
SIAM J. MATRIX ANAL. APPL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1150–1178

AN ITERATIVE METHOD FOR SOLVING COMPLEX-SYMMETRIC
SYSTEMS ARISING IN ELECTRICAL POWER MODELING∗

VICTORIA E. HOWLE† AND STEPHEN A. VAVASIS‡

Abstract. We propose an iterative method for solving a complex-symmetric linear system
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1. AC power networks. Consider the linear system

ATD−1Av = ATD−1b(1)

in which A is an m × n real matrix, D is an m ×m complex diagonal matrix whose
diagonal entries have positive real parts, b is a complex m-vector, and v is the n-vector
of unknowns.

Equation (1) arises in the analysis of an alternating-current (AC) electrical net-
work composed of generators and loads joined by a graph. Each node in the graph
has a voltage, which is a complex number. The magnitude of the complex number is
the magnitude of the voltage, and the argument is the phase difference of the voltage
with respect to some reference phase.

Similarly, currents in the system are also complex numbers associated with graph
edges. The generators can be modeled as voltage sources with a fixed voltage. The
loads can be modeled as devices with fixed impedance. The impedance is a complex
number with a positive real part.

If one is given the voltages of the generators and the impedances of the loads, then
the problem of recovering the voltages at all nodes reduces to solving linear equations
of the form (1). In this case, A is the node-arc incidence matrix (NAI) of the network.
An NAI of a directed graph has one row for every edge of the graph and one column
for every node. In each row, all entries are zeros except for exactly one “1” and one
“−1” per row, which correspond to the endpoints of the graph edges. The diagonal
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Fig. 1. A simple AC network with two generators. Each edge j has a given constant impedance
Zj .

matrix D stores the impedances of the loads, b holds the generator voltages, and v
is the vector of node voltages. The linear system (1) is obtained from Ohm’s law and
Kirchhoff’s law (current balance):

Di + Av = b (Ohm),

AT i = 0 (Kirchhoff).(2)

If we multiply Ohm’s law by ATD−1 and apply current balance, we obtain the linear
system (1).

As an example of the various components in (1), consider the simple network in
Figure 1.

For this network,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
1 −1

1 −1
1 −1
1 −1

1 −1
1 −1

1 −1
1 −1

1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D = diag(
[
Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

]
),

b =
[
V1 0 0 0 0 0 0 0 0 V2

]T
.(3)

When there are no faults, the diagonal elements of D, i.e., the impedances, are
of approximately the same magnitude. When there is a fault in the network, e.g., a
nearly open circuit exists in transmission lines, some of the impedances are much larger
than the impedances associated with the functioning edges, making D extremely ill
conditioned. See Bergen [1] for more information about modeling AC networks.

In the network shown in Figure 2, there are nearly open circuits in the edges
associated with impedances Z2 and Z9. For this system, the matrix A and the vector
b would be the same as those for the system in Figure 1, but the matrix D would
now contain impedances of greatly varying magnitudes, e.g.,

D = diag(
[
Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

]
),(4)
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Fig. 2. A simple AC network with two generators. Each edge j has a given constant impedance
Zj . In this example, we show faults in the edges associated with impedances Z2 and Z9. In the case
of a nearly open circuit, for example, the magnitudes of Z2 and Z9 would be much greater than the
magnitudes of the other impedances.

where the Z2 and Z9 values are much larger in magnitude than the other impedances.
Modeling faulty networks is important in practice since load-regulating devices must
be designed to function properly even if part of the network fails.

We assume throughout this paper that the gap between the magnitudes of high
impedance wires and low impedance wires is large and that removal of the high
impedance wires disconnects the graph. In this case, the matrix K = ATD−1A can
be arbitrarily ill conditioned. It is not required that the removal of high impedance
wires disconnect the graph for our algorithm to work; however, it is for this case that
our method is a significant improvement over previous work [9].

We make two main contributions in this paper. The first contribution is an
extension of Gremban’s support tree preconditioner to cover complex weights (i.e.,
AC networks) and widely varying edge weights (i.e., faults). Even once we have a
good preconditioner M , in the presence of a fault that disconnects the graph, K and
therefore M−1 can be extremely ill conditioned separately. Even though the product
M−1K is well conditioned, M−1(Kv) may be computed inaccurately. Our second
contribution is a technique that computes M−1(Kv) accurately by splitting Kv into
its components in the range and null space of the functioning edges. For our algorithm
to work efficiently, we need an efficient projection into the range and null spaces of
the functioning edges.

A more general approach to achieving high accuracy in this kind of layered system
was proposed by Bobrovnikova and Vavasis [3]. The method of [3] does not assume
that there is an efficient projection into the range and null space of the functioning
edges. But that method appears to be very difficult to precondition.

A direct algorithm known as complete orthogonal decomposition was proposed
by Hough and Vavasis [13]. This method applies to the weighted least squares prob-
lem associated with faulted DC power networks. However, the method relies on the
system being real and positive definite. There is no simple extension to the complex-
symmetric case.

Other previous related work includes another combinatorial preconditioner for
weighted node-arc adjacency matrices by Guo and Skeel [11], previous versions of
support-tree preconditioners by Vaidya [18] and Bern et al. [2], and work by Vuik,
Segal, and Meijerink [20] on a related mathematical problem arising in diffusion mod-
eling using an explicit eigenvector projection. The problem analyzed by Vuik, Segal,
and Meijerink involves a real, symmetric, positive definite matrix that is highly ill
conditioned due to a large contrast in permeability coefficients in the system being
modeled. The method proposed by Vuik, Segal, and Meijerink relies on a good choice
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of projection vector, which involves knowing properties of the eigenvectors.
From the electrical power modeling perspective, there has been some work on

using iterative methods for solving the complex-symmetric systems arising in electri-
cal power modeling; see, e.g., [4], [7], [15], [17]. However, these methods have not
addressed the ill-conditioning associated with faults in the electrical power system.

2. Support trees. Our system (1) is singular because the nodes are ungrounded.
Since the voltage values are potentials, if we have not set one of the nodes to some
reference voltage (i.e., grounded the node), we can add an arbitrary constant to all
of the voltages and have an equally valid solution. Mathematically, this means that
the matrix ATD−1A is singular, because the vector of all 1’s is in the nullspace of A.
We address this detail by projecting vectors onto the range space of ATD−1A. This
projection is ignored for the remainder of the paper. After grounding the system, it
is still ill conditioned for two reasons.

The first source of ill-conditioning is inherent in NAI matrices. For example, if
A describes an n × n grid-graph, κ(ATA) = O(n2). This ill-conditioning has been
addressed by support-tree preconditioners developed by Gremban, Miller, and Zagha
[10]. We also use support-tree preconditioners in our method. The second source of ill-
conditioning is caused by the widely varying weights in the faulted system. Gremban,
Miller, and Zagha analyze only the case of nearly equal weights. We extend their
analysis of condition numbers of the preconditioned system first to subgraphs having
edge weights with widely varying magnitudes and then to graphs with complex edge
weights.

2.1. Support trees of Gremban, Miller, and Zagha. Gremban, Miller, and
Zagha form a support-tree preconditioner as follows. First, divide the nodes of the
network graph into some number of approximately equal-sized subgraphs. Then re-
cursively subdivide the subgraphs, etc., until all of the individual nodes have been
separated. Note that the method does not depend on the number of subgraphs in
each subdivision. For the results in this paper, we recursively subdivide into quarters.
Next, build a tree based on this partitioning. The root of the tree is in correspon-
dence with the entire original graph. The children of the root are in correspondence
with the subgraphs of the graph obtained from the first partition, and so on down to
the leaves of the tree, which are in correspondence with the individual nodes of the
original graph. (See Figure 3.)

Next assign weights to the edges of this tree based on the edge weights in the
original graph. Let G be the original network graph and let S be the support tree.
Let v be a support-tree node corresponding to subgraph V of G, and let e be the
support-tree edge from v to its parent. Assign weight to e equal to the sum of the
conductances (i.e., reciprocal resistances) of edges in G connecting V to G − V . In
other words, the weight on e is the sum of the entries of D−1 corresponding to the
nodes of V .

Definition 1. We define the weighted Laplacian matrix L(G) of an n-node
graph G as the n × n matrix whose jth diagonal entry corresponds to the sum of
weights of the edges incident on the jth node of the graph. The (i, j) entry of L(G) is
equal to the negative of the weight of the edge in G connecting nodes i and j.

Note that the system matrix K is the weighted Laplacian of the input graph G.
Let T be the weighted Laplacian matrix of the new network S. If n is the number
of original circuit nodes and t is number of nonsingleton subgraphs created during
partitioning, then n + t is the number of support-tree nodes. The matrix T is an
(n + t) × (n + t) very sparse matrix.
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Fig. 3. Example of constructing a support tree. The top left picture shows a network graph with
six nodes and ten edges. Successive cuts into subgraphs are shown in the pictures progressing left to
right. The support tree is shown on the bottom left, with the corresponding Laplacian matrix T on
the bottom right. Notice that the leaves of the support tree correspond to the nodes of the network
graph, and the root of the support tree corresponds to the entire original network graph.

