-
ages, but most individual Trilinos packages are developed by one to three staff
members, and no single package has more than five developers. Some staff mem-
bers contribute to more than one package, but very few contribute to more than
three packages. Another observation is that mathematical libraries tend to be writ-
ten by experienced numerical software developers who do not have much, if any,
experience with formal software tools and processes. Both of these observations
have motivated the Trilinos design and implementation. The Trilinos package ar-
chitecture naturally supports small inter-related team development efforts. Trilinos
services, provided on a package-by-package basis, directly address the second ob-
servation.

3.1 Modularity via Packages

Each Trilinos package is fully self-sufficient and self-contained, unless there are
explicit dependencies designed into a package. Package source code and revision
history is contained within a single directory structure. Mail lists, software faults,
documentation, websites and interoperability are all organized via packages.

Package interoperability is accomplished via configure-time enabling of package-
to-package coupling. For example, the algebraic preconditioner package called IF-
PACK has many parameters to control how preconditioners are constructed and
used, e. .g ., level of fill in an incomplete factorization. Teuchos, described in
Section 4.1, is a package of commonly used utility classes such as portable BLAS
interfaces and timers. Teuchos provides a parameter list class that can be used to
specify parameter values. If the argument --enable-teuchos is specified when IF-
PACK is configured, Teuchos ParameterList support will be compiled in IFPACK,
otherwise this code will not be enabled and only IFPACK’s internal parameter
setting method is available. Configure-time enabling of package interoperability is
commonly used for any optional package coupling that makes sense. In this way
packages retain autonomy but can easily be combined with any other package that
makes sense algorithmically.

3.2 Package Services Provided by Trilinos

Trilinos provides a variety of services to package developers. When a new package
is introduced into Trilinos, each of these services is established, immediately pro-
viding the new package with necessary tools to address important software quality
engineering practices (see Section 6 for details). All tools are accessible from the
main Trilinos website [Heroux 2004]. Specifically the services we establish are:

—Source code repository: Trilinos source code is maintained in a CVS [Free
Software Foundation 2004c] repository that is accessible via a secure connection
from anywhere on the internet. For most new packages, use of a supported CVS

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

6 · Michael A. Heroux et al.

repository is the most important service Trilinos provides, since development is
typically in the early stages and there are few if any users.

—Mail lists: Trilinos uses the Mailman [Free Software Foundation 2004e] list
manager to provide communication support for each package. Package lists start
with the package name followed by the list function, e. g. , AztecOO-Announce.
The following mail lists are established for each package:
—Package-Announce: All news related to this package is sent to this list, such

as release announcements, etc.
—Package-Developers: Package developer discussions occur on this list, including

design and policy discussions. Key development decisions are posted here for
archival purposes.

—Package-Users: List for package users. General discussions about use of the
package are conducted here, typically monitored by the package development
team.

—Package-Checkins: All log messages that are submitted with source code changes
to the CVS repository are sent to this list. Anyone wishing to see the moment-
to-moment activity in package development can subscribe to this list.

—Package-Regression: All output from the regression test suite for the package
is sent to this list.

—Issue tracking: Bugzilla [The Mozilla Organization 2004b] is a web-based issue
tracking application that supports submission and tracking of software issues,
including enhancements and faults. Each package has its own Bugzilla product.

—Fault identification: Bonsai [The Mozilla Organization 2004a] is a web-based
application that supports a variety of CVS repository browsing capabilities, and
links changes in the repository to Bugzilla issues. Bonsai is most useful as a way
to quickly identify changes in source code that have cause a software fault.

—Configuration management: Autoconf [Free Software Foundation 2004a], Au-
tomake [Free Software Foundation 2004b] and Libtool [Free Software Foundation
2004f] provide a robust, full-featured set of tools for building software across a
broad set of platforms (see also the “Goat Book” [Vaughan et al. 2000]). Al-
though these tools are not official standards, they are widely used. All existing
Trilinos packages use Autoconf and Automake. Libtool support will be added in
future releases.
Trilinos provides a library of M4 [Free Software Foundation 2004d] macros that
can be used by any other package that wants to use Autoconf and Automake for
configuring and building libraries. These macros perform common configuration
tasks such as locating a valid LAPACK [Anderson et al. 1995] library, checking
for a user-defined MPI [Snir et al. 1998] C compiler or determining inter-language
linking rules. This library of macros minimizes the amount of redundant effort
in using Autotools, and make it easier to apply a general change to the configure
process for all packages.

—Automated Regression testing: Trilinos provides a variety of regression test-
ing capabilities. Integrating new tests into Trilinos is accomplished by creating
specially named directories in the CVS repository and creating scripts that run
package tests. For example, an executable script committed to the repository in
the directory Trilinos/packages/epetra/test/scripts/daily/serial can be executed

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

An Overview of Trilinos · 7

manually and will also run daily on any platform that has the Epetra serial test
harness installed, as part of the automated regression test harness. On a nightly
basis, the test harness builds the most recent versions of Trilinos libraries and
runs any tests that are present in one of these special directories.

3.3 The new package Package

In order to reduce the start up time for a new Trilinos package, whether it is the
importing of existing software or development of new source, the new package pack-
age provides a good starting point for accessing the services that Trilinos provides.
new package provides a starting point for:

—Project organization: Illustrates one way of organizing files for a mathematical
software package.

—Autotools: Provides simple working example using autotools, and a set of M4
macros.

—Automatically generated reference documentation: Shows how to mark up source
code and use Doxygen [van Heesch 2004] to produce accurate, extensive source
code documentation.

—Regression testing: Simple regression testing example is part of new package.

—Website: The Trilinos home page [Heroux 2004] contains a new package website
that includes instruction on how to copy and modify the new package web source
for use with a new Trilinos package.

Note: It is worth mentioning that the Trilinos new package package can be
useful independent of Trilinos itself. Like all Trilinos packages, new package is self-
contained, and can be configured and built independently from the rest of Trilinos.
Similarly, the new package website is self-contained and independent from the rest
of the Trilinos website. Both new package and its website have been successfully
used by other projects that have nothing to do with Trilinos.

3.4 Package Maturation Process

Typically in the early development stages of a new package, many of the services
mentioned above are not heavily used. In fact, the new package is often isolated
from other packages and use of the CVS repository is of primary importance. As
the package matures and the user base grows, package use of the other services also
grows, as does the need for interoperability with other packages. Gradually, over
the span of several years, a package matures to the point where it is fully using all
services provided by Trilinos and is fully interoperable with other packages.

One strength of the Trilinos package architecture is its natural support of gradual
package maturation. At any given point in time, each Trilinos package can be in any
state of development. As a Trilinos release date approaches, we categorize packages
for public, limited or no release. For each package that will be released, the package
development team certifies the package and provides us with a repository tag for
the tested version of the package. In this way, even the release process is distributed
and scalable.

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

8 · Michael A. Heroux et al.

