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Abstract. This paper introduces two stabilization schemes for the least squares commutator
(LSC) preconditioner developed by Elman, Howle, Shadid, Shuttleworth, and Tuminaro [SIAM J.
Sci. Comput., 27 (2006), pp. 1651–1668] for the incompressible Navier–Stokes equations. This pre-
conditioning methodology is one of several choices that are effective for Navier–Stokes equations, and
it has the advantage of being defined from strictly algebraic considerations. It has previously been
limited in its applicability to div-stable discretizations of the Navier–Stokes equations. This paper
shows how to extend the same methodology to stabilized low-order mixed finite element approxima-
tion methods.
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1. Introduction. Consider the Navier–Stokes equations

(1.1)
ηut − ν∇2u + (u · grad)u + grad p = f ,

−div u = 0,

on Ω ⊂ R
d, d = 2 or 3. Here, u is the d-dimensional velocity field, which is assumed to

satisfy suitable boundary conditions on ∂Ω; p is the pressure; and ν is the kinematic
viscosity, which is inversely proportional to the Reynolds number. The value η = 0
corresponds to the steady-state problem and η = 1 to the case of unsteady flow.
Linearization and discretization of (1.1) by finite elements, finite differences, or finite
volumes leads to a sequence of linear systems of equations of the form

(1.2)

[
F BT

B − 1
νC

] [
u
p

]
=

[
f
g

]
.
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These systems, which are the focus of this paper, must be solved at each step of a
nonlinear (Picard or Newton) iteration, or at each time step. Here, B and BT are
matrices corresponding to discrete divergence and gradient operators, respectively,
and F operates on the discrete velocity space. For div-stable discretizations, C =
0. For mixed approximation methods that do not uniformly satisfy a discrete inf-
sup condition, the matrix C is a nonzero stabilization operator. Examples of finite
element methods that require stabilization are the mixed approximations using linear
or bilinear velocities (trilinear in three dimensions) coupled with constant pressures,
as well as any discretization in which equal-order discrete velocities and pressures are
specified using a common set of nodes; see, for example, Brezzi and Fortin [4, p. 210].

In recent years, there has been considerable activity in the development of effi-
cient iterative methods for the numerical solution of the stationary and fully implicit
versions of this problem. These are based on new preconditioning methods derived
from the structure of the linearized discrete problem given in (1.2). A complete
overview of the ideas under consideration can be found in the monograph of Elman,
Silvester, and Wathen [7]. The key to attaining fast convergence lies with the effective
approximation of the Schur complement operator

(1.3) S = BF−1BT + 1
νC,

which is obtained by algebraically eliminating the velocities from the system.
One approach of interest is the pressure convection-diffusion preconditioner pro-

posed by Kay, Loghin, and Wathen [10] and Silvester, Elman, Kay, and Wathen [13].
In this method, the Schur complement matrix is approximated as

(1.4) S ≈ MS = ApF
−1
p Qp,

where Qp is the pressure mass matrix associated with the pressure discretization (or
a spectrally equivalent approximation to it), and Ap and Fp are discrete Laplace
and convection-diffusion operators defined on the pressure space. Note that when
we need to make the distinction, we will use a subscript p to indicate operators
defined on the pressure space and a subscript v to indicate operators defined on the
velocity subspace. Although effective for solving the system (1.2), this method has the
drawback of requiring users to provide the discrete operators Ap and Fp. This means
that integration of this idea into a code that models incompressible flow requires a
sophisticated understanding of the discretization and other implementation issues,
something often held only by the developers of the model.

An alternative approach is the least squares commutator (LSC) preconditioner
developed by Elman, Howle, Shadid, Shuttleworth, and Tuminaro [6]. A description
and derivation of this method will be given in section 2. In this case, the approxima-
tion to the Schur complement matrix is derived from purely algebraic considerations
by solving a certain least squares problem. The resulting preconditioning method-
ology is competitive with the pressure convection-diffusion approach, and in some
cases its performance is superior. However, so far this approach has only been shown
to be applicable to the case where C = 0 in (1.2). The main goal of this paper is
to show that the least squares commutator preconditioner can be extended to han-
dle discretizations that require stabilization. This closes a gap in the derivation of
these ideas, and a version of the new method can be also formulated from algebraic
considerations.

An outline of the paper is as follows. Section 2 contains a derivation of the LSC
approximation to the Schur complement operator for div-stable discretizations, and
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section 3 gives a brief outline of stabilization of mixed finite element approximation for
the Navier–Stokes equations. Section 4 presents the main contribution of the paper,
the derivation of new LSC preconditioners applicable to stabilized approximation
methods. Two new methods are derived. One approach is derived by appealing
directly to the issue of stabilization, in which the LSC preconditioner is modified
by adding stabilizing terms to certain unstable components. The other method is
derived by treating “high frequency” and “low frequency” components of the pressure
space separately in a manner reminiscent of the development of multigrid methods;
loosely speaking, the high frequency terms are those that require stabilization. Finally,
section 5 gives the results of numerical experiments that illustrate the effectiveness
of the stabilized LSC preconditioners. Our focus in this work is on steady problems,
although the ideas generalize in a straightforward manner to unsteady flow problems.

2. The least squares commutator preconditioner. In this section, we give
a brief derivation of the LSC method for stable discretizations (C = 0 in (1.2)); addi-
tional details can be found in [6, 7]. The method is based on a notion of approximate
algebraic commuting. Consider the linear convection-diffusion operator

L = −ν∇2 + w · ∇,

where the convection coefficient w is a vector field in R
d. This operator is defined on

the velocity space and derived from linearization of the convection term in (1.1) via
Picard iteration. We will also assume that there is an analogous operator

Lp = (−ν∇2 + w · ∇)p

defined on the pressure space. These operators are used solely for the purpose of
deriving certain matrix preconditioning operators, and we will not be precise about
boundary conditions or function spaces.