Let M be the Schur complement of T obtained by eliminating the internal tree
nodes, that is, the tree nodes that are not leaves. Gremban, Miller, and Zagha showed
that M is a good preconditioner for ATD−1A in the real case (DC) with uniform edge
weights (no faults). In particular, they showed that for equally weighted instances
of (1) (i.e., D = I), the condition number of grid-graphs is reduced from O(n2) to
O(n log n). Although M is dense, linear systems of the form Mv = r can nonetheless
be solved in linear time using Cholesky factorization on the larger sparse matrix T .
Note that T has a perfect elimination order since it is the weighted Laplacian matrix
of a tree and we can eliminate from the leaves to the root. They show that solving

(
T1 T2

TT
2 T3

)(
v1

v2

)
=

(
r
0

)
(5)

and letting v = v1 are equivalent to solving Mv = r, where M = T1 − T2T
−1
3 TT

2 is
the support-tree preconditioner. Thus, the preconditioner is efficient in practice.

2.2. Extensions of the support-tree preconditioner. To extend the idea of
support-tree preconditioners to the case of an AC network with faults, we change how
we build the support tree as follows. First, assume that removal of the faulted edges
disconnects the graph into at least two subgraphs. (If this assumption does not hold,
then our method does not constitute an improvement over previous work [9].) We
require the top level of the support tree to be composed entirely of faulted edges, and
children of the root should be connected subgraphs of the network after faulty edges
are deleted. We include all of the faulted edges in the first separator. This in turn
puts all of the weights corresponding to faulted edges in the top level of the support
tree. We build the rest of the support tree as before. We show below that with
this change, the support-tree preconditioners are good preconditioners for ATD−1A.
In applying the preconditioner M in the AC case, the matrices K = ATD−1A and
M are complex-symmetric and hence the Cholesky factorization technique does not
apply directly. We show that the LU factorization can still be stably performed
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without pivoting (and thus without fill-in). Thus, as before, we can solve systems of
the form Mv = r by solving the larger sparse system involving T .

Theorem 2. T has an LU factorization, and the elements of L are bounded; i.e.,
the computation is stable without pivoting.

Proof. The diagonal elements of T are exactly the negative sums of the off-
diagonal elements. In addition, because we have ordered the tree nodes from the
leaves to the root, T has perfect elimination order. The elements of L are thus only
0’s, 1’s, and −1’s. The L matrix has 1’s on the diagonal, −1’s in the elements of T
below the diagonal that are nonzero, and 0’s elsewhere.

In addition to the ill-conditioning inherent in NAI matrices, there is also ill-
conditioning in our application of (1) caused by widely varying weights in a faulted
system. Let ρ1 be the absolute value of a typical admittance in functioning wires, and
let ρ2 be the absolute value of a typical admittance in faulty wires. Then ρ1 � ρ2,
and the original linear system can be decomposed as K = ATD−1A = K1+K2, where
K1 = AT

1 D
−1
1 A1 and K2 = AT

2 D
−1
2 A2. Here subscripts 1, 2 denote the partition into

functioning and faulty wires, respectively; hence ‖D1‖ ≈ ρ1 and ‖D2‖ ≈ ρ2.

Gremban, Miller, and Zagha analyze only the case of nearly equal weights. We
extend their analysis of condition numbers of the preconditioned system first to graphs
having edge weights with widely varying magnitudes, assuming the change in forming
the support tree that we discussed above and then to graphs with complex edge
weights. We assume for simplicity in the following theorems that the faults are nearly
open circuits, i.e., low admittance wires.

2.3. Extensions to analysis. In the rest of this section, we extend Gremban’s
analysis as follows. Since electrical power networks are laid out geographically, n ×
n grid-graphs are a reasonable first approximation to consider. Therefore, we first
extend Gremban’s analysis to DC networks (i.e., networks in which the edges have
real weights) with faults by proving that in the DC grid-graph case with faults along
the median edges, the condition number of the preconditioned system is O(n log n),
where n2 is the number of nodes in the system. The median edges are the edges
running through the middle of the grid-graph, horizontally and vertically. That is,
removal of the median edges would divide the grid-graph into four approximately
equal-sized subgraphs. Since in general electrical power networks are not actually
laid out on grid-graphs and faults are not confined to being along the median edges,
we show results for general graphs. Little is known about the behavior of support-
tree preconditioners on general graphs. Although we do not have an upper bound on
the condition number of the preconditioned system on a general graph, we can show
that for general DC networks with arbitrarily located faults, there is a bound on the
condition number of the preconditioned system that is independent of the relative
magnitude of the faults. Finally, we extend our results for grid-graphs and general
graphs to the AC case. Given certain assumptions about the impedance values in the
network, we show that we can bound the condition number in the AC faulted case
based on the condition number of the related DC network obtained by taking the real
part of the impedance values. In particular, we assume that the impedance values in
the network (the diagonal elements of D) lie in a pointed cone in the complex plane;
i.e., if dj is a diagonal element of D, then dj = xj + iyj where xj > 0 and |yj | ≤ μxj

for some positive cone constant μ. This series of theorems then shows that we can
extend Gremban’s support-tree preconditioner, with certain changes, to be a good
preconditioner in the case of AC networks with faults.
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2.3.1. Extensions to analysis of DC grid-graph networks with faults.
We first extend Gremban’s analysis to the case of DC (real) networks with faults. We
first introduce some notation that will be useful in the proofs that follow. Note that
the definitions that do not specifically rely on the matrices being real apply equally
to the AC case.

Definition 3. We refer to the condition number of the preconditioned system
M−1K as κ(M,K), where

κ(M,K) = max
|x∗Mx|
|x∗Kx| · max

|x∗Kx|
|x∗Mx| ,(6)

where the maxima are taken over nonzero vectors x in the range space of K (which
is equal to the range space of M). In the real case, the absolute value symbols are not
needed.

Note that this definition is equivalent to the usual eigenvalue definition of condi-
tion number in the real case.

We next prove a series of lemmas that we will use to show that in the DC (real)
case, the upper bound on the condition number of the preconditioned system does not
depend on the values of the faulted edges, and that for n× n (real) grid-graphs, the
condition number is O(n log n). The key technique we will use is support numbers.

Definition 4 (see [9]). For two real positive semidefinite matrices A and B, the
support of B for A, σ(A,B), is defined to be the greatest lower bound over all τ such
that τB −A is positive semidefinite.

Gremban relates this quantity to the condition number as follows.
Lemma 5. Let A,B be real positive semidefinite matrices. Then κ(A,B) =

σ(A,B)σ(B,A).
Thus, for our grid-graph construction, we must obtain upper bounds on σ(M,K)

and σ(K,M).
We start with σ(M,K). The support tree for the grid-graph is not completely

regular because subgraphs that are adjacent to the boundary of the entire grid have
fewer edges emanating from them than subgraphs on the interior. Our analysis of
σ(M,K) is simplified by assuming, however, that all subgrids of size 2h × 2h have
exactly 4h edges emanating from them. This assumption may be made without loss of
generality for the following reason. Let T ′ be the network resulting from augmentation
of T with these extra edges. Then T ′−T is positive semidefinite (since inserting edges
corresponds to adding a semidefinite matrix); hence so is M ′ −M , where M ′ is the
Schur complement of T ′ according to the following theorem.

Theorem 6 (see [12]). Let A,B be n×n symmetric positive semidefinite matrices
of the same size, and let k be an integer between 1 and n− 1. Assume that the upper
left k × k submatrices of both A and B are invertible, and let Schurk(A) denote the
Schur complement of the upper left k × k submatrix (i.e., Schurk(A) = A(k + 1 :
n, k + 1 : n) − A(k + 1 : n, 1 : k)A(1 : k, 1 : k)−1A(1 : k, k + 1 : n)). Similarly, let
Schurk(B) be the Schur complement of the upper left k × k submatrix of B. Then if
A−B is positive semidefinite, so is Schurk(A) − Schurk(B).

This means that if τ is a scalar such that τK −M ′ is positive semidefinite, so is
τK − M ′ + (M ′ − M) = τK − M . Therefore, σ(M,K) ≤ σ(M ′,K), so any upper
bound for σ(M ′,K) applies also to σ(M,K).