Release
Package Description 3.1 (Sep 2003) 4.0 (Jun 2004)

General Limited General Limited

Amesos 3rd Party Direct Solver Suite X X X

Anasazi Eigensolver package X X

AztecOO Linear Iterative Methods X X X X

Belos Block Linear Solvers X

Epetra Basic Linear Algebra X X X X

EpetraExt Extensions to Epetra X X X

Ifpack Algebraic Preconditioners X X X X

Jpetra Java Petra Implementation X

Kokkos Sparse Kernels X X

Komplex Complex Linear Methods X X X X

LOCA Bifurcation Analysis Tools X X X X

Meros Segregated Preconditioners X X

ML Multi-level Preconditioners X X X X

NewPackage Working Package Prototype X X X X

NOX Nonlinear solvers X X X X

Pliris Dense direct Solvers X

Teuchos Common Utilities X X

TSFCore Abstract Solver API X X

TSFExt Extensions to TSFCore X X

Tpetra Templated Petra X

Totals 8 11 15 20

Table I. Trilinos Package Summary and Release Status

4. OVERVIEW OF CURRENT PACKAGE DEVELOPMENT

Trilinos package counts have grown rapidly in the four years of its existence. The
“Tri” in Trilinos originally stood for the initial three packages it contained. Table I
shows a brief description and status of packages that have been part of the past
two releases. In this section we provide an overview of the primary packages in
current release of Trilinos. The discussion is ordered so that packages that are
most fundamental and broadly useful are presented first.

4.1 Common Tools Package: Teuchos

As the number of Trilinos packages grows, we have developed the need for a collec-
tion of tools that can be leveraged across all packages. The Teuchos package is a
relatively recent addition to Trilinos to facilitate collection of the common tools. In
order to retain the autonomy of other Trilinos packages, no package is required to
adopt Teuchos classes. However, a design goal of Teuchos is robustness and porta-
bility such that dependency on Teuchos is not a practical liability. Many packages
have some interoperability with Teuchos but very few have an essential dependence
on it. Parameter values for most high-level packages can be set using the Teuchos
ParameterList class. For example, ML, IFPACK and AztecOO parameters can be
set this way, as long as Teuchos support was enabled (via --enable-teuchos) at
configure time.

Teuchos provides classes and interfaces for:

(1) Templated access to BLAS and LAPACK interfaces. Teuchos provides a set of
ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

An Overview of Trilinos · 9

interfaces that have templated ordinal and scalar types. Typically the ordinal
type is the common integer type. For the scalar type, in cases where the tem-
plate is of type single, double, complex single or complex double, the user will
be linked to standard BLAS and LAPACK functions. For other data types, we
provide generic loops sets for a limited set of key kernels. Support for two mul-
tiprecision scalar datatypes is already provided, specifically ARPREC [Bailey
et al. 2002] and GMP [Granlund 2004].

(2) Parameter lists: A parameter list is a collection of key-value pairs that can be
used to communicate with a packages. A parameter can be used to tune how
a package is used, or can provide information back to the user from a package.
For example the pair (“Residual Tolerance”, 1.0E-6) could be used to specify
the tolerance that a package should use for convergence testing in an iterative
process. Similarly, the pair (“Residual Norm”, 9.3245E-7) can be passed back
to the user as the actual computed residual norm.

(3) Memory management tools: Classes for aiding in correct allocation and deletion
of memory. In particular, Teuchos provides a reference counting pointer class
that allows multiple references to a single object, deleting the object after the
last reference is removed. These tools are very helpful in reducing the possibility
of memory leaks in a program.

(4) Traits: Traits mechanisms [Myers 1995] are effective techniques for providing
detailed information about supported generic data types. Teuchos provides
three types of traits: ScalarTraits, OrdinalTraits and PacketTraits. Scalar-
Traits defines a variety of properties for supported scalar types. A partial list
of traits includes:
—zero (one): The appropriate value for zero (one) for the given scalar type.
—magnitudetype: The data type that would be used by a norm for the given

scalar type. For example, the magnitude type for double and complex double
is double.

—random: Function that produces a single random value of the given scalar
type.

OrdinalTraits provides information for data types such as int. Again zero and
one are defined, as is a descriptive label. Other ordinal traits are not needed at
this point. PacketTraits is used to define the “size” of a packet type. This allows
generic use of data transfer algorithms such as distributed data communications
via MPI.

(5) Operation Counts: This class provides mechanisms for tracking and reporting
operation counts, and associating a counting object with one or more compu-
tational objects.

(6) Exception handler: Error reporting class for uniform exception handling.

(7) Timers: Uniform interface to wall-clock timers.

Although Teuchos has been available for less than a year, it has been adopted by
many packages to provide functionality and uniform access by applications. Teuchos
parameter lists and BLAS interfaces have been especially useful.

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

10 · Michael A. Heroux et al.

Object Packet Definition

Vector Single vector value.

Multivector Row of vector values.

Compressed Index Storage Graph
(CISGraph)

List of column/row indices for one graph row/column.

Compressed Index Storage Matrix
(CISMatrix)

List of values and column/row indices for one matrix
row/column.

Table II. Packet Definitions for Common Petra Object Types

4.2 The Petra Object Model and Packages

Matrices, vectors and graphs are basic objects used in most solver algorithms.
Most Trilinos packages interact with these kinds of objects via abstract interfaces
that allow a package to define what services and behaviors are expected from the
objects, without enforcing a specific implementation. However, in order to use these
packages, some concrete implementation must be selected.

The Petra class libraries provide a foundation for all Trilinos solver development.
Petra provides classes for constructing and using parallel, distributed memory ma-
trices and vectors. Petra exists in multiple forms. Its most basic form is as an
object model [Heroux et al. 2004]. As such, it is an abstract description of a vari-
ety of vector, matrix and supporting classes, along with a description of how these
classes interact. There are presently three implementations of the Petra Object
Model: Epetra, Tpetra and Jpetra. Before describing these implementations, we
first discuss distribution concepts.

Although a detailed discussion of data and work distribution in the Petra Object
Model is beyond the scope of this paper, we briefly present these topics. We also
introduce ElementSpace objects, objects that describe the layout of distributed
objects in Petra, and their relationship to distributed vectors, multivectors, graphs
and matrices. A full description of the Petra Object Model can be found in [Boman
et al. 2004].

A critical feature of Petra is the ability to easily define and efficiently execute data
redistribution in parallel. Because of this, Petra’s data model is built around this
concept. Data redistribution requires the identification of data packets that should
be moved as part of the redistribution. For a simple vector that is distributed across
a parallel machine, the natural packet is a single vector value. For a collection
of vectors with the same distribution, what we define to be a multivector, the
natural packet is all values across a row of column vectors. For matrices, if we
store nonzero entries row-by-row, then the index and nonzero values data are used
to define a packet. We can similarly define a column-oriented matrix, or more
generally a compressed index matrix, where the row or column orientation is part
of the definition of the class attributes. A compressed index graph is similar to a
matrix, except that it involves pattern information only. Table II lists the common
linear algebra objects we use, and describes the packet definition for each object.

To facilitate redistribution and provide a generic analysis capability, we use el-
ements as a representation of packets. Specifically, regardless of packet definition,
we associate an element global ID (GID) with each packet of a distributed object.
We do this by defining an ElementSpace object (called a Map object in Epetra).
ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

An Overview of Trilinos · 11

Processor ID Element GIDs

0 {0, 1, . . . , 24}
1 {25, 26, . . . , 49}
2 {50, 51, . . . , 74}
3 {75, 76, . . . , 98}

Table III. Standard Distribution of 99 Elements

ElementSpace objects are used to

(1) Define the layout of distributed object across a parallel machine, and
(2) Compute a plan to redistribute an object distributed via one ElementSpace to

another ElementSpace distribution.

Example: Suppose we want to construct a vector with 99 entries so that it
is approximately evenly distributed across four processors, and vector entries are
stored in increasing order. Table III lists a natural distribution of element GIDs
that would describe the layout of this type of vector.