Next, consider the commutator of the convection-diffusion operators with the
gradient operator,

(2.1) E = L∇−∇Lp .

When w is smooth or small, we expect this commutator to be small in some sense. If
finite element methods are used to discretize the component operators of E on both
the velocity space and the pressure space, then a discrete version of the commutator
takes the form

E = (Q−1
u F ) (Q−1

u BT ) − (Q−1
u BT ) (Q−1

p Fp),

where Qu and Qp are the velocity mass matrix and pressure mass matrix, respectively.
Assuming that this matrix version of the commutator is also small (i.e., E ≈ 0), then
a straightforward algebraic manipulation leads to the approximation

BF−1BT Q−1
p Fp(BQ−1

u BT )−1 ≈ I.

That is, we have the approximation

(2.2) BF−1BT ≈ BQ−1
u BT F−1

p Qp

to the Schur complement operator of (1.2) arising from stable discretizations. Note
that the term BQ−1

u BT can be viewed as a scaled discrete Laplacian operator; with
this interpretation, the construction of (2.2) represents a particular example of (1.4).
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As noted above, construction of the discrete operator Fp requires information
about the discretization or access to a code that may not be readily available. More-
over, a precise definition of Fp also entails some decisions about boundary conditions;
see [7, 10].

An alternative to constructing Fp this way is to define it algebraically in a way
that minimizes a measure of the discrete version of the commutator. Given two vectors
u and v in the discrete velocity space, the form

(u,v)Qu
= (Quu,v)

defines an inner product that represents a discrete analogue of the continuous L2 inner
product on the velocity space. Let ‖ · ‖Qu

denote the induced norm. We can define
the jth column of the matrix Fp to solve the weighted least squares problem

min ‖ [Q−1
u FQ−1

u BT ]j −Q−1
u BTQ−1

p [Fp]j ‖Qu .

The normal equations associated with this problem are

Q−1
p BQ−1

u BTQ−1
p [Fp]j = [Q−1

p BQ−1
u FQ−1

u BT ]j .

This leads to the following definition of Fp:

Fp = Qp (BQ−1
u BT )−1(BQ−1

u FQ−1
u BT ).

Substitution of this expression into (2.2) then gives an approximation to the Schur
complement matrix:

(2.3) BF−1BT ≈ (BQ−1
u BT ) (BQ−1

u FQ−1
u BT )−1(BQ−1

u BT ).

For most discretizations, the inverse of the velocity mass matrix Q−1
u appearing in this

expression is a dense matrix, so it is not practical to use the matrix on the right-hand
side of (2.3). This difficulty can be resolved by replacing Qu with a diagonal matrix
Q̂u, such as the diagonal part of Qu, that is spectrally equivalent to Qu; see Wathen
[18]. Another approach to avoiding the dense matrix Q−1

u is never to explicitly form
Q−1

u , but to approximate it using an iterative solver. However, this approach would
involve four extra solves with Qu for every application of MS . The Q̂u approximation
leads to the least squares commutator preconditioner for stable discretizations,

(2.4) BF−1BT ≈ MS = (BQ̂−1
u BT ) (BQ̂−1

u FQ̂−1
u BT )−1(BQ̂−1

u BT ).

Use of this preconditioner entails application of the action of the inverse of MS . This
requires solution of two subsidiary problems of the form

(BQ̂−1
u BT )p = q

for p, which is essentially a discrete Poisson equation.

3. Stabilization. Stabilized mixed approximation methods can be found in
many incompressible flow codes. In particular, equal-order finite elements and non-
staggered finite difference grids are computationally convenient and increasingly used
in preference to stable alternatives. The problem with stabilized methods within a
linear algebra setting is that “derived” operators like BQ−1

u BT in (2.3) do not give a
true representation of their continuous analogue. This problem needs to be addressed
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if uniformly effective preconditioning methods with grid-independent convergence are
to be constructed.

We first discuss the following Stokes problem: find eigenvalues and associated
eigenvectors satisfying

(3.1)
−∇2u + grad p = −λ∇2u,

−div u = λp in Ω,

with u = 0 on ∂Ω. Note that there is a zero eigenvalue associated with the null vector
(0, 1).

Let Th denote a subdivision (or triangularization) of the domain Ω. The matrix
analogue of (3.1) derived from finite element discretization on Th is: find pairs {λ, (u

p )}
such that

(3.2)

[
Au BT

B 0

] [
u
p

]
= λ

[
Au 0

0 Qp

] [
u
p

]
.

By eliminating u from (3.2), we see that the pressure component satisfies

(3.3) BA−1
u BT p = λ(λ− 1)︸ ︷︷ ︸

σ

Qp p.