Hence we assume T has the regular structure mentioned earlier for the remainder
of this analysis. The next step in the analysis of σ(M,K) is to obtain upper bounds
for the off-diagonal entries of M . This is the purpose of the next three lemmas.
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Lemma 7. Let M be the Schur complement of T as described earlier. Then
M(j, k) is the kth entry of i, where i and y satisfy the following equation in which ej
denotes the jth column of the identity matrix:

T

[
y
ej

]
=

[
0
i

]
.(7)

Remark 1. This lemma has an interpretation in terms of electrical networks.
Recall that multiplying a weighted Laplacian matrix of a graph by a vector v corre-
sponds to assigning voltages to the nodes given by v and then determining the excess
currents at the nodes. Therefore, the above lemma corresponds to holding leaf node j
of the support tree to voltage equal to 1, the other leaf nodes to voltage 0, letting the
nonleaf tree nodes “float” (i.e., assume whatever voltage is needed so that the current
at the node balances), and measuring the excess current at node k.

Proof. This lemma holds because M is obtained from T by performing Gaus-
sian elimination steps on (7) to eliminate the nonleaf tree nodes. If we perform
Gaussian elimination on (7), we obtain Mej = i; i.e., the kth entry of i is equal to
M(j, k).

There is exactly one path between nodes j and k in the support tree. In estimating
i(k), we need to consider two cases: either the path between nodes j and k goes
through the root node (Lemma 8), or it does not (Lemma 9).

Lemma 8. Let M be the support-tree preconditioner for the n×n grid-graph with
edge weights described above. Assume n is an exact power of 2. Let l be the number
of levels in the tree, i.e., n = 2l, assuming exact quadrisection at each level. Let the
median (faulted) edges have admittance ε/4 and the nonfaulted edges have admittance
1/4. Assume the path from j to k passes through the root node of the support tree.
Then

|M(j, k)| ≤ 49 · 2−3lε

288
+ O(2−6lε) + O(ε2).

Remark 2. The assumption about powers of 2 is made to simplify the proof and
the notation. The factor of 1/4 unclutters the figures but is otherwise unnecessary.

Proof. Although this lemma can be proved using purely algebraic arguments, we
prefer to argue using principles of electrical networks because we believe this gives
more insight.

The first part of the proof contracts T almost to a path using series-parallel
equivalent circuits. A similar argument was used by Gremban. For example, consider
two leaf nodes of T , both holding a voltage 0, attached to the same parent node p
with edges that both have resistance r. These two leaf nodes can be merged into a
single node of voltage 0 connected to the same parent with resistance r/2. Then, since
p is a floating node and is connected to exactly two edges with resistance r1 and r2,
p can be deleted and the two edges can be replaced by a single edge with resistance
r1 + r2. Proceeding in this manner, we can merge and contract many tree nodes as
shown in Figure 4.

As in Gremban’s analysis, if we reduce nodes up to a child w of a node u at
level (i− 1), the reduced system is equivalent to a node connected to u with an edge
resistance less than or equal to 1/2i−1. (It can be shown using electrical reasoning or
algebra that overestimating the resistance of an off-path edge will lead to overestima-
tion of |M(j, k)|, which is valid since we are trying to obtain an upper bound on this
quantity.)
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Fig. 4. The solid lines in the first tree show the path between nodes j and k. The dashed lines
are the edges that we reduce up to the (j, k)-path. The second tree shows the result of reducing all
other nodes up to the path between j and k. The (j, k)-path is again shown with solid lines, with the
reduced edges shown as dashed lines.
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Fig. 5. Support-tree reduced to the (j, k)-path. The node v̂′l represents the root of the tree, v0

represents the j-node, and v′0 represents the k-node. The edge labels shown are resistances.

Therefore, the reduced system will look like the system in Figure 5 for a power-
of-two grid. In this figure, v0 represents the jth node of the tree (whose voltage has
been set to one), v′0 represents the kth node of the tree (whose voltage has been set
to zero), and v̂l represents the root of the tree.

Once we have reduced the system to the (j, k)-path, we solve for the net current
at the kth node, i.e., at v′0 in Figure 5. Recall that finding this current is equivalent
to finding i(k) = M(j, k).

Solving current balance equations at each floating node, we get the recurrence
relations

4vi+2 − 9vi+1 + 2vi = 0,(8)

4v′i+2 − 9v′i+1 + 2v′i = 0.

We also have equations for the root node and its neighbors. Using standard
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techniques, we can solve these recurrences to obtain

ik =
49ε2−3l

288
+ O(ε2−6l) + O(ε2),(9)

which bounds the element M(j, k) in the case where the (j, k)-path goes through the
root of the support tree. For details of the analysis, see [14].

Next we deal with the case where the (j, k)-path does not pass through the root
of the tree.

Lemma 9. Let M be the support-tree preconditioner as defined above. Then
|M(j, k)| ≤ 3.5/8h assuming the (j, k)-path does not pass through the root of the tree.
Here h is the height of the common ancestor of j, k in the support tree.

Proof. As in Lemma 8, we begin by reducing up to the (j, k)-path. In this case,
after reducing the tree as before to the (j, k)-path, we have a completely unfaulted
path between nodes j and k in the support tree, with an extra path off of the root v̂l
containing all of the faulted edges and other edges hanging off the path. The same
recursion (8) applies to this analysis, and the same techniques can be used to solve
it.

The approach used for estimating σ(M,K) is the same as Gremban’s; namely, we
first partition the graph and the preconditioner, and then for each piece we apply a
congestion/dilation argument. The first lemma concerns partitioning.

Lemma 10. If A = A1 + · · · + As and B = B1 + · · · + Bs, where each Ai and
each Bi is symmetric positive semidefinite, then

σ(A,B) ≤ max{σ(A1, B1), . . . , σ(As, Bs)}.

Proof. This lemma is proved by Gremban [9, Chapter 4].
The particular partitioning to be used in our analysis is as follows. As in Gremban,

we write K = K1 + · · ·+Kl and M = M1 + · · ·+Ml. The partition of K is given by
Kh = 2h−l−1K. Thus, Kl = K/2, Kl−1 = K/4, etc. (This leaves the fraction 2−l of K
“unused.” This is valid because underestimating K can only increase σ(M,K).) The
partition of M is given by the rule that Mh(i, j) = M(i, j) provided that the highest
tree node in the support tree on the (i, j)-path is at height h; else Mh(i, j) = 0. (We
order “height” so that the leaves are at height 0 and the root at height l.)

The next part of the analysis of σ(M,K) involves a congestion-dilation argument.
The terms are defined as follows.

Definition 11 (see [9]). Let A and B be graphs. Let p0 be an injective mapping
from nodes of A into nodes of B. Suppose there exists a mapping p from edges in A
to paths in B such that if e = (a, b) is an edge in A,then the endpoints of p(e) are
(p0(a), p0(b)). For an edge f in B, let d1, . . . , dk be the edges in A such that f ∈ p(di);
that is, di are the A edges whose embedding path in B includes edge f . The congestion
of edge f is

γ(A,B, f) =

∑k
i=1 weight(di)

weight(f)
.(10)

The congestion of the mapping γ(A,B) is the maximum congestion over all edges in
B.

Definition 12 (see [9]). Given an embedding of a graph A into a graph B as in
Definition 11, the dilation of the embedding is defined to be the length of the longest
path in B onto which an edge of A is mapped.
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Fig. 6. The graph K on the left is the original four-node system, and the graph M on the right
is the graph corresponding to the Schur complement support-tree preconditioner M . Consider edge
e ∈ M (the dotted edge in the figure connecting M vertices vM = 2 and wM = 3). The corresponding
path in K is the one shown by dotted edges in K (connecting K-nodes vK = 2 to 4 to wK = 3).

Lemma 13. The support σ(A,B) of a matrix B for a matrix A is less than or
equal to the maximum congestion over edges in B times the maximum dilation over
paths in B.

Proof. This lemma is proved by Gremban [9, Chapter 4].
In order to apply the congestion–dilation analysis, we assume the following stan-

dard mapping of the edges of M onto paths in the grid-graph corresponding to K. Let
e be an edge in M . The nodes of M correspond to the nodes in the original network
K. If edge e ∈ M connects nodes vM and wM in M , we map edge e to the path
in K obtained by starting at the node vK ∈ K that corresponds to vM and moving
vertically until we reach the same row as node wK (the node in K corresponding to
node wM ). We then complete the path by moving horizontally until we reach node
wK .

As an example, consider the very simple four-node system shown in Figure 6.
Form the support tree by bisecting the graph repeatedly, form the weighted Laplacian
matrix T from the support tree, and then let M be the Schur complement obtained
by performing Gaussian elimination on the internal (nonleaf) nodes of the tree. The
graph corresponding to the preconditioner M is then as shown in the same figure.
Consider edge e ∈ M (the dotted edge in Figure 6 connecting M vertices vM = 2
and wM = 3). The corresponding path in K is the one shown by dotted edges in K
(connecting K-nodes vK = 2 to 4 to wK = 3).

Now finally we have enough tools to estimate σ(M,K).
Lemma 14. Let K = ATD−1A correspond to a DC (real weights) network on an

n× n grid-graph containing wires of two magnitudes, functioning wires with conduc-
tance 1/4 and faulty wires with conductance ε/4, where the faulty wires are along the
median edges of the grid. Let M be the support-tree preconditioner as defined above.
Then σ(M,K) = O(n).