In our object-oriented model, we construct a distributed object by first defin-
ing an ElementSpace object. Given an ElementSpace object, we can define any
number of linear algebra objects with a compatible layout. For example, using an
ElementSpace object with the element ID distribution in Table III, we can define
any number of vectors having the first 25 vector entries on PE 0, the next 25 on
PE 1, etc. We can also define a row matrix having rows 0 through 24 on PE 0,
rows 25 through 49 on PE 1, etc. It is worth noting that, although the example in
Table III is a simple linear distribution of GIDs, ElementSpace objects can contain
GIDs in any order and multiplicity on any processor. This ability is important for
data redistribution and replicating data across the parallel machine.

For distributed matrices and graphs four ElementSpace objects are needed:

—RowElementSpace: On each processor this ElementSpace lists the GIDs that will
be “managed” by that processor, typically meaning that the processor owns part
or all of the data associated with that row.

—ColumnElementSpace: Same as RowElementSpace, except that it deals with
columns.

—DomainElementSpace: The distribution of GIDs associated with vectors and
multivectors that are in the domain of the matrix. These GIDs must be uniquely
associated with a processor.

—RangeElementSpace: Same as DomainElementSpace, except that it deals with
the range space.

Given this general framework, the Petra Object Model supports any distribution
of data across the parallel machine. Any matrix, graph, vector or multivector entry
can be owned by any processor, or shared or replicated across multiple processors.
Depending on the type of constructor used, data may be assigned by any processor,
even if the processor is not the eventual owner of the data. A more efficient class of
constructors requires that the processor which owns the data (as prescribed by the
relevant ElementSpace objects) must define the data. Some constructors support
data entry that is in between these two extremes. Finally, operations between

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

12 · Michael A. Heroux et al.

matrices and vectors can be performed on objects with different distributions as
long as the DomainElementSpace and RangeElementSpace objects are compatible
with the appropriate vectors.

We have only briefly touched on the data distribution and redistribution capa-
bilities provided by the Petra Object Model. However, for brevity we now move on
to a description of the three Petra implementations.

4.2.1 Epetra: Essential Implementation of Petra Object Model. Epetra [Heroux
2002] the current production version of Petra, is written for real-valued double-
precision scalar field data only, and restricts itself to a stable core of the C++
language standard. As such, Epetra is very portable and stable, and is accessible
to Fortran and C users. Epetra combines in a single package (i) support for generic
parallel machine descriptions, (ii) extensive use of standard numerical libraries in-
cluding BLAS and LAPACK, (iii) use of object-oriented C++ programming and
(iv) parallel data redistribution. The availability of Epetra has facilitated rapid
development of numerous applications and solvers at Sandia because many of the
complicated issues of working on a parallel distributed memory machine are handled
by Epetra.

Application developers can use Epetra to construct and manipulate matrices and
vectors, and then pass these objects to most Trilinos solver packages. Furthermore,
solver developers can develop new algorithms using Epetra classes to handle the
intricacies of parallel execution. Epetra also has extensive parallel data redistribu-
tion capabilities, including an interface to the Zoltan load-balancing library [Devine
et al. 1999]. Epetra is split into two packages: a core package and a set of exten-
sions. As mentioned above, Epetra supports only double-precision real arithmetic.
Support for other types is found in Tpetra.

4.2.2 Tpetra: Templated C++ Implementation of Petra Object Model. In addi-
tion to Epetra, we are developing a templated version of Petra, called Tpetra, that
implements the scalar and ordinal fields as templated types. Tpetra allows matrices
and vectors to be composed of real or complex, and single or double precision scalar
values. Building on Teuchos, Tpetra provides distributed memory parallel support
for generic datatypes. Additionally, Tpetra also uses the C++ language standard
more fully. In particular, it utilizes the Standard Template Library (STL) [Strous-
trup 2000], to provide good algorithmic efficiency with minimal code development.

4.2.3 Jpetra: Java Implementation of Petra Object Model. The primary design
goals of Jpetra are to produce a library that is a high performance, pure Java
implementation of Petra. By restricting ourselves to Java and avoiding the use of
the Java Native Interface (JNI) [Sun Microsystems 2003] to link to other libraries,
we get the byte-code portability that Java promises. The fundamental implication
of these goals is that we cannot rely on BLAS, LAPACK or MPI since they are not
written in Java, and we do not use the JNI. As such, we must track the development
of pure Java equivalents of these libraries. Several efforts, including Ninja [Moreira
et al. 2001] and MPJ [Carpenter et al. 2000], provide equivalent functionality to the
BLAS, LAPACK and MPI, but are completely written in Java. Presently we are
using CCJ [Nelisse et al. 2003] as the implementation of the Jpetra parallel machine
interface for inter-node communications, and we are using JLAPACK [Doolin et al.
ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

An Overview of Trilinos · 13

1998] to implement our interface for serial linear algebra kernels.

4.3 TSF: The Trilinos Abstract Class Packages

Many different algorithms are available to solve any given numerical problem. For
example, there are many algorithms for solving a system of linear equations, and
many solver packages are available to solve linear systems. Which package is ap-
propriate is a function of many details about the problem being solved and the
platform on which application is being run. However, even though there are many
different solvers, conceptually, from an abstract view, these solvers are providing a
similar capability, and it is advantageous to utilize this abstract view. TSF is a col-
lection of abstract classes that provides an application programmer interface (API)
to perform the most common solver operations. It can provide a single interface
to many different solvers. Furthermore, TSFExtended has powerful compositional
mechanisms that support the light-weight construction of composite objects from
a set of existing objects (see Section 5.2). As a result, TSF users gain easy access
to many solvers and can bring multiple solvers to bear on a single problem.

TSF is split into several packages. The most important user-oriented classes are
TSFCore and TSFExtended:

(1) TSFCore: As its name implies, TSFCore contains a small set of core classes
that are considered essential to almost any abstract linear algebra interface.
The primary user classes in TSFCore are Vector, MultiVector, LinearOp and
VectorSpace. TSFCore is discussed in detail in [Bartlett et al. 2003].

(2) TSFExtended: TSFExtended builds on top of TSFCore and includes over-
loaded, block and composite operators, all of which support powerful abstrac-
tion capabilities. The Meros package relies on TSFExtended to implicitly con-
struct sophisticated Schur compliment preconditioners in terms of existing com-
ponent operators with little overhead in time or memory. Section 5.2 discusses
this topic in detail.

Both TSFCore and TSFExtended are important because they allow interfacing
to and sophisticated use of numerical linear algebra objects without requiring the
user or application to commit to any particular concrete linear algebra library. This
approach allows us to leverage the investment in sophisticated abstract numerical
algorithms across many concrete linear algebra libraries and gives application de-
velopers a single API that provides access to many solver packages.

4.4 AztecOO: Concrete Preconditioned Iterative Solvers

AztecOO is an object-oriented follow-on to Aztec [Tuminaro et al. 1999]. As such,
it has all of the same capabilities as Aztec, but provides a more elegant interface
and numerous functionality extensions. AztecOO specifically solves a linear system
AX = B where A is a linear operator, X is a multivector containing one or more
initial guesses on entry and the corresponding solutions on exit, and B contains the
corresponding right-hand-sides.

AztecOO accepts user matrices and vectors as Epetra objects. The operator
A and any preconditioner, say M ≈ A−1, need not be concrete Epetra objects.
Instead, AztecOO expects A and M to be Epetra Operator or Epetra RowMatrix
objects. Both Epetra Operator and Epetra RowMatrix are pure virtual classes.

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

14 · Michael A. Heroux et al.

Therefore, any other matrix library can be used to supply A and M , as long as
that library can implement the Epetra Operator or Epetra RowMatrix interfaces,
something that is fairly straight-forward for most linear solver libraries.