The discrete gradient matrix BT must be rank deficient; specifically, if p = constant,
then σ = λ = 0. It is also known that σ < 1; see Stoyan [17]. An inf-sup stable
approximation is characterized by the requirements that (3.2) and (3.3) each have
only one zero eigenvalue, and that the nonzero eigenvalues of (3.3) be bounded away
from zero independently of the discretization parameter h; see Elman, Silvester, and
Wathen [7, Theorem 5.22]. Thus, if np is the dimension of the discrete pressure space
and the eigenvalues of (3.3) are ordered so that

0 = σ1 ≤ σ2 ≤ σ3 ≤ · · · ≤ σnp < 1,

then inf-sup stability means that σ2 ≥ σ∗ > 0, where σ∗ is independent of h.
Another way of phrasing this property of boundedness of eigenvalues is to say

that the Schur complement matrix BA−1
u BT and the pressure mass matrix Qp are

spectrally equivalent. A glance at the operators producing these matrices reveals
that from a heuristic point of view, this is not a surprise. The pressure mass matrix
is a representation of the identity operator in the discrete pressure space, and the
Schur complement BA−1

u BT is a matrix representation of “-div (div · grad)−1 grad,”
which we might expect to behave like an identity operator. The problem with unsta-
ble discretizations (those not satisfying the inf-sup condition) is that this “expected”
behavior is not manifested. Instability can arise in two different ways: “spurious”
pressure modes {pj}rj=2 with 0 = σ2 = σ3 = · · · = σr, and “pesky” pressure modes
{pk} with σk = O(h) for some set of indices {k}, where h is the characteristic mesh
parameter. Pesky modes are insidious in the sense that they do not affect the solv-
ability of the discrete system and can be detected only when computing solutions on
a sequence of grids. Both types of instability occur in the case of Q1–P0 or Q1–Q1

mixed approximation in R
2 and in R

3. Specifically, for enclosed flow in R
2 it is known

that r = 2 and r = 8 for Q1–P0 and Q1–Q1, respectively. A quantitative descrip-
tion of the pesky modes associated with Q1–P0 can be found in Gresho and Sani [8,
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pp. 686–691]. Fortunately, both types of instability are removed by the stabilization
methods outlined below.

Unstable elements can be stabilized by relaxing the discrete incompressibility con-
straint in a consistent manner. For the Stokes problem, this leads to the introduction
of a nonzero stabilization matrix C in (1.2), as well as the replacement of the zero
matrix in the (2,2)-block in (3.2) by C. The stabilization matrix C should make the
eigenvalues δk of the stabilized Schur complement eigenvalue problem

(3.4) (BA−1
u BT + C)p = δ Qp p

satisfy δ2 ≥ δ∗ > 0 and δnp
< δ∗ < ∞, where δ∗ and δ∗ are independent of the

discretization mesh. It is expected that both these constants have magnitudes on
the order of 1. We discuss the cases of continuous and discontinuous pressure ap-
proximation separately. The stabilization methods that we consider are described in
more detail in Elman, Silvester, and Wathen [7, section 5.3]. An important feature
of these methods is that they are “parameter-free.” Alternative methods exist, but
these involve one or more “user-defined” parameters that typically have to be well
chosen in order to get good results.

3.1. Lowest-order approximation (P1–P0, Q1–P0). This methodology was
introduced by Kechkar and Silvester [12]. It constructs a stabilization operator using
a nonoverlapping macroelement partitioning Mh of the subdivision Th. One simple
way to achieve this in R

2 is to construct Th by uniformly refining a coarse mesh Th/2,
subdividing every element into four smaller triangles or rectangles. In this case, Mh =
Th/2, and the macroelements all consist of four adjoining elements. If this is done
in R

3, then macroelements consist of twelve adjoining tetrahedra or eight adjoining
bricks. A different element aggregation strategy must be adopted to generate Mh in
an adaptive refinement setting; see Kay and Silvester [11] for details.

Given a suitable partitioning Mh, the pressure stabilization operator penalizes
pressure jumps across interior element boundaries (edges in R

2, faces in R
3) within

each macroelement:

(3.5) c(macro)(ph, qh) =
1

4
|M|

∑
e∈ΓM

〈[[ph]]e, [[qh]]e〉Ē .

Here, |M| is the mean element area within the macroelement, the set ΓM consists of
interior element edges/faces in M, [[·]]e is the jump across edge/face e, and 〈p, q〉Ē =
1

|E|
∫
E
pq. For example, if a uniform grid of rectangular hx×hy elements is decomposed

into 2 × 2 macroelements, then the 4 × 4 macroelement contribution matrix is

(3.6) C(macro) =
hxhy

4

⎡
⎢⎢⎢⎣

2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2

⎤
⎥⎥⎥⎦ .

Using (3.5), a block diagonal stabilization matrix C is then assembled that has the
contributing macroelement stabilization matrices as its diagonal blocks. Note that the
null space of C(macro) consists of constant vectors, and this means that the assembled
stabilization matrix again has a null space that is consistent with (3.3). An important
property of mixed methods based on discontinuous pressure is that of elementwise
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Fig. 3.1. 2 × 2 Q1–P0 subdivision of a square domain, with four pressure nodes (numbered)
and one interior velocity node (solid).

mass conservation:

(3.7) 0 =

∫
k

∇ · uh =

∫
∂k

uh · �n.

Although elementwise mass conservation is lost in the jump stabilized formulation,
local incompressibility is retained at the macroelement level:

(3.8) 0 =

∫
M

∇ · uh =

∫
∂M

uh · �n.

It is possible to develop a stabilization matrix that penalizes all the interelement
pressure jumps rather than just those within macroelements [9]. This would eliminate
the need for a data structure that keeps track of macroelements, but it would also
sacrifice local mass conservation as given in (3.7) or (3.8).