Proof. As explained above, we estimate σ(Mh,Kh) for each h = 1, . . . , l by
considering γ(Mh,Kh) · δ(Mh,Kh). Let us pick an h and select an e in K. We try
to determine γ(Mh,Kh, e). There are two cases to consider: either e is one of the
median edges of K whose conductivity is ε/4 or it is another edge.

Let us consider the median-edge case first. We observe that γ(Mh,Kh, e) = 0 if
h < l since no edge in Mh corresponds to a path that passes through the root node.
This is because for h < l, all the edges in Mh correspond to K-paths that lie inside
one of the four quadrants of K (after the median edges are removed). Thus, e does



ITERATIVE METHOD FOR COMPLEX-SYMMETRIC SYSTEMS 1161

not support any of these M -edges.
Thus, for a median edge we need consider only γ(Ml,Kl, e). Let d1, . . . , dp be the

edges in Ml whose corresponding K-paths s1, . . . , sp pass through e. Note that the tree
paths corresponding to d1, . . . , dp must all pass through the root of the support tree.
Therefore, the weight in Ml of each of these p edges is (49ε2−3l)/288+O(ε2−6l)+O(ε2)
by Lemma 8. Next, we have p ≤ 23l. This is because e is either in the same row
(if e is horizontal) or column (if e is vertical) of one of the two endpoints of each
si. Therefore, the number of possible endpoints for one end of si is n; the number
of possible endpoints for the other end is n2 (the total number of nodes). Thus,
p ≤ n3 = 23l. The weight in Kl of this edge e is ε/8 (since Kl = K/2). Therefore, the
maximum congestion in this case is

γ(Ml,Kl, e) =

∑p
μ=1

49ε2−3l

288 + O(ε2−6l) + O(ε2)

weight(e)

=
O(23l 49

288ε2
−3l)

ε/8

= O(1).

Next, consider the case that e is a functioning edge of K. Let (i, j) be the
endpoints of e. Let h′ be the height of the highest node z on the support-tree path
connecting i to j. By assumption for this case, h′ < l. If h < h′, then γ(Mh,Kh, e) = 0
because no paths induced by Mh-edges can use edge e, since any path in K induced
by an edge of Mh uses nodes whose highest common ancestor in the support tree is
at level h.

Thus, assume h ≥ h′. Let d1, . . . , dp be the edges in Mh whose corresponding
K-paths s1, . . . , sp pass through e. This means that s1, . . . , sp are all contained in a
2h × 2h subgrid that also contains e, namely, the subgraph of K corresponding to the
nodes in the support tree at z′, where z′ is the unique ancestor of z at height h. The
total number p of such paths that can use e is therefore at most 8h. This is because,
depending on whether e is vertical or horizontal, one endpoint of each si is either in
the same row or in the same column as e, so there are at most 2h choices for one of
the endpoints. The other endpoint could be anywhere in the subgrid determined by
z′, which has 22h nodes total.

Note that the weight of any Mh-edge is at most 3.5/8h by Lemma 9. The weight
of e in Kh is (1/4) · 2h−l−1 = 2h−l−3 by definition of Kh and the assumption that e
is a functioning edge. Thus,

γ(Mh,Kh, e) =

∑p
μ=1 weight(dμ)

weight(e)

=
8h · 3.5/8h

2h−l−3

= O(2l−h).

Thus, we have shown in all cases (both functioning and faulty wires) that for all
e, γ(Mh,Kh, e) = O(2l−h); hence γ(Mh,Kh) = O(2l−h). Next, we observe that
δ(Mh,Kh) = 2h. This is because the path in Kh induced by a node in Mh lies in the
subgraph induced by a node in the support tree at height h, a grid whose diameter is
2h. Thus, by Lemma 13, σ(Mh,Kh) ≤ O(2l−h) · 2h = O(2l) = O(n). This holds for
all h, so by Lemma 10, σ(M,K) = O(n).
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Next, we turn our attention to σ(K,M). The following lemma greatly simplifies
this analysis.

Lemma 15. Let K,M be two n×n symmetric positive semidefinite matrices. Let
M be the Schur complement of the lower right block of a larger symmetric positive
semidefinite matrix T as in (5). Let K̃ be K extended with zeros so that it is the same
size as T ; i.e.,

K̃ =

[
K 0
0 0

]
.(11)

Then σ(K,M) ≤ σ(K̃, T ).
Proof. See Gremban [9, Chapter 4] for the proof. This also follows directly from

Theorem 6 as follows. Define K̃ε = [K, 0; 0, εI], where ε > 0 and I is the identity
matrix. Then clearly K is the Schur complement of the lower right block of K̃ε, so
σ(K,M) ≤ σ(K̃ε, T ) by the theorem. Then take the limit as ε → 0.

The analysis of σ(K,M) is now fairly straightforward.
Lemma 16. Let K = ATD−1A correspond to a DC (real weights) network on an

n× n grid-graph containing wires of two magnitudes—high admittance (functioning)
wires and low admittance (nearly open circuit) wires—where the faults are along the
median edges of the grid. Let T be as defined above and let K̃ be as defined in Lemma
15. Then σ(K̃, T ) = O(log n).

Proof. In this case, we are considering how well the support-tree matrix T sup-
ports the extended system matrix K̃. The only edges of K̃ are the edges of K;
therefore we need only to map edges of K onto paths of T . We assume the following
standard mapping of edges of K onto paths in T . Let e be an edge in K connecting
nodes vK and wK . The leaves of the support tree correspond exactly to the nodes
of the original network. Since vK and wK are nodes in the original network, they
correspond to two leaf nodes in the support tree. We map edge e to the unique path
between the corresponding leaves vT and wT in the support tree.

As before, the support of matrix T for K̃ is less than or equal to the product of
the maximum congestion over edges in T and the maximum dilation over paths in T ;
i.e., σ(K̃, T ) ≤ γ(K̃, T )δ(K̃, T ). We bound these two quantities separately.

The maximum dilation comes from the edge in K that must be mapped through
a path that goes through the root of T . The length of this path is 2 log2 n + 2.

Next we find the maximum congestion. Let p be the mapping described above
from edges in K to paths in T , let e be an edge in T , and let d1, . . . , dk be the edges
in K such that e ∈ p(di) for some i.

Assume that edge e ∈ T connects nodes vj and vk, where vj is a child node of vk.
Then we have defined the edge weights of T such that the weight of edge e equals the
sum of the edges in K that connect the nodes associated with the leaves of the tree
rooted at vj to the rest of the graph. This sum is exactly

∑k
i=1 weight(di). Therefore,

the congestion over any edge in T is one.
Thus, the support σ(K̃, T ) is less than or equal to 1×O(log n) = O(log n).
Using Lemma 5 and Lemmas 13 through 16, we can show that in the case of an

n×n grid-graph with faults along the median edges of the grid, the condition number
of the preconditioned system is O(n log n). We summarize this result in the following
theorem.

Theorem 17. Let K = ATD−1A correspond to a DC (real weights) network on
an n×n grid-graph containing wires of two magnitudes—high admittance (functioning)
wires and low admittance (nearly open circuit) wires—where the faults are along the
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median edges of the grid. Let the preconditioner M be as above. Then κ(M,K) =
O(n log n).

Proof. This follows from Lemmas 5, 14, and 16.

2.3.2. Extensions to analysis of general DC networks with faults. In the
nongrid case, we show that the condition number of the preconditioned system has a
bound that is independent of the magnitude of the fault.

Since the condition number of the preconditioned system is bounded above by the
product of the support of K for M , σ(M,K), and the support of T for K̃, σ(K̃, T ),
we prove this result by showing that σ(M,K) and σ(K̃, T ) are each independent of
the magnitude of the fault. We do this by considering the congestion and dilation
of the respective embeddings. We show that both the congestion and dilation are
independent of ρ1 and ρ2 for the case of K supporting M and for the case of T
supporting K̃.

Lemma 18. Let K = ATD−1A correspond to a connected DC (real weights)
network containing wires of two magnitudes—high admittance (functioning) wires and
low admittance (nearly open circuit) wires. Let the preconditioner M be as above.
Assume that the admittance of a typical functioning edge is ρ1, and the admittance of
a typical faulted edge is ρ2. Then σ(M,K) has an upper bound that is independent of
ρ1 and ρ2.

Proof. In this lemma, we are considering the case of K supporting M , σ(M,K).
Fix a mapping from edges in M to paths in K. Such a mapping exists by the as-
sumption that the network is connected. We further require that if there exists a
path from a to b in K using unfaulted edges, then such a path must be selected for
the embedding. The dilation is given by the longest path in K onto which an edge of
M is embedded. For any mapping we choose, this path can be as long as the longest
path in the K graph, but this length does not depend on ρ1 or ρ2.