AztecOO provides scalings, parallel domain decomposition preconditioners, and
a very robust set of Krylov methods. It runs very efficiently on distributed mem-
ory parallel computers or on serial computers. Also, AztecOO implements the
Epetra Operator interface. Therefore, an AztecOO solver object can be used as a
preconditioner for another AztecOO object.

4.5 Belos: Generic implementation of Krylov and Block Krylov Methods

Belos contains a collection of standard Krylov methods such as conjugate gradients
(CG), GMRES and Bi-CGSTAB. It also contains flexible and block variants of
CG and GMRES. The flexible variants allow variable preconditioners to be used,
such that the preconditioner at each iteration can change. Block variants allow the
solution of multiple simultaneous right-hand-sides. Block methods can also be very
effective for problems that have just a few small eigenvalues, even if the solution to
only a single right-hand-side is needed.

Belos is considered a generic implementation because it relies on TSF interfaces
for access to linear operator, preconditioner and vector objects. Therefore it is not
explicitly tied to any concrete linear algebra library and can in principle be used
with any library that implements the TSF interfaces. In particular, Epetra can be
used since Trilinos provides an Epetra implementation of the TSF interfaces.

4.6 Amesos: Object-oriented Interface to Direct Solvers

The Amesos package is markedly different than most other Trilinos packages. It
is designed to provide a common interface to a collection of third-party direct
sparse solvers. There are a number of high-quality direct sparse solvers available
to the general public, each of which (i) has a unique interface and (ii) can be
especially suitable for specific uses. Because of this, we provide access to these
solvers through a common interface. Specifically, we provide interfaces to all direct
solvers supported by Amesos. These interfaces allow Epetra matrices and vectors
to be used with each third-party solver. At this time, we provide support for
SuperLU (serial), SuperLUDist [Li and Demmel 2003], Kundert’s Sparse solver
(from Spice [Quarles et al. 2003]),DSCPack [Raghavan 2003], UMFPack [Davis
2003] and MUMPS [Amestoy et al. 2003]. Amesos also wholly contains a single
serial solver called KLU [Davis and Stanley 2004]. KLU provides us with a default
solver capability, even when no third-party solver is available.

In addition to providing access to third-party solvers, Amesos provides an ab-
stract base class that facilitates generic use of a third-party solver once a solver
object is instantiated. This abstract interface is implemented by each Amesos di-
rect solver class. For example, except for the construction phase (which can be
accomplished generically using a “factory” as described in the Design Patterns
book [Gamma et al. 1994]), an instance of a solver object, whether it be a SuperLU
solver instance, DSCPack, etc., can be driven via the Amesos base solver interface.
This interface allows the user to request computation of a symbolic factorization,
numeric factorization and a solve. How a specific third-party package is used to im-
plement these can vary. The primary purpose of the Amesos base solver interface is
ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

An Overview of Trilinos · 15

to support efficient reuse of information. Specifically, if a sequence of factorizations
uses the same nonzero structure but has different values, the Amesos base solver
class can allow efficient reuse of the structure. Similarly, repeated right-hand-side
solves can be done sequentially.

4.7 Komplex: Solver Suite for Complex-valued Linear Systems

Komplex solves complex-valued linear systems using equivalent real-valued formu-
lations of twice the dimension. It constructs an equivalent real-valued formulation
for a given complex-valued linear system and then calls AztecOO to solve the prob-
lem, returning the solution back to the user in a form compatible with the original
complex-valued problem. Details of mathematical and practical issues of Komplex
can be found in Day and Heroux [Day and Heroux 2001].

4.8 Ifpack: Parallel Algebraic Preconditioners

Ifpack provides local incomplete factorization preconditioners in a parallel do-
main decomposition framework. It accepts user data as Epetra RowMatrix objects
(including Epetra CrsMatrix, Epetra VbrMatrix and Epetra MsrMatrix objects,
since these classes implement the Epetra RowMatrix interface) and can construct
a variety of algebraic preconditioners. Ifpack preconditioners implement the Epe-
tra Operator interface. Therefore, they can be used as preconditioners for AztecOO.
The current released version of Ifpack provides a relaxed ILUK preconditioner and
incomplete Cholesky with threshold dropping.

4.9 ML: Multi-level Preconditioner Package

ML is a multi-level preconditioner package for solving linear systems from partial
differential equation (PDE) discretizations. Although any linear system can be
used with ML, problems that have an underlying PDE nature have the best chance
of successful use of ML.

ML provides several approaches to constructing and solving the multi-level prob-
lem:

(1) Algebraic smoothed aggregation approach [Vanek et al. 1996; Vanek et al. 1998]:
The matrix graph is colored to create aggregates (groups) of nodes. These
aggregates define a preliminary projection operator. A final projection operator
is created by applying a smoother to the preliminary operator.

(2) Algebraic multigrid for Maxwell’s equations: This approach is intended for
preconditioning linear systems of the form Ax = b, where A = S + M , S is
a discrete form of the operator ∇ × ∇ × E, M is a mass matrix, and E is
the electric field. Such systems arise from discretizations of the eddy current
approximations to Maxwell’s equations by either edge elements or Yee-type
schemes [Bochev et al. 2003; Yee 1966].

(3) Adaptive Grid approach: The original grid is used as the coarse grid and the
adaptive refinements determined the fine grid. Prolongation and restriction
operators are determined using simple interpolation and weighted injection.

(4) Two-grid approach: A fine and (very) coarse grid are used. Graph and spatial
coordinates are used, but there is no necessary correlation required between
the two grids.

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

16 · Michael A. Heroux et al.

More information is available in either the ML User’s manual [Tong and Tuminaro
2000] and at the ML website [Tuminaro and Hu 2004].

4.10 Meros

Meros uses the compositional, aggregation and overloaded operator capabilities
of TSF to provide segregated/block preconditioners for linear systems related to
fully-coupled Navier-Stokes problems. This class of preconditioners exploits the
special properties of these problems to segregate the equations and use multi-level
preconditioners on the matrix sub-blocks. The overall performance and scalability
of these preconditioners approaches that of multigrid for certain types of problems.
Although the present target problems are related to computational fluid dynamics,
Meros itself is purely algebraic. Because of this, other types of applications can
potentially use Meros if a similar underlying physics structure is present. The
details of Meros are discussed in Section 5.2.

4.11 NOX: Nonlinear Solver Package

NOX provides a suite of nonlinear solver methods that can be easily integrated
into an application. Historically, many applications have called linear solvers as
libraries, but have provided their own nonlinear solver software. NOX can be an
improvement because it provides a much larger collection of nonlinear methods,
and can be easily extended as new nonlinear methods are developed.

NOX currently contains basic solvers such as Newton’s method as well as mul-
tiple globalizations including line search and trust region algorithms. Line search
algorithms include full step, backtracking (interval halving), polynomial (quadratic
and cubic) and More-Thuente. Directions for the backtracking algorithms include
steepest descent, Newton, quasi-Newton, and Broyden.

NOX does not depend on any particular linear algebra package, making it easy
to install. In order to interface to NOX, the user needs to supply methods that
derive from the NOX Vector and Group abstract classes. The Vector interface sup-
ports basic vector operations such as dot products and vector updates. The Group
interface supports non-vector linear algebra functionality and contains methods to
evaluate the function and, optionally, the Jacobian. Although users can provide
their own Vector and Group implementation, NOX provides three implementations
of its own: LAPACK, Epetra and PETSc. Complete details are provided on the
NOX website [Kolda and Pawlowski 2004].