The new versions of the LSC preconditioners will be developed by mimicking some
properties of this strategy for stabilizing the discrete Stokes operator. To motivate
the ideas used for preconditioning, we look more closely at the Stokes operator for the
case of a square domain Ω that is divided into a 2 × 2 grid of square elements of size
h2, with the Q1–P0 approximation; see Figure 3.1. In this case, there are four pressure
nodes, located at element centers, and one velocity node not on the boundary, located
at the juncture where the four elements meet. For this simple example, with a single
node for each velocity component, the discrete Laplacian on the velocity space is the
2 × 2 matrix

(3.9) Au =
8

3

[
1 0

0 1

]
,

and the discrete gradient operator is

(3.10) BT =

[
BT

x

BT
y

]
=

[
−h/2 h/2 h/2 −h/2

−h/2 −h/2 h/2 h/2

]
.

This results in the Schur complement matrix

(3.11) S = BA−1
u BT =

3h2

16

⎡
⎢⎢⎢⎣

1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

⎤
⎥⎥⎥⎦ ,
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whose eigenvalues and eigenvectors are

(3.12)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0,

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦

︸ ︷︷ ︸
q1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0,

⎡
⎢⎢⎣

1
−1

1
−1

⎤
⎥⎥⎦

︸ ︷︷ ︸
q2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3h2

8
,

⎡
⎢⎢⎣

1
1

−1
−1

⎤
⎥⎥⎦

︸ ︷︷ ︸
q3

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3h2

8
,

⎡
⎢⎢⎣

1
−1
−1

1

⎤
⎥⎥⎦

︸ ︷︷ ︸
q4

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

There is a zero eigenvalue associated with the “checkerboard mode” q2, and q2 is the
source of instability in the system—if any vector p is a pressure solution of a discrete
Stokes system defined on Ω, then p+αq2 is also a solution. The stabilization operator
C(macro) of (3.6) has the same eigenvectors as S, with eigenvalues h2, h2/2, and h2/2
for q2, q3, and q4, respectively. The pressure mass matrix is Qp = h2I. Hence, the
nonzero eigenvalues of the generalized problem (3.4) are given by

δ2 = 1, δ3 = 7/8, δ4 = 7/8.

In particular, in the stabilized system, δ2 = 1 replaces σ2 = 0, and stabilization makes
the influence of q2 commensurate with that of q3 and q4. Each of these three modes
contributes to the pressure solution in a manner consistent with their presence in
the right-hand-side vector, which ensures stability at the macroelement level. Global
stability on more general domains is established by demonstrating a macroelement
connectivity condition whereby an inf-sup condition is shown to hold on the union of
patches composed of macroelements; see Stenberg [16] or Boland and Nicolaides [3]
for a rigorous statement.

3.2. Equal-order approximation (P1–P1, Q1–Q1). This methodology was
developed by Bochev, Dohrmann, and Gunzburger [2]. Motivated by the rigorous
error analysis of mixed methods based on continuous pressure approximation, the
deficiency of equal-order approximation can be associated with the mismatch between
the discrete divergence of the velocity field (a subspace of the space P0 of discontinuous
piecewise constant functions) and the actual discrete pressure space P1 or Q1. To get
into the “right space,” a suitable pressure stabilization operator is needed, namely,

(3.13) c(proj)(ph, qh) = (ph − Π0ph, qh − Π0qh),

where Π0 is the L2 projection from the pressure approximation space into the space
P0. Note that this projection is defined locally: Π0ph is a constant function in each
element k ∈ Th. It is determined simply by local averaging,

(3.14) Π0ph|k =
1

|k|

∫
k

ph for all k ∈ Th.

It is clear that the associated grid stabilization matrix C can be assembled from
element contribution matrices in the same way as a standard finite element stiffness
matrix. For example, in the case of a rectangular grid in R

2 the 4 × 4 contribution
matrix C(proj) is given by

(3.15) C(proj) = Q− qqT |�k|,
where |�k| is the area of element k, Q is the 4×4 element mass matrix for the bilinear
discretization, and q = [1/4, 1/4, 1/4, 1/4]T is the local averaging operator. Note that the
null space of C(proj) consists of constant vectors, and this means that the assembled
stabilization matrix has a null space that is consistent with (3.3); that is, the constant
vector is a null vector in both cases.
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4. Stabilized LSC. The LSC preconditioner (2.4) does not handle stabilized
approximations of the Navier–Stokes equations. As suggested in the previous section,
the difficulty comes from the “derived” terms BQ̂−1

u BT and BQ̂−1
u FQ̂−1

u BT figuring
in the definition of the preconditioning operator. In this section, we show how to
modify the LSC preconditioner for stabilized approximations. We consider two ap-
proaches. First, we present stabilized versions of the two component terms, which
are constructed by analogy with the stabilization matrix C of the previous section.
Second, we show that it is possible to vary this approach in a manner that does not
require knowledge of the underlying finite element discretization. This enables the
construction of a stabilized preconditioner using essentially algebraic considerations,
as in the derivation of the original operator of (2.4).

4.1. Element-based stabilized LSC. Stabilization strategies for the Stokes
operator and the associated Schur complement BA−1

u BT derive from the eigenvalue
problem (3.1) and its discrete analogue (3.2). For the matrix BQ−1

u BT , the analogous
continuous problem is the potential flow problem obtained by setting η = 1 and ν = 0
in (1.1): find eigenvalues and associated eigenvectors satisfying

(4.1)
u + grad p = λu,

−div u = −λ∇2p in Ω,

with u = 0 on ∂Ω. As for the analogous eigenvalue problem for the Stokes opera-
tor, (3.1), there is a zero eigenvalue with associated null vector (0, 1). The discrete

analogue of (4.1) is: find pairs
{
λ,
[
u
p

]}
such that

(4.2)

[
Qu BT

B 0

] [
u
p

]
= λ

[
Qu 0

0 Ap

] [
u
p

]
.