For the congestion, we follow a proof similar to that for the grid-graph case. As
in that case, we need an upper bound on the elements of M , which will give us a
bound on the edge weights of the graph associated with M . Choose an edge e ∈ K.
There are two cases to consider: either e is a faulted edge or it is not a faulted edge.
If e is not a faulted edge, then weight(e) = ρ1. Let d1, . . . , dk be the M edges whose
K-paths include edge e. We claim that these edges all have weight of approximately
ρ1. We show this by using the same process of branch/path reduction as in Lemma
14, reducing the support tree to the (j, k)-path that connects the leaf nodes of T that
correspond to the nodes in K connected by edge e. We can get an upper bound on
the current at node k by removing the faulted branch of the reduced system. We can
do this because the extra edges associated with the faulted parts of the system will
only make the current that gets to the kth node less. The current at the kth node
is therefore O(ρ1) giving us that M(j, k) = O(ρ1). As before, the current at node
k equals the value of M(j, k), so the M edges whose K-paths include edge e have
weights of ρ1. Thus the congestion in this case is approximately O(ρ1)/ρ1 = O(1)
and is independent of ρ1 and ρ2.

If e is a faulted edge, then weight(e) = ρ2. We again let d1, . . . , dk be the M -
edges whose K-paths include edge e. We claim that in this case these edges have
weights approximately equal to ρ2. We again show this by using the same process of
branch/path reduction as in Lemma 14. By construction, any K-path using e must
be a path between different K1-subgraphs of K. Therefore, the (j, k)-path in T must
go through the root of the tree. Contracting as before to the (j, k)-path, we can see
that the current at node k must be O(ρ2). Therefore, M(j, k) = O(ρ2), and the M
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edges whose K-paths include edge e have weights of O(ρ2). Thus the congestion in
this case is approximately O(ρ2)/ρ2 = O(1) and is independent of ρ1 and ρ2.

Since we have now shown that the dilation and congestion are separately bounded
independently of ρ1 and ρ2, their product, which is an upper bound on the support
of K for M , σ(K,M), is also bounded independently of ρ1 and ρ2.

Lemma 19. Let K = ATD−1A correspond to a connected DC (real weights)
network containing wires of two magnitudes—high admittance (functioning) wires and
low admittance (nearly open circuit) wires. Let the preconditioner M be as above.
Assume that the admittance of a typical functioning edge is ρ1, and the admittance of
a typical faulted edge is ρ2. Then σ(K̃, T ) has an upper bound that is independent of
ρ1 and ρ2.

Proof. In this lemma, we consider the support of T for K̃, σ(K̃, T ). We map
the edges of K (which are the same as the edges of K̃) onto paths in T using the
same mapping as in Lemma 14. As in the previous case, the dilation is given by the
longest path in T onto which an edge of K is mapped. This path can be as long as the
longest path in T but is nevertheless independent of ρ1 and ρ2. For the congestion,
let e be an edge in T and let d1, . . . , dk be the edges in K whose embedding path
in T includes edge e. If e is a faulted edge, that is, weight(e) ≈ ρ2, then the di are
faulted edges of K since only faulted edges of K would be mapped to paths that
pass through the faulted edges of T . Therefore,

∑k
i=1 weight(di) ≈ kρ2. Since the

weight of e is also approximately ρ2 and the congestion is defined as the previous sum
divided by the weight of e, the congestion is independent of ρ1 and ρ2. If e is not a
faulted edge, then some of the di may be faulted edges and some may not. In this
case,

∑k
i=1 weight(di) = O(ρ1 + ρ2) = O(ρ1). Since e is not a faulted edge, its weight

is approximately ρ1, and the congestion is again independent of ρ1 and ρ2. Since the
congestion and dilation separately are independent of ρ1 and ρ2, so is their product,
which is an upper bound on the support of T for K̃, σ(K̃, T ).

Theorem 20. Let K = ATD−1A correspond to a connected DC (real weights)
network containing wires of two magnitudes—high admittance (functioning) wires and
low admittance (nearly open circuit) wires. Let the preconditioner M be as above.
Assume that the admittance of a typical functioning edge is ρ1, and the admittance of
a typical faulted edge is ρ2. Then κ(M,K) has an upper bound that is independent of
ρ1 and ρ2.

Proof. From Lemma 15, we have κ(M,K) ≤ σ(K̃, T )σ(M,K), where K, K̃, T ,
and M are as before. We have shown in Lemmas 18 and 19 that the upper bounds on
σ(K,M) and σ(K̃, T ) are each independent of ρ1 and ρ2. Therefore, their product,
which is an upper bound on the condition number of the preconditioned system,
κ(M,K), is also independent of ρ1 and ρ2.

2.3.3. Extensions to analysis of AC networks. Finally, we extend the anal-
ysis to the AC network case.

Definition 21. Let B be a matrix of the form B = ATD−1A, where A is real
with full column rank and D is a diagonal matrix. We say that B is cone positive
definite if the diagonal elements of D lie in a pointed cone in the complex plane. In
other words, if dj is a diagonal element of D, then dj = xj + iyj, where xj > 0 and
|yj | ≤ μxj for some positive cone constant μ.

We assume that the original system K = ATD−1A is cone positive definite. Note
that satisfying this assumption simply requires that all of the impedances have some
resistive component, which is true of any real power network. In this case, we can
bound the condition number of the AC case by the condition number of the real part
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of the system and a function of the cone constant. Strictly speaking, our matrices are
not cone positive definite because of the 1-dimensional nullspace arising because the
nodes are ungrounded. Again, this detail is not significant since our system matrix
and our preconditioner have the same nullspace.

Lemma 22. If the original system matrix K is cone positive definite, so is the
preconditioner M .

Proof. The edge weights of the support tree are by construction sums of edge
weights of the original graph. Therefore, the weighted Laplacian matrix T of the
support tree is cone positive definite with the same cone constant as K. The pre-
conditioner M is the Schur complement of T obtained by eliminating the internal
tree nodes. Gaussian elimination performed on the internal nodes of the support tree
is equivalent to performing series circuit reduction on those nodes [9]. If we reduce
a node with edges connecting two nodes in series with admittances c1 and c2, the
resulting edge has admittance cnew = c1c2/(c1 + c2). Thus, if c1 and c2 are in the
pointed cone with cone constant μ, so is cnew since

cnew =
c1c2

c1 + c2
=

1
1
c1

+ 1
c2

,(12)

and pointed cones are closed under addition and under taking reciprocals. Therefore,
after eliminating all of the internal nodes of the support tree, we have a graph whose
edge weights lie in the original pointed cone. The preconditioner M is the weighted
Laplacian matrix of this graph; therefore, M is cone positive definite with the same
cone constant μ as the original system matrix K.

Theorem 23. In the AC case with impedances lying in a pointed cone in the
complex plane, κ(M,K) ≤ (1 + μ2)κ(Re(M),Re(K)), where μ is the cone constant.

Proof. Assume that K = ATD−1A as before and that D−1 = E + iF . Since
the preconditioner M is also a weighted Laplacian matrix, we can write M = RTΔR
where R is an NAI matrix and Δ is a diagonal matrix. As with the components of
K, R is a real matrix made up of 1’s, −1’s, and 0’s, and Δ is a diagonal matrix with
complex diagonal entries lying in the same cone as the diagonal entries of D. Let
Δ = B + iC.

We first establish bounds on |x∗ATD−1Ax| in terms of the real part of D−1 and
the cone constant μ. Let w = Ax. Let dj represent the diagonal elements of D−1,
ej represent the diagonal elements of E, and fj represent the diagonal elements of F .
Then we have

|x∗ATD−1Ax| = |w∗D−1w|

=

∣∣∣∣∣∣
∑
j

|wj |2 · dj

∣∣∣∣∣∣
≤

∑
j

(
|wj |2 · |dj |

)

≤
∑
j

(
|wj |2

√
1 + μ2 · ej

)

= |w∗Ew|
√

1 + μ2

= |x∗ATEAx|
√

1 + μ2.

(13)
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Next we bound |x∗ATD−1Ax| from below. In this case we have

|x∗ATD−1Ax| = |w∗D−1w|
= |w∗(E + iF )w|

=
∣∣∣∑ |wj |2ej + i

∑
|wj |2fj

∣∣∣
≥

∣∣∣∑ |wj |2ej
∣∣∣

= |x∗ATEAx|.

(14)

The preconditioner M is also a weighted Laplacian matrix of the form M = RTΔR
where R is an NAI matrix and Δ is a diagonal matrix. In addition, by Lemma 22,
M is cone positive definite with the same cone constant μ as K. Therefore, the same
bounds apply to M . Namely,

|x∗RTΔRx| ≤ |x∗RTCRx|
√

1 + μ2,(15)

and

|x∗RTΔRx| ≥ |x∗RTCRx|.(16)

Using these bounds, we can establish an upper bound on the condition number
of the preconditioned AC network in terms of the condition number of the real part
of the network.