4.12 LOCA: Library of Continuation Algorithms

LOCA is a package of scalable continuation and bifurcation analysis algorithms. It
is designed as an extension to the NOX nonlinear solver package since the inter-
facing requirements are a superset of those needed for nonlinear solution. When
integrated into an application code, LOCA enables the tracking of solution branches
as a function of system parameters and the direct tracking of bifurcation points.
It also provides an interface to the Anasazi Eigensolver for obtaining linear stabil-
ity information. The algorithms are chosen to work with codes that use Newton’s
method to reach steady solutions and to have minimal additional interfacing re-
quirements over the nonlinear solver. Furthermore, they are designed for scalability
to large problems, such as those that arise from discretizations of partial differen-
ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

An Overview of Trilinos · 17

tial equations, and to run on distributed memory parallel machines [Salinger et al.
2002].

4.13 Anasazi: Eigensolver package

Anasazi is an extensible and interoperable framework for large-scale eigenvalue al-
gorithms written using TSF interfaces to abstract operator and vector objects.
The first version of Anasazi includes block implicitly restarted Arnoldi and Lanc-
zos methods and preconditioned eigensolvers. These include a locally optimal block
preconditioned conjugate gradient iteration (LOBPCG) for symmetric positive def-
inite generalized eigenvalue problems, and a restarted preconditioned eigensolver
for nonsymmetric eigenvalue problems. Details can be found at the Anasazi home
page [Thornquist et al. 2004].

4.14 Future Packages

In addition to the package discussed above, we anticipate the inclusion of numerous
new packages in the coming years. The Trilinos framework offers an attractive
setting for algorithm developers who want a well-supported software environment
and distribution mechanism, as well as the ability use their software with other
packages. Presently we anticipate incorporating PyTrilinos, a Python interface to
selected Trilinos functionality that allows use of the scripting language Python to
drive Trilinos. The dense solver developed for, among other things, the Linpack
benchmark will also become a Trilinos package called Pliris [Kotulski 2004]. A
code for performing the nonlinear solution, continuation, and stability analysis of
codes with fixed-point iterations (such as explicit integration codes), based on the
Recursive Projection Method, is another solver package under development.

5. TRILINOS PACKAGE INTEROPERABILITY

What a package must do to be Trilinos compatible is minimal, and varies with each
package. In this section we discuss the primary mechanisms for Trilinos compatibil-
ity and then go on to illustrate with code fragments how some of these mechanisms
work. Table IV lists the six primary interoperability mechanisms. Note that each
mechanism is an extension or augmentation of package capabilities, creating con-
nections between packages. Thus, a package does not need to change its internal
structure to become Trilinos compatible.

5.1 Using Epetra Objects with Trilinos Packages

In this section we provide several examples of how Epetra matrices and vectors
can be initialized and used by multiple Trilinos packages. In this particular case
we use the Epetra entry-by-entry construction facilities for simplicity, but it is
worth noting that Epetra matrices can be efficiently constructed row-by-row or
column-by-column, where entries can be single scalar values or variable sized block
entries. There is also support for clique-based construction where, for example,
finite element stiffness matrices may be passed in to fill the matrix. Finally, almost
any combination of these fill techniques can be used on a given matrix.

Figure 1 shows a very simple test program that builds a tridiagonal matrix dis-
tributed across the parallel machine with 1000 rows per processor. The right-hand-
side and solution vectors are chosen to have the same layout. We do not require

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

18 · Michael A. Heroux et al.

Mechanism Comments

Package accepts user matrices and
vectors as Epetra objects. —Any package that accepts user data this way im-

mediately becomes accessible to an application that
has built its data using Epetra.

—Minimally we expect that a package can copy data
from user objects built using Epetra. Often a pack-
age can encapsulate Epetra objects without explic-
itly copying data.

Package parameters can be set
and retrieved via Teuchos Param-
eterLists.

—The Teuchos ParameterList provides a uniform way
to handle parameters across packages.

—Package dependence on Teuchos is typically condi-
tional, enabled by --enable-teuchos.

Package provides adaptors to TSF
interfaces. —Most packages can supply preconditioning or solver

services in a generic sense.

—If a package provides an implementation of one or
more TSF abstract interfaces, it is usable by any
other package written using TSF interfaces.

Package can use Epetra internally.
—Epetra (and in the future Tpetra) can be used for

storing vector, matrices, etc. that are seldom or
never seen by the user.

—By using Epetra objects internally, a package can in
turn use other Trilinos packages to manipulate its
own internal objects.

Package accesses services via TSF
interfaces. —Example of generic programming.

—Allows access to multiple other Trilinos packages.

Package build process is compati-
ble with Trilinos configure script. —The Trilinos configure script supports many op-

tions such as selective enabling of packages, specifi-
cation of BLAS and LAPACK location, etc.

—Packages can enhance interoperability by support-
ing these build options as appropriate.

Table IV. Package Interoperability Mechanisms

that matrices and vector have identical distributions. However, a discussion of the
parallel data distribution features of Epetra is beyond the scope of this paper. The
reader is referred to [Boman et al. 2004] for a full discussion of this topic. Next
we construct a linear problem, which assures that the matrix and vectors are com-
patible. Finally we construct an AztecOO solver object to solve the system using
Jacobi-scaled Conjugate Gradients.

In Figure 2 we show two different preconditioners setup processes. Each is a le-
gitimate substitution for the single line paramlist.set("precond", AZ Jacobi);

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

An Overview of Trilinos · 19

// Header files omitted...
int main(int argc, char *argv[]) {

// Initialize MPI, MpiComm
MPI_Init(&argc,&argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);

// Put same number of equations on each PE
int NumMyElements = 1000 ;
Epetra_Map Map(-1, NumMyElements, 0, Comm);
int NumGlobalElements = Map.NumGlobalElements();

// Create Matrix: tridiag(-1,2,-1)
Epetra_CrsMatrix A(Copy, Map, 3);
double negOne = -1.0; double posTwo = 2.0;

for (int i=0; i<NumMyElements; i++) {
int GlobalRow = A.GRID(i);
int RowLess1 = GlobalRow - 1;
int RowPlus1 = GlobalRow + 1;
if (RowLess1!=-1)
A.InsertGlobalValues(GlobalRow, 1,

&negOne, &RowLess1);
if (RowPlus1!=NumGlobalElements)
A.InsertGlobalValues(GlobalRow, 1,

&negOne, &RowPlus1);
A.InsertGlobalValues(GlobalRow, 1, &posTwo,

&GlobalRow);
}
// Complete matrix preprocessing
A.FillComplete();

// ***** Create x and b vectors
Epetra_Vector x(Map);
Epetra_Vector b(Map);
b.Random(); // Fill RHS with random #s

// Create Linear Problem
Epetra_LinearProblem problem(&A, &x, &b);

// Create/define AztecOO instance
AztecOO solver(problem);

// Create Teuchos Parameter List
Teuchos::ParameterList paramlist;

// Tell AztecOO to solve using CG
paramlist.set("AZ_solver", AZ_cg);

// Select AztecOO Jacobi preconditioner
// In later examples this single line will
// be replaced by construction and setup of
// other preconditioners such as ML and IFPACK

paramlist.set("precond", AZ_Jacobi);

// Iterate up to 100 iterations or until
// tolerance of 1.0E-8 is met.
solver.Iterate(1000, 1.0E-8);

// Report results, finish
cout << "Solver performed "

<< solver.NumIters()
<< " iterations." << endl
<< "Norm of true residual = "
<< solver.TrueResidual()
<< endl;

MPI_Finalize() ;
return 0;
}

Fig. 1. Simple C++ program to construct and solve a tridiagonal system using Epetra and
AztecOO

in Figure 1. The primary observation we make here is that, although the Epetra,
AztecOO, ML and IFPACK packages are independently developed, they are fully
interoperable with each other.