Here, Ap is a discrete Laplacian defined on the pressure space; no boundary conditions
are given for the pressure, so that Ap will have the form arising when a Neumann
condition is specified. As in (3.3), the pressure components p are eigenvectors of an
eigenvalue problem involving the (derived) Schur complement1

(4.3) BQ−1
u BT p = σAp p.

Note that the presence of the pressure Laplacian on the right-hand side of (4.1) and
of Ap in (4.2) stems from the fact that for stable discretizations the eigenvalues of
(4.3) satisfy

0 < σ∗ ≤ σ2 ≤ σ3 ≤ · · · ≤ σnp
≤ σ∗ < ∞,

where σ∗ and σ∗ are independent of the subdivision mesh. That is, the Schur com-
plement BQ−1

u BT is spectrally equivalent to a discrete Laplacian on the pressure
space. This is also related to an alternative inf-sup condition; see Elman, Silvester,
and Wathen [7, pp. 272–273].

For unstable approximations like Q1–Q0 and Q1–Q1, however, this alternative
inf-sup condition will not be satisfied. In R

2, the spurious pressure modes {pj}8
j=2

1Although this problem is more complicated than (3.3) in that both BQ−1
u BT and Ap have a

constant vector in their null spaces, this does not play any significant role in the derivation of a
preconditioner.
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cause (4.3) to have zero eigenvalues: 0 = σ2 = · · · = σ8. Moreover, pesky pressure
modes {pk} give rise to O(h) eigenvalues in (4.3). What this means is that (4.2) is
not an accurate approximation to (4.1), and BQ−1

u BT as well as its approximation
BQ̂−1

u BT suffer from exactly the same instabilities as those arising with the Stokes
operator.

The way to fix this is to define a stabilization matrix C1 in a manner analogous
to what is done for the Stokes operator in section 3. That is, we construct a stabilized
version of the eigenvalue problem (4.2) given by

(4.4)

[
Qu BT

B −C1

] [
u
p

]
= λ

[
Qu 0

0 Ap

] [
u
p

]
,

in such a way that the eigenvalues of the resulting Schur complement problem,

(4.5) (BQ−1
u BT + C1)p = δAp p,

satisfy δ2 ≥ δ∗ > 0 and δnp < δ∗ < ∞ for any conceivable grid.
To see how to construct such a matrix C1, first consider a 2 × 2 element grid as

in section 3.1; see Figure 3.1. For Q1 velocities, the discrete Laplacian appearing in
the Stokes system is replaced in (4.4) by a velocity mass matrix

(4.6) Qu = Q̂u =
4h2

9

[
1 0

0 1

]
.

For P0 pressures (see (3.10)), the Schur complement is

BQ−1
u BT =

9

8

⎡
⎢⎢⎢⎣

1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

⎤
⎥⎥⎥⎦ = BQ̂−1

u BT .

Up to scaling with respect to the element area, this is essentially the same as the
analogous Schur complement (3.11) for the Stokes operator, and it has eigenvalues
and eigenvectors given by

{0, q1}, {0, q2}, {9/4, q3}, {9/4, q4}.

As above, the zero eigenvalue corresponding to the checkerboard mode q2 is a source
of instability. Adding the “unscaled” macroelement stabilization matrix

(4.7) C1 =
1

4

⎡
⎢⎢⎢⎣

2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2

⎤
⎥⎥⎥⎦

to BQ−1
u BT will make the influence of the rogue eigenvector q2 commensurate with

q3 and q4 in the Schur complement BQ−1
u BT +C1. In particular, BQ−1

u BT +C1 has
an eigenvalue of unity corresponding to q2.

Consider the impact of this stabilization operator on the generalized eigenvalue
problem (4.5). The discrete Laplacian Ap for a P0 approximation is constructed by
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combining jump operators defined on interelement edges or faces. For details, see
Elman, Silvester, and Wathen [7, pp. 352ff]. Specifically, for a uniform square grid,
we have that

(4.8) Ap = [ap,ij ], ap,ij =
∑

E∈Eh,Ω

〈[[ψj ]], [[ψi]]〉Ē ,

where {ψj} is the basis of the P0 approximation and Eh,Ω is the set of interior edges.
For the 2 × 2 element grid in Figure 3.1, this leads to

Ap =

⎡
⎢⎢⎢⎣

2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2

⎤
⎥⎥⎥⎦.

That is, Ap = 4C1, and it then follows that the generalized problem (4.5) has nonzero
eigenvalues

δ2 = 1/4, δ3 = 11/8, δ4 = 11/8.

This discussion of the 2 × 2 macroelement shows what is needed in general to
stabilize an unstable discretization of the potential operator and thereby identify the
matrix C1 needed to stabilize the factor BQ̂−1

u BT appearing in (2.4). The stabilization
operator should be constructed in a manner analogous to what is done for Stokes
problems, but scaled appropriately with respect to the mesh size. Thus, the analogue
of (3.5) is given by omitting the scaling by mean element area, to give the form

(4.9) c
(macro)
1 (ph, qh) =

1

4

∑
e∈ΓM

〈[[ph]]e, [[qh]]e〉Ē .

For equal-order approximation (section 3.2), we rewrite c(proj) of (3.13) as a sum of
integrals over the elements,

c(proj)(ph, qh) =
∑
k∈Th

(ph − Π0ph, qh − Π0qh)k ,

and then scale the local integrals by the inverse of the element area to give

(4.10) c
(proj)
1 (ph, qh) =

∑
k∈Th

1

|k| (ph − Π0ph, qh − Π0qh)k .