κ(M,K) = max
|x∗Mx|
|x∗Kx| · max

|x∗Kx|
|x∗Mx|

≤ max

√
1 + μ2|x∗RTCRx|
|x∗ATEAx| · max

√
1 + μ2|x∗ATEAx|
|x∗RTCRx|

= (1 + μ2) max
|x∗RTCRx|
|x∗ATEAx| · max

|x∗ATEAx|
|x∗RTCRx|

= (1 + μ2)κ(Re(M),Re(K)).

(17)

This analysis seemingly implies that we may as well precondition the AC network
based only on its DC components. But our experiments indicate that keeping the
imaginary part in the preconditioner gives better results. Therefore, there may exist
a stronger analysis of the complex case.

3. Splitting. Since we are assuming that the gap between the magnitudes of
high impedance wires and low impedance wires is large, and that removal of the high
impedance wires disconnects the graph, the matrix K = ATD−1A can be arbitrarily
ill conditioned. Even though the preconditioner effectively reduces condition number,
it does not lead to accurate solution by itself under these conditions. Again letting
M be the preconditioner for K, the difficulty is that although the product M−1K
is well conditioned, nonetheless the resulting vector M−1(Kv) may be computed
inaccurately because M−1 and K are very ill conditioned separately.

We solve this problem by splitting K into its “large space,” i.e., the range of
K1 (where K1 denotes, as before, the weighted Laplacian of the functioning wires)
and its “small space,” which is null(K1). These spaces (“large” versus “small”) are
reversed for M−1. We can easily identify these spaces from the graph and then split
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Fig. 7. The same faulted AC network as shown in Figure 2 split into its functioning (K1) and
faulted (K2) subgraphs. The top graph shows the functioning subgraphs, and the bottom graph shows
the faulted subgraphs.

r = (K1+K2)v (in O(n) time) into r = rR+rN . We then compute y = M−1(rR+rN )
term by term, changing interim quantities that would be zero in exact arithmetic to
zero, then recombining.

The matrix K1 is just the weighted Laplacian of the functioning part of the
system, and K2 is the weighted Laplacian of the faulted part of the system. The
original matrix K then equals K1 + K2. In Figure 7, we show these two graphs for
the same network as shown in Figure 2.

For this network, K1 = AT
1 D

−1
1 A1 and K2 = AT

2 D
−1
2 A2, where

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
1 −1

1 −1
1 −1

1 −1
1 −1

1 −1
1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D1 = diag(
[
Z1 Z3 Z4 Z5 Z6 Z7 Z8 Z10

]
),

A2 =

[
1 −1

1 −1

]
,

D2 = diag(
[
Z2 Z9

]
).(18)

In particular, our algorithm is as follows. Each time we form M−1(Kv) =
M−1(K1 + K2)v, we first split (K1 + K2)v into its subgraphs in range(K1) and
null(K1). To do this, we form an orthogonal projector PPT onto the null space of
K1. The projector PPT is formed based on the graph structure of the network and
can be applied in O(n) time as follows. Removing the high impedance (faulty) wires
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disconnects the graph into separate subgraphs of functioning wires, which we refer to
as K1-subgraphs. A vector in range(K1) is defined by the property that its entries
over each K1-subgraph sum to zero. On the other hand, any vector in null(K1) has
the defining property that entries corresponding to nodes within a K1-subgraph of the
graph have the same value. Thus, we build an orthogonal projector onto null(K1) us-
ing a connected subgraph search. Consider forming the product r = Kv. We can split
r according to: rN = PPTKv and rR = (I−PPT )Kv. We compute rN as PPTK2v
since the other term drops out. Similarly, we compute rR as K1v +K2v−PPTK2v.
We then invoke our preconditioning algorithm with this split r.

In invoking our preconditioning algorithm, as described in section 2, instead of
solving My = r, we solve the equivalent (but sparse) problem

LU

[
y
c

]
= Gr,(19)

where LU is the (sparse) LU factorization of T , and G is the matrix that extends a
vector with zeros to be the size of the range space of T , i.e.,

Gr =

[
r
0

]
.(20)

We next forward solve for uR = L−1GrR and uN = L−1GrN . Let S be the set
of row numbers of nodes whose paths to the root contain only high-impedance edges.
(Because of our definitions, S is exactly the root and children of the root.) Let J be
the matrix that zeros out the components in S (i.e., J is a diagonal matrix with zeros
in the diagonal positions corresponding to elements of S, and ones elsewhere on the
main diagonal). We claim below that in exact arithmetic uR = JuR. Next we do the
two backward solves, wN = U−1uN and wR = U−1JuR. Note the important step in
our algorithm of explicitly applying J to uR before performing the back substitution.

Finally, we extract and return the part of wR + wN that corresponds to the y in
My = v; i.e., y = GT (wR + wN ).

Thus, our algorithm for evaluating y = M−1Kv is summarized as follows:

rN = PPTK2v,
rR = K1v + K2v − PPTK2v,
uN = L−1GrN ,
uR = L−1GrR,
wN = U−1uN ,
wR = U−1JuR,

y = GT (wR + wN ).

(21)

Let us now provide three preliminary lemmas about this construction.
Lemma 24. Let L and U be lower and upper triangular matrices such that T =

LU , and let Δ be a diagonal matrix consisting of the main diagonal elements of U .
Let Ũ = Δ−1U . Applying L−1 sums the entries from the leaves to the root of the
support tree. The matrices Ũ and L have the properties that ‖Ũ−1‖ ≤ cn, ‖Ũ‖ ≤ dn,
‖L−1‖ ≤ kn, and ‖L‖ ≤ fn, where cn, dn, fn, and kn are constants that depend only
on n.

Proof. These properties can all be proven combinatorially. We omit the
proof.

Lemma 25. In exact arithmetic, JuR = uR, where uR is defined in (21).
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Proof. Let ni be a node in the support tree, and let Ni be the set of leaves rooted
at ni. Recall that the leaves of the support tree correspond directly to the nodes
of the original network. The weight of the parent edge of ni is constructed (as in
Gremban) to be the sum of the edges connecting the original graph nodes Ni to the
rest of the graph. This sum is known as the frontier of Ni. Since in our algorithm
we force all high impedance edges to be in the top level graph separator, the nodes in
the support tree indexed by elements of S are those whose corresponding nodes in the
original graph are connected to the rest of the graph by only high impedance edges.
This implies that leaves rooted at such a node make up one or more K1-subgraphs.

Since applying L−1 sums the entries from the leaves to the root of the support
tree, if uR = L−1GrR, for example, then uR(i) equals the sum of the entries in rR
associated with leaves rooted at ni. As mentioned above, entries in rR corresponding
to a K1-subgraph sum to zero since rR ∈ range(K1). Therefore, if i ∈ S, then
uR(i) = 0 in exact arithmetic.

Let the constants α and β be defined as

α = max

(
maxi(D

−1
1 (i, i))

mini(D
−1
1 (i, i))

,
maxi(D

−1
2 (i, i))

mini(D
−1
2 (i, i))

)
,

β = max
i

(D−1
1 (i, i)),

(22)

where the D−1
1 (i, i) are the weights of the low impedance edges, and the D−1

2 (i, i) are
the weights of the high impedance edges.

Lemma 26. ‖Δ−1J‖ ≤ cn · α/β, where cn is a constant depending only on n.
Proof. The elements of Δ are either sums of low impedance weights, sums of high

impedance weights, or a mixture of low and high impedance weights. The elements of
Δ consisting of the sums of high impedance weights correspond to the row numbers
of nodes whose paths to the root contain only high impedance edges, i.e., elements
whose associated entries in rR correspond to a K1-subgraph. As shown in Lemma 25,
these are the same elements of J that are set to zero. Therefore, the product Δ−1J
is diagonal with the only nonzero elements being sums of low impedance weights.
Therefore, ‖Δ−1J‖ is equal to the reciprocal of a sum of low impedance (high admit-
tance) weights. The number of weights in the sum is bounded by the number of nodes
in the support tree. Therefore, ‖Δ−1J‖ ≤ cn · 1/mini(D

−1
1 (i, i)) ≤ cn · α/β.

Now we can state our main theorem for this section.
Theorem 27. Using the algorithm defined by (21) in the presence of roundoff

error, the computed M−1(Kv) has the form (M−1K +E)v, where E satisfies ‖E‖ ≤
εmachcncmα + O(εmach

2), and εmach is machine epsilon.
Remark 3. In contrast, if we compute M−1Kv in the naive manner, the computed

result has the form (M−1K + E)v, where ‖E‖ ≤ ‖K‖ · ‖M−1‖ · εmach, which could
be very large.

Proof. The heart of this proof is in the following two lemmas, which show that
wR and wN are both computed accurately.