5.2 An Illustration of Trilinos Interoperability

The Meros package in Trilinos is designed to provide scalable preconditioners for the
incompressible Navier-Stokes equations and similarly structured problems [Elman
et al. 2003]. It is based on and extends the work of Kay, Loghin and Wathen [Kay
et al. 2002] and Silvester, Elman, Kay and Wathen [Silvester et al. 2001]. The
discrete problem can be written in the form(

F BT

B 0

) (
u
p

)
=

(
f
0

)
(1)

The first step in realizing the preconditioner is to formally define the block fac-
torization: (

F BT

B 0

)
=

(
I 0

BF−1 I

) (
F BT

0 −S

)
(2)

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

20 · Michael A. Heroux et al.

// This code fragment constructs an ML
// multi-level preconditioner based on
// smoothed aggregation.
// It can directly replace the single line:
// paramlist.set("precond", AZ_Jacobi);
// in the code in Figure 1.

// Create ML multilevel preconditioner
ML *ml_handle;

// Maximum number of levels
int N_levels = 10;

// output level
ML_Set_PrintLevel(3);
ML_Create(&ml_handle,N_levels);

// wrap Epetra matrix A into ML matrix
// (data is NOT copied)
EpetraMatrix2MLMatrix(ml_handle, 0, A);

// We are interested in smoothed aggregation
// so create a ML_Aggregate object
ML_Aggregate *agg_object;
ML_Aggregate_Create(&agg_object);

// specify max coarse size (ML will not
// coarsen further
// if the matrix at a given level is
// smaller than specified here)
ML_Aggregate_Set_MaxCoarseSize(agg_object,1);

// generate the hierarchy
N_levels =

ML_Gen_MGHierarchy_UsingAggregation
(ml_handle, 0, ML_INCREASING, agg_object);

// Set a symmetric Gauss-Seidel smoother for
// MG method (change if matrix not symmetric)
ML_Gen_Smoother_SymGaussSeidel(ml_handle,
ML_ALL_LEVELS, ML_BOTH, 1, ML_DEFAULT);

// generate solver
ML_Gen_Solver(ml_handle,ML_MGV, 0, N_levels-1);

// wrap ML_Operator into Epetra_Operator
ML_Epetra::MultiLevelOperator

MLop(ml_handle,Comm,*Map,*Map);

// Register this operator as preconditioner
solver.SetPrecOperator(&MLop);

// ... Now continue with execution of AztecOO

// This code fragment constructs an IFPACK
// preconditioner based on incomplete
// Cholesky with threshold tolerances
// It can directly replace the single line:
// paramlist.set("precond", AZ_Jacobi);
// in the code in Figure 1.

// This time we will count FLOPS
Epetra_Flops fact_counter;

// Create and start timer
Epetra_Time timer;

// Create Incomplete Cholesky preconditioner
// Drop threshold of 10E-6.
// Maximum entries per row is 100.
Ifpack_CrsIct ICT(A, 1.0e-6, 100);

// Associate flop counter with preconditioner
ICT.SetFlopCounter(fact_counter);

// Initialize preconditioner values
ICT.InitValues(A);

// Compute factor
ICT.Factor();

// Get elapsed time since timer was created
elapsed_time = timer.ElapsedTime();

// Get number of FLOPS, MFLOPS
total_flops = fact_counter.Flops();
MFLOPs = total_flops/elapsed_time/1000000.0;

cout << "Time to construct preconditioner = "
<< elapsed_time << endl
<< "MFLOPS for Factorization = "
<< MFLOPs << endl;

// Compute condition number estimate
// for preconditioner
double Condest;
ICT.Condest(transA, Condest);
cout << "Preconditioner condition estimate = "

<< Condest << endl;

// Register this operator as preconditioner
solver.SetPrecOperator(&ICT);

// ... Now continue with execution of AztecOO

Fig. 2. Two interchangeable code fragments that construct preconditioners for program in Fig-
ure 1.

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

An Overview of Trilinos · 21

where S = BF−1BT is the Shur complement. Applying the inverse of the third
term in Equation 2 to the equation itself we get

(
F BT

B 0

) (
F BT

0 −S

)−1

=
(

I 0
BF−1 I

)
(3)

If we could use the matrix (
F BT

0 −S

)−1

(4)

as a right preconditioner for a Krylov method applied to our original problem
(Equation 1) then our preconditioned operator would be the right-hand-side of
Equation 2 and at most 2 iterations of GMRES would be needed for convergence.
Since this is not practical, we instead observe that we can write

(
F BT

0 −S

)−1

=
(

F−1 0
0 I

) (
I −BT

0 I

) (
I 0
0 −S−1

)
(5)

In this form it is clear that, to apply the above preconditioner, we need to in turn
apply two nontrivial operators: S−1 to a vector in the discrete pressure space, and
F−1 to a vector in the discrete velocity space. Since these tasks are too expensive,
we instead use approximations to S−1 and F−1.

A variety of approximations to S−1 and F−1 have been developed [Elman et al.
2003]. In general, the strength of this preconditioning approach is that well-
established preconditioning methods can be applied on the subblock operators, in
turn building up a preconditioner for fully-coupled problem. In particular, because
the subblocks are simpler than the global problem, robust multi-level precondition-
ers can be defined that provide near-mesh independent convergence properties for
the global problem.

The Meros package utilizes many features of Trilinos in order to provide a scal-
able, parallel distributed memory implementation of the preconditioners described
above. It takes advantage of the abstract interfaces in TSF, both to access other
Trilinos packages and to implicitly construct approximations of S−1 and F−1. In
addition, it uses the ML package for implementing multi-level preconditioners,
AztecOO for smoothers, Ifpack for algebraic preconditioners, NOX for nonlinear
iterations and Epetra for interfacing to the application and for basic parallel lin-
ear algebra. Figure 3 illustrates the collaboration and use of Trilinos packages by
Meros in the context of MPSalsa [Salinger et al. 1996], a reacting flow modeling
application. It is also worth noting that Meros was integrated into the Trilinos
framework using the “new package” package. Integration took less that one day.

6. SOFTWARE ENGINEERING ISSUES

As computer modeling and simulation play an increasingly important role in engi-
neering and science, a critical issue is software quality. Multiple issues are impor-
tant, but they can be summed up as follows: If computer modeling and simulation
is to be on the critical path of engineering and scientific processes, those who rely on
our software must have confidence in our computational results. It is worth noting
that, although much of the work we do to improve software quality is technical

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

22 · Michael A. Heroux et al.

Solution
component

Example
methods

Packages

Nonlinear
Solver

Linear
Solver

block
precondition

NOX
(Epetra)

AztecOO
(TSF, Epetra)

Meros
(TSF)

MPSalsa (Epetra)

Newton-Krylov
Methods

GMRESR

Subblocks
(AztecOO,
ML, Epetra)

F-1:
GMRES/AMG

S-1:
CG/AMG

1

1

F
S

MPSalsa Epetra submatrices

Epetra TSF
Epetra/TSF matrix add &

multiply
M-1 for TSF subblocks

Fig. 3. Meros Interaction Diagram

in nature, ultimately it is our ability to instill trust in our clients that determines
whether or not our software will be used in a production environment.