This means that the analogue of (3.15) for the 4 × 4 element matrix is

C
(proj)
1 =

1

|�k|
Q− qqT .

We now turn to the second problematic component of the LSC preconditioner
(2.4), the matrix BQ̂−1

u FQ̂−1
u BT . We can see what is needed to stabilize this term by

again considering the 2 × 2 macroelement case. In particular, on a square grid with
Q1 discrete velocities on elements of size h2,

Q−1
u FQ−1

u =
81

16h4
(νAu) ,
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where Qu is given by (4.6), Au is as in (3.9), and the viscosity parameter ν derives
from the discrete linearized version of (1.1). Then

BQ−1
u FQ−1

u BT =
ν

h4
36

(
BA−1

u BT
)
.

The essential difference from the Schur complement (3.11) for the Stokes operator is
the scaling ν/h4, that is, the viscosity parameter divided by the square of the element
area. For the stabilization to be of commensurate influence, this leads to the scaled
forms

(4.11) c
(macro)
2 (ph, qh) =

ν

4 |M|
∑

e∈ΓM

〈[[ph]]e, [[qh]]e〉Ē

for the lowest-order case and

(4.12) c
(proj)
2 (ph, qh) =

∑
k∈Th

ν

|k|2 (ph − Π0ph, qh − Π0qh)k

for the equal-order approximation case. Each of these forms generates an associated
stabilization matrix C2.

In summary, the stabilized LSC preconditioner is

(4.13) M−1
S = (BQ̂−1

u BT + C1)
−1(BQ̂−1

u FQ̂−1
u BT + C2)(BQ̂−1

u BT + C1)
−1,

where C1 and C2 are defined by (4.9)/(4.11) or (4.10)/(4.12). We hypothesise that
this strategy would work for other unstable mixed approximations: if a stabilization
operator C is constructed using some local element assembly process, then C1 can be
defined by scaling the local matrices by the inverse of the local element size, and C2

can be defined by scaling by the viscosity times the square of the inverse of the local
element size.

4.2. Algebraically stabilized LSC. A feature of the LSC preconditioner (2.4)
for div-stable discretizations is that it is defined from purely algebraic considerations,
using matrices that arise naturally from finite element discretization of the Navier–
Stokes equations. In particular, its construction does not depend on knowledge of the
underlying grid, which may be unavailable to the developer of a “solver” routine. This
feature does not carry over to the preconditioner of (4.13): the stabilization matrices
C1 and C2 are defined using local element information, and they are needed only for
the preconditioner. In this section, we introduce a stabilized preconditioner that does
not use local element information. For this, a modification is made to the “Laplacian
component” of the preconditioner, BQ̂−1

u BT , in a manner analogous to what was
done in section 4.1 but using the existing stabilization matrix C. An extra term is
added to compensate for the singularity of the operator BQ̂−1

u FQ̂−1
u BT . The resulting

preconditioner is a sum of two preconditioners, and it bears some resemblance to an
additive Schwarz method; see Smith, Bjørstad, and Gropp [15]. Specifically,

(4.14) M−1
S = M−1

Sγ
+ M−1

Sα
,

where the two parts of the preconditioner are given by

M−1
Sγ

= (BQ̂−1
u BT + γC)−1(BQ̂−1

u FQ̂−1
u BT )(BQ̂−1

u BT + γC)−1

and

(4.15) M−1
Sα

= αD−1,
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where D is the diagonal of (B diag(F )−1BT + 1
νC) and diag(F ) is the diagonal part

of F . This approach requires choices for the scalars γ and α.

These parameters will be determined using Fourier analysis. This requires a
simplified statement of the problem. In particular, we will explore a steady version of
(1.1) where the nonlinear term (u·grad)u is replaced by a linear one (w·grad)u (Oseen
linearization), where w is constant. The simplified problem is posed on a square in
two dimensions or a cube in three dimensions with periodic boundary conditions,
and the discretization is assumed to be on a uniform (n × n or n × n × n) grid
in which the number of velocity components in each coordinate direction is equal
to the total number of pressure components. This would be the case, for example,
in a Q1–Q1 or Q1–P0 discretization on a periodic mesh. We emphasize that these
assumptions are made only to develop the stabilization by defining the parameters α
and γ. These restrictions coincide with standard suppositions associated with Fourier
stability analysis. Due to the local nature of stabilization, Fourier stability analysis
often accurately describes more general problems even though it is formally valid only
in limited situations. In section 5, the resulting preconditioner M−1

S will be applied
to problems that are not periodic and do not have constant coefficient stencils.

The Oseen linearization leads to the operator Q̂−1
u F with block form in two di-

mensions2

(4.16) Q̂−1
u F =

[
F̂ 0

0 F̂

]
= I2 ⊗ F̂ ,

where the block structure arises by grouping the velocities in each coordinate direction
and I2 refers to a 2×2 identity matrix. Notice that we have absorbed the blocks of Q̂−1

u

into F̂ . Similarly, B has the block form [Bx By], where (Bx)T and (By)T correspond
to the derivative operator in the x and y coordinate directions. The assumptions of
periodicity and constant coefficients imply that each of the matrices F̂ , Bx, By, C,

and the product BQ̂−1
u B

T
commutes with one other and that they are all diagonalized

by the Fourier transform. Specifically,

XF̂XH = diag(f(θx,θy)),(4.17)

XBQ̂−1
u BTXH = diag(a(θx,θy)),(4.18)

XCXH = diag(c(θx,θy)),(4.19)

where X is a matrix whose columns correspond to Fourier vectors and diag(g(θx,θy))
is the diagonal matrix with entries g(θx,θy) on the diagonal. The Fourier components
that make up X have the form

(4.20)
1

n
e2πiθxjx/ne2πiθyjy/n,

where θx and θy are the frequencies in each coordinate direction, with |θx| = 1, . . . , n/2
and |θy| = 1, . . . , n/2, and jx and jy are the grid indices in each coordinate direction,
with jx = 1, . . . , n and jy = 1, . . . , n. For convenience, we will use the symbol θ to
represent a generic frequency (θx, θy); i.e., we will write c(θx,θy) as cθ.