Lemma 28. The computed wR has the form ŵR = [(U−1JL−1G(I−PPT )(K1 +
K2)) + ER]v, where ‖ER‖ ≤ εmach · cn · α/β · ‖K1 + K2‖ + O(εmach

2) and α and β
are defined by (22).

Proof. Note that we will reuse the symbol cn in this proof to mean a constant
depending only on n whose value may change from statement to statement.

The range space component of r is given by rR = K1v +K2v−PPTK2v = (I −
PPT )(K1+K2)v, and the computed rR has the form r̂R = [(I−PPT )(K1+K2)+E′]v,
where ‖E′‖ ≤ ‖K1‖ · εmach · cn. We are assuming here that ‖K2‖ 	 ‖K1‖.
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We next extend rR with zeros (i.e., apply G), and perform the forward solve
uR = L−1GrR. Note that uR is no longer necessarily in range(K1). The computed
results again have the form ûR = (L−1G+E′′′)r̂R, where ‖E′′′‖ ≤ ‖L−1‖ · εmach · cn.

Next, let J be the matrix that sets to zero the elements of ûR that would have
been zero in exact arithmetic. (This step is explained in Lemma 25.)

Now we do the back solve wR = U−1JuR. The computed wR has the form
(U + F )ŵR = JûR, where |F | ≤ |U | · εmach · cn entrywise. Rearranging we get
ŵR = (U + F )−1JûR. Substituting the Taylor series approximation for (U + F )−1

and dropping the high-order terms, we have ŵR = (U−1 + U−1FU−1)JûR.
Recall that U = ΔŨ , where Δ is a diagonal matrix and Ũ is well conditioned.

Since |F | ≤ |U | · εmach · cn entrywise, F has the same structure, i.e., F = ΔF̃ , where
Δ is the same diagonal matrix and |F̃ | ≤ |Ũ | · εmach · cn entrywise. We can now write
the computed wR as ŵR = (Ũ−1 + Ũ−1F̃ Ũ−1)Δ−1JûR.

Putting all of the steps together, we have that

ŵR = (Ũ−1 + Ũ−1F̃ Ũ−1)(Δ−1J)(L−1G + E′′′)

· [(I − PPT )(K1 + K2) + E′]v

= [(U−1JL−1G(I − PPT )(K1 + K2)) + ER]v,

(23)

where

ER = Ũ−1F̃ Ũ−1Δ−1JL−1G(I − PPT )(K1 + K2)

+ Ũ−1Δ−1JL−1GE′

+ Ũ−1Δ−1JE′′′(I − PPT )(K1 + K2)

+ O(εmach
2).

(24)

Thus we have

‖ER‖ ≤ ‖Ũ−1F̃ Ũ−1Δ−1JL−1G(I − PPT )(K1 + K2)‖
+ ‖Ũ−1Δ−1JL−1GE′‖
+ ‖Ũ−1Δ−1JE′′′(I − PPT )(K1 + K2)‖
+ O(εmach

2)

≤ ‖Ũ−1F̃ Ũ−1‖ · ‖Δ−1J‖ · ‖L−1G(I − PPT )(K1 + K2)‖
+ ‖Ũ−1‖ · ‖Δ−1J‖ · ‖L−1G‖ · ‖E′‖
+ ‖Ũ−1‖ · ‖Δ−1J‖ · ‖E′′′‖ · ‖(I − PPT )(K1 + K2)‖
+ O(εmach

2)

≤ εmach · cn · α/β · ‖K1 + K2‖ + O(εmach
2),

(25)

where α and β are as described for Lemma 26.
Lemma 29. The computed wN has the form ŵN = [(U−1L−1GPPTK2)+EN ]v,

where ‖EN‖ ≤ εmachcn
α
β ‖K1‖ + O(εmach

2) and α and β are defined by (22).

Proof. The computed rN has the form r̂N = (PPTK2 + E0)v, where ‖E0‖ ≤
‖K2‖ · εmach ·cn, and cn is a small constant that depends only on n. This follows from
the standard properties of matrix-vector multiplication and the fact that ‖PPT ‖ = 1.
Note that we will reuse the symbol cn in this proof to mean a constant depending
only on n whose value may change from statement to statement.
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We next extend rN with zeros (i.e., apply G), and perform the forward solve
uN = L−1GrN . Note that uN is no longer necessarily in null(K1).

The computed results again have the form ûN = (L−1G+E′′)r̂N , where ‖E′′‖ ≤
‖L−1‖ · εmach · cn.

Now we do the back solve, wN = U−1uN . Similarly to the case for wR, for wN

we have

ŵN = (U−1 + U−1FU−1)(L−1G + E′′)r̂N

= (U−1 + U−1FU−1)(L−1G + E′′)(PPTK2 + E0)v

= (Ũ−1 + Ũ−1F̃ Ũ−1)Δ−1(L−1G + E′′)(PPTK2 + E0)v

= [(U−1L−1GPPTK2) + EN ]v,

(26)

where

EN = Ũ−1Δ−1E′′PPTK2

+ Ũ−1Δ−1L−1GE0

+ Ũ−1F̃ Ũ−1Δ−1L−1GPPTK2

+ O(εmach
2).

(27)

So we have

‖EN‖ ≤ ‖Ũ−1‖ · ‖Δ−1E′′PPTK2‖
+ ‖Ũ−1‖ · ‖Δ−1L−1GE0‖
+ ‖Ũ−1‖ · ‖F̃‖ · ‖Ũ−1‖ · ‖Δ−1L−1GPPTK2‖
+ O(εmach

2).

(28)

We have shown in Lemma 24 that ‖Ũ−1‖ ≤ cn and ‖L−1‖ ≤ cn. As above,
‖E′′‖ ≤ εmach · cn‖L−1‖ and ‖E0‖ ≤ εmach · cn · ‖K2‖. Finally, we are assuming that
the high impedance weights are significantly larger than the low impedance weights,
i.e., that ‖K2‖ ≤ ρ‖K1‖ for a small constant ρ.

Since Δ is a diagonal matrix with sums of high impedance and low impedance
weights on its diagonal, ‖Δ−1‖ ≤ 1/ρ · maxi(1/D

−1
1 (i, i)), where D−1

1 (i, i) are the
weights of the low impedance edges. Therefore, ‖Δ−1‖ ≤ α/(ρβ), where α and β are
defined by (22).

Therefore, we can bound the error term ‖EN‖ as

‖EN‖ ≤ cn
1

ρ

α

β
εmachρ‖K1‖ + O(εmach

2)

≤ εmachcn
α

β
‖K1‖ + O(εmach

2).
(29)

Now finally, we conclude the proof of the main theorem. We have shown in
Lemmas 28 and 29 that the computed wR has the form ŵR = [(U−1JL−1G(I −
PPT )(K1 +K2))+ER]v, where ‖ER‖ ≤ εmach · cn ·α/β · ‖K1 +K2‖+O(εmach

2), and
the computed wN has the form ŵN = [(U−1L−1GPPTK2) + EN ]v, where ‖EN‖ ≤
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εmachcn
α
β ‖K1‖ + O(εmach

2) . Therefore, the total computed w has the form

ŵ = ŵR + ŵN

= [(U−1JL−1G(I − PPT )(K1 + K2)) + ER]v

+ [(U−1L−1GPPT (K1 + K2)) + EN ]v

= (M−1K + E)v,

(30)

where

‖E‖ = ‖ER + EN‖

≤ εmachcn
α

β
‖K‖ + O(εmach

2).
(31)

Finally, since β = maxi(D
−1
1 (i, i)) and the functioning admittances are assumed

to be larger than the faulty admittances, β is the maximum of all of the admittances.
In particular, ‖D−1‖/β = 1; therefore, ‖K‖/β = cm, where cm is a constant depend-
ing on the number of edges in the graph. Therefore, we have

‖E‖ ≤ εmachcncmα + O(εmach
2).(32)

4. Computational experiments. We have tested this algorithm on two qual-
itatively different graphs: grid-graphs and sample power network graphs from the
MATPOWER [21] power flow simulation package.

In our analysis, we assume that all of the high-impedance (nonfunctioning) edges
are included in the top level of the graph separator. For these examples we defined the
high-impedance edges to be exactly those edges cut in the top level graph partition.
All remaining edges were taken to be low-impedance (functioning) edges. The low-
impedance weights were chosen uniformly at random from a disk in C centered at 2
of radius 1. The high-impedance (low-admittance) weights were chosen uniformly at
random from a disk centered at 2 ·10−10 of radius 1 ·10−10. For a 16, 384-node system,
this choice results in faulted systems of with condition number of approximately 1018

(as reported by MATLAB’s condest() function). We tried several size problems of
this kind, with similar results.

All experiments were conducted in MATLAB using sparse matrix operations.
The extended preconditioner T was LU-factored without pivoting (and, as mentioned
earlier, with no fill-in). The graph partitioning was done using the MATLAB Mesh
Partitioning Toolbox [8].