Much of Trilinos was developed under funding from the Advanced Scientific Com-
puting Initiative (ASCI). A major focus of ASCI is Software Quality Engineering
(SQE), which is the set of practices for ensuring that high-quality, relevant soft-
ware is produced, and that software processes are well-defined, documented and
followed. The present ASCI SQE practices for Sandia National Laboratories are
defined in [Zepper et al. 2003]. This document describe 47 practices that must be
adopted by each major software project receiving ASCI funding. These practices
cover areas such as software requirements, design, implementation and mainte-
nance, project management, tracking and oversight, verification and validation,
training and risk management.

One of the most important goals of Trilinos is to minimize the work of SQE for
the individual package development teams. Given that each package is typically
written by five or fewer people, implementation of the ASCI SQE process by each
package team would be almost impossible. Fortunately, the Trilinos infrastructure
can address the majority of the ASCI SQE practice, fully or partially. Table V
highlights how Trilinos aids package developers with some of the 47 practices listed
in [Zepper et al. 2003]. Details of Trilinos vs. package responsibilities is presented
in [Heroux et al. 2003]. In general, only those practices that are truly unique to a
package are primarily package responsibilities. This gives package developers the
ability to focus on the core issues of algorithm design and implementation, and
ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

An Overview of Trilinos · 23

Trilinos Service SQE Practices Impact

Yearly Trilinos User Group Meet-
ing (TUG) and Developer Fo-
rum: Trilinos Users and Devel-
opers gather once a year for tu-
torials, package feature updates,
user/developer requirements dis-
cussion and developer training.

—All steps of the Requirements including gathering,
derivation, documentation, feasibility, etc.

—User training.

—Developer training.

Monthly Trilinos leaders meet-
ings: Trilinos leaders, including
package development leaders, key
managers, funding sources and
other stakeholders participate in
monthly phone meetings to discuss
any timely issues related to the
Trilinos Project.

—Requirements tracking.

—Developer Training.

—Design reviews.

—Policy decisions across all development phases.

Trilinos and package mail lists:
Trilinos lists for leaders, an-
nouncements, developers, users,
checkins and similar lists at the
package level support a variety
of communication. All lists are
archived, providing critical arti-
facts for assessments and audits.

—Developer, user and client communication.

—Repository of requirements, design and testing arti-
facts.

—Announcement and documenting of releases.

Trilinos and Trilinos3PL source
repositories: All source code, de-
velopment and user documenta-
tion is retained and tracked. In ad-
dition, reference versions of all ex-
ternal software, including BLAS,
LAPACK, Umfpack, etc. are re-
tained in Trilinos3PL.

—Source management.

—Versioning.

—Third-party software management.

Trilinos Bugzilla Database: Sup-
ports collection, tracking and
management of requirements, en-
hancements and software faults.

—Requirements gathering and tracking.

—Customer support.

Trilinos configure script and M4
macros: The Trilinos configure

script and related macros sup-
port portable installation of Trili-
nos and its packages..

—Portability.

—Software release.

Trilinos test harness: Trilinos pro-
vides a base testing plan and auto-
mated testing across multiple plat-
forms, plus creation of testing arti-
facts. Test harness results are used
to derive a variety of metrics for
SQE.

—Pre-checkin and regression testing.

—Software metrics.

Table V. Trilinos Framework support of package SQE practices

package level documentation and testing.
ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

24 · Michael A. Heroux et al.

7. CONCLUSIONS

In this article we have presented an overview of Trilinos, a framework for the de-
velopment and ongoing support of mathematical software libraries. By defining,
documenting and prototyping its package architecture, Trilinos provides a ready-
made infrastructure that substantially reduces the cost of mathematical software
development. As a result, Trilinos has grown rapidly and is able to continue its
growth in a scalable way. Furthermore, interoperability of packages supports a
broad set of new solvers for coupled multi-physics applications that are a critical
requirement for advanced high-fidelity simulations. Finally, the package-oriented
delivery of services by Trilinos for source management, communication, issue track-
ing, configuration management and regression testing allow package developers to
readily obtain a high level of SQE support at minimal cost.

REFERENCES

A. Lumsdaine, e. a. 2004. The matrix template library home page.

http://www.osl.iu.edu/research/mtl.

Alpatov, P., Baker, G., Edwards, C., Gunnels, J., Morrow, G., Overfelt, J., van de

Geijn, R., and Wu, Y.-J. J. 1997. Plapack: parallel linear algebra package design overview. In

Proceedings of the 1997 ACM/IEEE conference on Supercomputing (CDROM). ACM Press,

San Jose, CA, 1–16.

Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y., and Koster, J. 2003. MUMPS home page.

http://www.enseeiht.fr/lima/apo/MUMPS.

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Croz, J. D., Greenbaum,

A., Hammarling, S., McKenney, A., Ostrouchov, S., and Sorensen, D. 1995. LAPACK

Users’ Guide, Second ed. SIAM Pub., Philadelphia, PA.

Bailey, D. H., Hida, Y., Li, X. S., and Thompson, B. 2002. ARPREC: An arbitrary preci-

sion computation package. Tech. Rep. LBNL-53651, Lawrence Berkeley National Laboratory.

September.

Balay, S., Gropp, W., McInnes, L., and Smith, B. 1997. Efficient management of parallelism in

object oriented numerical software libraries. In Modern Software Tools in Scientific Computing,

E. Arge, A. M. Bruaset, and H. P. Langtangen, Eds. Birkhauser Press, 163–202.

Balay, S., Gropp, W., McInnes, L., and Smith, B. 1998a. PETSc 2.0 users manual. Tech. Rep.

ANL-95/11 - Revision 2.0.22, Argonne National Laboratory.

Balay, S., Gropp, W., McInnes, L., and Smith, B. 1998b. PETSc home page.

http://www.mcs.anl.gov/petsc.

Bartlett, R. A., Heroux, M. A., and Long, K. R. 2003. TSFCore 1.0: A package of light-

weight object-oriented abstractions for the development of abstract numerical algorithms and

interfacing to linear algebra libraries and applications. Tech. Rep. SAND2003-1378, Sandia

National Laboratories. April.

Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Jemmel, J., Dhillon, I., Dongarra,

J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., and Whaley, R. C.

1997. ScaLAPACK Users’ Guide. SIAM Pub.

Bochev, P. B., Garasi, C., Hu, J. J., Robinson, A. C., and Tuminaro, R. S. 2003. An improved

algebraic multigrid method for solving Maxwell’s equations. SIAM J. Sci. Comput. 25, 2.

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

An Overview of Trilinos · 25

Boman, E., Devine, K., Heaphy, R., Hendrickson, B., Heroux, M., and Preis, R. 2004. Ldrd

report: Parallel repartitioning for optimal solver performance. Tech. Rep. SAND2004-0365, snl.

February.

Carpenter, B., Getov, V., Judd, G., Skjellum, A., and Fox, G. 2000. MPJ: MPI-like message

passing for Java. Concurrency: Pract. Exper. 12, 11 (September), 1019–1038.

Davis, T. 2003. UMFPACK home page. http://www.cise.ufl.edu/research/sparse/umfpack.

Davis, T. and Stanley, K. 2004. Sparse lu factorization of circuit simulation matrices.

http://www.cise.ufl.edu/ davis/techreports/KLU/pp04.pdf.

Day, D. and Heroux, M. A. 2001. Solving complex-valued linear systems via equivalent real

formulations. SIAM J. Sci. Comput. 23, 2, 480–498.

Devine, K. D., Hendrickson, B. A., Boman, E. G., John, M. M. S., and Vaughan, C. 1999.

Zoltan: A dynamic load-balancing library for parallel applications – user’s guide. Tech. Rep.

SAND99-1377, Sandia National Laboratories, Albuquerque, NM.

Dongarra, J. J., Bunch, J., Moler, C., and Stewart, G. 1979. LINPACK Users’ Guide.