2The analysis for three-dimensional problems is identical.
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Under these assumptions, the Fourier-transformed Schur complement is

XSXH = XBF−1BTXH +
1

ν
XCXH

= X[Bx By] (I2 ⊗ F̂−1)Q̂−1
u BTXH +

1

ν
XCXH

= XF̂−1[Bx By]Q̂−1
u BTXH +

1

ν
XCXH

= (XF̂−1XH)(XBQ̂−1
u BTXH) +

1

ν
XCXH ,

where we have used the commuting property of F̂−1, Bx, and By and the fact that
X is a unitary matrix. Thus, the Schur complement is diagonalized by the Fourier
transform, and the transformed Schur complement has diagonal elements given by

(4.21) sθ = f−1
θ aθ +

1

ν
cθ.

Here, fθ is the symbol for a convection-diffusion operator, aθ is from the (derived)
Laplacian BQ̂−1

u BT , and cθ is from the stabilization operator C. A similar exercise
leads to the Fourier symbol mθ for the Schur complement preconditioner M−1

S :

(4.22) mθ = fθaθ(aθ + γcθ)
−2 + αd−1,

where the scalar d−1 corresponds to the eigenvalue of the constant coefficient matrix
D−1(= d−1I). Thus, the preconditioned system SM−1

S can be diagonalized by a
Fourier transform, leading to an expression for the eigenvalues of SM−1

S :

(4.23) sθmθ = a2
θ(aθ + γcθ)

−2 +
1

ν
fθaθcθ(aθ + γcθ)

−2 + αsθd
−1.

Analytic trigonometric definitions of fθ, cθ, and aθ can be used for particular
constant coefficient stencils to obtain a function involving stencil coefficients, θ, γ,
and α. For example, if the one-dimensional convection-diffusion operator is discretized
using centered finite differences with mesh spacing h, we obtain

fθ = ih sin(2πθh) + 4ν sin(2πθh/2)2.

In principle, optimal algorithm parameters could be determined by finding the values
of γ and α that minimize the maximum of sθmθ over all θx and θy. These expressions,
however, are associated with particular constant coefficient stencils and are quite
complex.

Instead, we further simplify the analysis to find computable expressions for α and
γ that lead to a practical method, although the parameters may not be optimal. We
use the following observations:

1. The first term of (4.23) corresponds to the main part of the preconditioned
operator. For a stable discretization, this is the only term present, and sθmθ is
identically 1 for all θ. (Thus, this is a perfect preconditioner for the periodic
problem; see Elman [5].) For stabilized problems, any positive choice of γ
ensures that this term is well defined and bounded above by one. Therefore,
we need not be concerned about the first term of (4.23) becoming large.
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Fig. 4.1. Magnitude of the eigenvalues of the preconditioned linear system as a function of z in
one dimension with α = 0, constant wind (ν = 0.1), constant coefficient stencil, periodic boundary
conditions, and N = 100, 000. The left side of each plot corresponds to low frequencies and the right
corresponds to higher frequencies.

2. The middle term of (4.23) comes from the interaction of the stabilizing term
of the discrete Schur complement and the preconditioner. If an unstabilized
preconditioner (with γ = 0) is applied to a stabilized problem, then this term
has the form 1

ν fθcθ/aθ. For spurious modes, standard stability arguments
show that neither fθ nor cθ will vanish. An unstabilized preconditioning
operator does not handle spurious modes, and the denominator aθ will be
zero in such cases. A positive γ is needed to remove this singularity and keep
this term under control.

3. The first two terms of (4.23) are zero for spurious modes. The third term is
the symbol for a scaled Schur complement. It will be bounded for all modes,
and, moreover, we choose α so that this term is approximately one for spurious
modes. This will ensure that the symbol sθmθ for the preconditioned operator
is bounded below away from 0.

Using these observations, we can determine choices of γ and α independently, choosing
γ to force the (stabilized) middle term to be bounded above, and choosing α to bound
the third term below for modes where the first two terms are zero.

Let us introduce the variable zθ = aθ/cθ. For values of θ corresponding to spurious
and pesky modes, cθ 
= 0 so that zθ is well defined in this regime. To provide insight
into how γ should be defined, in Figure 4.1 we plot the magnitude of sθmθ as a function
of z for a one-dimensional problem with α = 0. In this example, the matrix C is a
standard central difference Laplacian scaled by one fourth, B is a standard central
difference gradient operator, and F is a standard convection-diffusion operator. The
“alternating pressure” function is the only spurious mode in this case. The left side of
each plot corresponds to low frequencies. The ratio zθ tends toward a constant as the
lowest frequencies are approached. (In this case the constant is four, due to the scaling
of C.) For γ = 0, the function is unbounded as the spurious mode is approached. As γ
is increased, the peak moves to the left and becomes smaller in magnitude. In fact, for
these computations it is easy to verify that the location of the peaks is approximately
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equal to γ. For example, when γ = 0.04 in the “small γ” picture on the left side of
Figure 4.1, the peak occurs at z = 0.04003932, and when γ = 0.6 in the “intermediate
γ” picture on the right, the peak occurs at z = 0.6000749.