Exact solutions were computed by first forming a random solution vector x and
computing b = Ax. We then used our splitting technique to compute M−1ATD−1b
accurately to initialize the iterative method.

The results we present in this section are with our algorithm implemented in
TFQMR [6]. We have also had success with BiCG [19] and GMRES [16] (not re-
ported here). Note that CG and LSQR are not applicable since (1) is not Hermitian.
In addition, we do not use a method such as CSQMR [5] that can take advantage
of the complex symmetry of the problem. We have special techniques for comput-
ing M−1(Kv) accurately and cannot easily reuse our existing methods to compute
KT (M−Tv). A transpose method could almost certainly be developed using similar
ideas, but we have not tried to implement such a method.

We first compare our algorithm with other iterative methods. In all of the tests
that follow, the stopping tolerance is ‖residual‖2 < (10−10 ∗ ‖b‖2).
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Fig. 8. Our algorithm and unpreconditioned TFQMR applied to the same faulted 16,384-node
AC network problem on a grid-graph. The dashed line is unpreconditioned TFQMR without splitting;
the solid line is our preconditioned TFQMR with splitting.
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Fig. 9. Residuals from our algorithm and unpreconditioned TFQMR applied to the same faulted
16,384-node AC network problem on a grid-graph. The dashed line is unpreconditioned TFQMR
without splitting; the solid line is our preconditioned TFQMR with splitting.

Figure 8 shows the results from a 16,384-node grid-graph and compares unpre-
conditioned TFQMR (without splitting) and preconditioned TFQMR with splitting.
We see from the figure that our preconditioned TFQMR with splitting is far superior
in terms of reducing the error. For TFQMR without preconditioning or splitting, the
error was hardly reduced at all from the initial guess. It is important to note that
we are plotting error ‖x(j) − x‖ rather than residual ‖Kx(j) − b‖. The residual for
such an ill-conditioned problem does not give a valid picture of convergence. We can
see, for example, in Figure 9 that unpreconditioned TFQMR without splitting does
in fact eventually converge (after approximately 250 iterations) in terms of reducing
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Fig. 10. Our algorithm and unpreconditioned TFQMR applied to the same 984-node AC net-
work problem on a graph from MATPOWER [21]. The dashed line is unpreconditioned TFQMR
without splitting; the solid line is our preconditioned TFQMR with splitting.

the updated residual to the specified tolerance, but the error stagnates at approxi-
mately 1.2 and never improves. In this example, TFQMR with our preconditioning
and splitting took approximately 172.56 seconds, i.e., approximately 2.36 seconds per
iteration. All remaining examples in this section will plot the error ‖x(j) − x‖.

Figure 10 shows the results from a 984-node network example from the MAT-
POWER [21] power flow simulation package. As in the previous example, our pre-
conditioned TFQMR with splitting is far superior in terms of reducing the error. For
TFQMR without preconditioning or splitting, the error was hardly reduced at all from
the initial guess, stagnating at approximately 6.2. In this example, our algorithm took
approximately 119.17 seconds (0.99 seconds per iteration) and reduced the error to
approximately 2.58 · 10−9.

Next we compare our algorithm to TFQMR with an incomplete LU (ILU) pre-
conditioner. In Figure 11, we compare TFQMR with an ILU preconditioner (with
no fill) to our algorithm on a 16,384-node AC network with no faults. In this ex-
ample, our algorithm and TFQMR with ILU perform similarly. We use MATLAB’s
luinc() function for the incomplete LU factorization. In this example, unprecondi-
tioned TFQMR without splitting took 180.28 seconds (0.41 seconds per iteration),
TFQMR with ILU preconditioning took 75.15 seconds (0.62 seconds per iteration),
and our algorithm took 206.84 seconds (2.35 seconds per iteration). In Figure 12, we
make the same comparison on a system with faults. Again we see that in a faulted
system, our algorithm is far superior in terms of reducing the error. As expected, in
unpreconditioned TFQMR without splitting and TFQMR with ILU preconditioning
the error stagnates fairly quickly and is never significantly reduced. Our algorithm
took 172.56 seconds (2.36 seconds per iteration) and reduced the error substantially.

Next, we examine the effect of the splitting as separate from the support-tree
preconditioning. In Figure 13 we compare the results of solving a faulted 16,384-
node AC network problem on a grid-graph with and without splitting. This example
shows the critical importance of the splitting technique. Although the support-tree
preconditioner is a good preconditioner in the sense of improving the condition number
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Fig. 11. Our algorithm, unpreconditioned TFQMR, and TFQMR with ILU preconditioning
applied to the same unfaulted 16,384-node AC network problem on a grid-graph. The dashed line is
unpreconditioned TFQMR without splitting; the dotted line is TFQMR with an ILU preconditioner
(no fill); and the solid line is our preconditioned TFQMR with splitting.
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Fig. 12. Our algorithm, unpreconditioned TFQMR, and TFQMR with ILU preconditioning
applied to the same faulted 16,384-node AC network problem on a grid-graph. The dashed line is
unpreconditioned TFQMR without splitting; the dotted line is TFQMR with an ILU preconditioner
(no fill); and the solid line is our preconditioned TFQMR with splitting.

of the system, it is not helpful unless it can be applied accurately.

Note that we do not perform the opposite experiment of applying our splitting
technique without the support-tree preconditioner or with another preconditioner.
Our splitting technique is tightly bound to the support-tree preconditioner, and it is
not clear how to apply it to an arbitrary preconditioner.

The convergence rate of TFQMR is not known to be related to the condition num-
ber in Definition 3 (or indeed, to any condition number). Nonetheless, our experience
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Fig. 13. Our algorithm, unpreconditioned TFQMR, and TFQMR with our preconditioner but
no splitting applied to the same faulted 16,384-node AC network problem on a grid-graph. The dashed
line shows unpreconditioned TFQMR without splitting; the dotted line is TFQMR with support-tree
preconditioning but without splitting; and the solid line is our preconditioned TFQMR with splitting.

indicates that these two are related. Note that the condition number in Definition 3 is
related to the condition number of (M∗M)−1(K∗K), which is the condition number
that would apply if we were using CGNR.

Finally, we compare our algorithm with two direct methods, MATLAB’s backslash
command and the complete orthogonal decomposition (COD) method of Hough and
Vavasis [13]. On the unfaulted 16,384-node grid-graph problem, MATLAB’s backslash
command is both fast and accurate, taking 9.21 seconds and resulting in a solution
with error 2.96 · 10−11. On the same unfaulted problem, our algorithm takes 203.76
seconds with a resulting error of 4.41 ·10−8. On the faulted system, however, although
backslash is still fast (9.23 seconds), the resulting solution has an error of 1.57 · 10−3.
Note that one step of iterative refinement improved this error by approximately one
order of magnitude. However further steps of iterative refinement produced no further
improvement in the error. In contrast, our algorithm takes 169.42 seconds with a
resulting error of 3.87 · 10−7 on the same faulted system.

The COD algorithm requires SPD systems, so we compare our algorithm with
COD using real values for the impedances. Analogously to the complex-symmetric
case, low-impedance weights were chosen uniformly at random from an interval on
the real line centered at 2 of radius 1. High-impedance weights were chosen from an
interval centered at 2 · 10−10 of radius 1 · 10−10. The COD algorithm is accurate,
even in the presence of faults, but is significantly slower than our algorithm. On
an unfaulted 256-node grid system with real edge weights, the COD algorithm took
117.38 seconds with a resulting error of 7.55 · 10−15, MATLAB’s backslash command
took approximately 0.04 seconds with a resulting error of 2.6·10−14, and our algorithm
took approximately 0.94 seconds with a resulting error of 4.64 · 10−9.

Once we introduce faults, our algorithm and the COD algorithm remain accurate,
but the COD algorithm is still significantly slower. On a faulted 1024-node systems
with real edge weights, the COD algorithm took 117.45 seconds with a resulting error
of 4.94·10−15, MATLAB’s backslash command took approximately 0.014 seconds with
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a resulting error of 5.96 · 10−5, and our algorithm took approximately 0.84 seconds
with a resulting error of 2.23 · 10−8.

5. Conclusions. We have presented an iterative method for solving complex-
symmetric linear systems arising in electrical power networks. We extend Gremban,
Miller, and Zagha’s [10] support-tree preconditioner to handle the case of faulted AC
networks, i.e., complex weights and vastly different admittances. In addition to these
extensions, we present a splitting technique that allows us to apply the precondi-
tioner accurately even when the system matrix, and therefore the preconditioner, is
arbitrarily ill conditioned. Our computational results show that this iterative method
works well in practice in reducing the error.

Note that these results can also apply to the sandstone and shale problem of
Vuik [20] and may also apply to interior point methods if we have nullspace informa-
tion.
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