SIAM Pub.

Doolin, D. M., Dongarra, J., and Seymour, K. 1998. Jlapack-compiling lapack fortran to

java. http://icl.cs.utk.edu/projects/f2j/f2jreport/f2jreport.html.

Elman, H., Howle, V. E., Shadid, J. N., and Tuminaro, R. S. 2003. A parallel block multi-level

preconditioner for the 3d incompressible navier-stokes equations. Journal of Computational

Physics 187, 2, 504–523.

Forum, C. 2004. The common component architecture home page. http://www.cca-forum.org.

Free Software Foundation. 2004a. Autoconf Home Page.

http://www.gnu.org/software/autoconf.

Free Software Foundation. 2004b. Automake Home Page.

http://www.gnu.org/software/automake.

Free Software Foundation. 2004c. Gnu CVS Home Page. http://www.gnu.org/software/cvs.

Free Software Foundation. 2004d. Gnu m4 home page. http://www.gnu.org/software/m4.

Free Software Foundation. 2004e. Gnu mailman home page.

http://www.gnu.org/software/mailman/mailman.html.

Free Software Foundation. 2004f. Libtool Home Page. http://www.gnu.org/software/libtool.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1994. Design Patterns, Elements of

Reusable Object Oriented Software. Addison-Wesley.

Granlund, T. 2004. GNU MP: The GNU Multiple Precision Arithmetic Library , 4.1.3 ed.

SWOX AB.

Heroux, M. A. 2002. Epetra Reference Manual , 2.0 ed.

http://software.sandia.gov/trilinos/packages/epetra/doxygen/latex/EpetraReferenceManual.pdf.

Heroux, M. A. 2004. Trilinos home page. http://software.sandia.gov/trilinos.

Heroux, M. A., Hoekstra, R. J., and Williams, A. B. 2004. An object model for parallel nu-

merical linear algebra computations. Tech. rep., Sandia National Laboratories. In preparation.

Heroux, M. A., Willenbring, J. M., and Heaphy, R. 2003. Trilinos Developers Guide Part II:

ASCI Software Quality Engineering Practices Version 1.0. Tech. Rep. SAND2003-1899, Sandia

National Laboratories.

Kay, D., Loghin, D., and Wathen, A. 2002. A preconditioner for the steady-state navier-stokes

equations. SIAM J. Sci. Comput..

Kolda, T. G. and Pawlowski, R. P. 2004. Nox home page. http://software.sandia.gov/nox.

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

26 · Michael A. Heroux et al.

Kotulski, J. D. 2004. Pliris home page. http://software.sandia.gov/Trilinos/packages/pliris.

Li, X. and Demmel, J. 2003. SuperLU home page. http://crd.lbl.gov/ xiaoye/SuperLU/.

Moreira, J. E., Midkiff, S. P., Gupta, M., Artigas, P. V., Wu, P., and Almasi, G. 2001.

The NINJA project. Communications of the ACM 44, 10 (October).

Myers, N. C. June 1995. Traits: a new and useful template technique. C++ Report .

Nelisse, A., Maassen, J., Kielmann, T., and Bal, H. E. 2003. Ccj: Object-based message

passing and collective communication in java. Concurrency & Computation: Practice & Expe-

rience 15, 3–5, 341–369.

Oldham, J. D. 2002. POOMA: A C++ Toolkit for High-Performance Parallel Scientific Comput-

ing , 1.01 ed. CodeSourcery, LLC. http://www.codesourcery.com/public/pooma/manual.pdf.

Quarles, T., Pederson, D., Newton, R., Sangiovanni-Vincentelli, A., and Wayne, C. 2003.

SPICE home page. http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE.

Raghavan, P. 2003. DSCPACK home page. http://www.cse.psu.edu/ raghavan/Dscpack.

Salinger, A. G., Devine, K. D., Hennigan, G. L., Moffat, H. K., Hutchinson, S. A., and

Shadid, J. N. 1996. MPSalsa: A finite element computer program for reacting flow problems

part 2 - user’s guide. Tech. Rep. SAND96–2331, Sandia National Laboratories.

Salinger, A. G., Lehoucq, R. B., Pawlowski, R. P., and Shadid, J. N. 2002. Computational

bifurcation and stability studies of the 8:1 thermal cavity problem. Internat. J. Numer. Meth.

Fluids 40, 8, 1059–1073.

Shadid, J. N., Moffat, H. K., Hutchinson, S. A., Hennigan, G. L., Devine, K. D., and

Salinger, A. G. 1995. MPSalsa: A finite element computer program for reacting flow problems

part 1 - theoretical development. Tech. Rep. SAND95–2752, Sandia National Laboratories.

Silvester, D., Elman, H., Kay, D., and Wathen, A. 2001. Efficient preconditioning of the

linearized navier-stokes equations for incompressible flow. J. Comp. Appl. Math. 128, 261–279.

Smith, B. T., Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe, Y., Klema, V. C., and

Moler, C. B. 1976. Matrix Eigensystem Routines – EISPACK Guide, Second ed. Lecture

Notes in Computer Science, vol. 6. Springer–Verlag, New York.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J. 1998. MPI-The

Complete Reference, Volume 1, The MPI core. The MIT Press.

Stroustrup, B. 2000. The C++ Programming Language. Addison-Wesley.

Sun Microsystems. 2003. Java Native Interface. http://java.sun.com/products/jdk/1.2/docs/guide/jni.

The Mozilla Organization. 2004a. Mozilla Bonsai Home Page.

http://www.mozilla.org/bonsai.html.

The Mozilla Organization. 2004b. Mozilla Bugzilla Home Page.

http://www.mozilla.org/projects/bugzilla.

Thornquist, H., Lehoucq, R., and Hetmaniuk, U. 2004. Anasazi home page.

http://software.sandia.gov/Trilinos/packages/anasazi.

Tong, C. and Tuminaro, R. 2000. ML2.0 Smoothed Aggregation User’s Guide. Tech. Rep.

SAND2001-8028, Sandia National Laboratories, Albq, NM.

Tuminaro, R. S., Heroux, M. A., Hutchinson, S. A., and Shadid, J. N. 1999. Official Aztec

User’s Guide, Version 2.1. Sandia National Laboratories, Albuquerque, NM 87185.

Tuminaro, R. S. and Hu, J. 2004. Ml home page. http://www.cs.sandia.gov/ tumi-

naro/ML Description.html.

van Heesch, D. 2004. Doxygen home page. http://www.doxygen.org.

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

An Overview of Trilinos · 27

Vanek, P., Brezina, M., and Mandel, J. 1998. Convergence of Algebraic Multigrid Based on

Smoothed Aggregation. Tech. Rep. 126, UCD/CCM, Denver, CO.

Vanek, P., Mandel, J., and Brezina, M. 1996. Algebraic Multigrid Based on Smoothed Aggre-

gation for Second and Fourth Order Problems. Computing 56, 179–196.

Vaughan, G., Elliston, B., Tromey, T., and Taylor, I. 2000. Gnu Autoconf, Automake, and

Libtool. New Riders.

Yee, K. 1966. Numerical solution of initial boundary value problems involving Maxwell’s equa-

tions in isotropic media. IEEE Trans. Antennas and Propagation 16, 302–307.

Zepper, J., Aragon, K., Ellis, M., Byle, K., and Eaton, D. 2003. Sandia National Laboratories

ASCI Applications Software Quality Engineering Practices, Version 2.0. Tech. rep., Sandia

National Laboratories.

Received: ????; revised: ???; accepted: ???

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2004.