Since the first term (4.23) is bounded, we derive an explicit value of γ using the
middle term. Rewriting this term as a function of fθ and zθ gives

(4.24)
fθzθ/ν

(zθ + γ)2
.

Consider an approximation obtained by replacing fθ with a constant, for which we
use

(4.25) fθ = ρ(F̂ ) .

With this choice, we can view (4.24) as a function of the single parameter zθ. Although
the approximation (4.25) may appear crude, it is important to keep in mind that fθ
does not vary substantially compared to other terms in (4.24) near the small set
of frequencies corresponding to the sharp peak in (4.24) (when γ is small). This
approximation was implicitly made in the previous section by exclusively considering
2 × 2 macroelements.

Thus, we will use the maximal value of

(4.26) g(zθ) =
ρ(F̂ )zθ/ν

(zθ + γ)2

to determine γ. Solving for g′(zθ) = 0 reveals that the maximum occurs at z∗ = γ.
Notice that γ = 0 gives z∗ = 0, which is appropriate. To obtain an expression for γ,
we evaluate (4.23) at z∗ = γ and set it equal to one. That is, we are choosing γ so
that

(4.27) λ(SM−1
S (z∗)) ≈ 1.

This forces the preconditioned linear system to be well behaved for Fourier modes
corresponding to z∗ and leads to the following formula:

(4.28) γ =
ρ(F̂ )

3ν
.

Next we address the choice of the parameter α in (4.15). Notice that when aθ
is zero for a nonzero γ, (4.23) is zero (corresponding to the far right of the plots
in Figure 4.1). We use α in the component M−1

Sα
of the preconditioner (see (4.14)–

(4.15)) to fix this. As with the parameter γ, we want to find the smallest α that
makes the eigenvalues of SM−1

S approximately equal to one. To do this, we find the
largest value of sθ/d and set α equal to its reciprocal. Unfortunately, doing this in
the most straightforward way involves the Schur complement, which we do not want
to compute. In the high frequency case, we can approximate F with diag(F ) (an
approximation similar to (4.25)). We therefore take α to be

(4.29) α =
−1

ρ(SD−1)
=

−1

ρ(B diag(F )−1BTD−1)
,

where, as before, D is the diagonal of (B diag(F )−1BT + 1
νC) and diag(F ) is the

diagonal part of F .
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We end this section with a simple adaptation for nonuniform meshes, where
Fourier analysis is not applicable. We note that some new analytic tools developed
in [1] offer an alternative approach for developing and analyzing preconditioners for
problems on nonuniform grids. The matrix C is defined with the intent of stabilizing
BF−1BT . The method we have developed in this section for uniform meshes uses
this same matrix, scaled by γ, to stabilize the (different) Schur complement operator
BQ̂−1

u BT . We have seen in section 4.1 that, for nonuniform meshes, stabilization of
the latter operator takes into account the local element area, and such information
cannot be incorporated into a single global scalar. To compensate for spatial varia-
tion, we define a diagonal matrix Dr whose elements are equal to the (componentwise)
ratio of the diagonal entries of BQ̂−1

u BT to the diagonal entries of C. We then take
M−1

S to be

M−1
S = (BQ̂−1

u BT + γ̃D
1
2
r CD

1
2
r )−1(BQ̂−1

u FQ̂−1
u BT )(BQ̂−1

u BT + γ̃D
1
2
r CD

1
2
r )−1

+ αD−1,(4.30)

where γ̃ = γ/‖diag(Dr)‖∞ and α is given by (4.29). In the case of uniform mesh
and constant coefficients, Dr is just a scaled identity; its introduction has no effect
on the preconditioner, and we recover (4.14). The idea behind Dr is that the amount
of dissipation added to a row of BQ̂−1

u BT should be proportional to the size of the
diagonal of BQ̂−1

u BT . This can be roughly accomplished by scaling C such that its
diagonal variations mirror those of BQ̂−1

u BT .

5. Numerical results. In this section,we present the results of numerical exper-
iments with the stabilized versions of the LSC preconditioner described in section 4.3

We consider two benchmark problems on domains depicted in Figure 5.1:

1. Flow over a backward facing step. The steady version of (1.1) (η = 0) is posed
on a step-shaped domain with boundary conditions consisting of a parabolic
velocity profile

0 5

0

1

−1 −1 0 1
−1

0

1

Fig. 5.1. Domains and samples of streamlines for the backward facing step with Re = 100 (left)
and driven cavity problem with Re = 200 (right).

3It is not our intention in this study to compare the LSC preconditioner with the pressure
convection-diffusion method of (1.4). See [6], [7, Chapter 8] for such comparisons, where it is observed
that each of these has some advantages with respect to the other.
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u1 = 4y(1 − y), u2 = 0

at the inflow x = −1, no-flow (zero velocity) conditions on the horizontal
walls, and a Neumann condition

ν
∂u1

∂x
− p = 0,

∂u2

∂x
= 0

at the outflow boundary x = 5.
2. Driven cavity flow. This enclosed flow problem in a square has no-flow condi-

tions on the bottom, left, and right boundaries, and the regularized condition

u1 = 1 − x4, u2 = 0

modeling the moving cavity lid.
The backward facing step is discretized on a uniform grid of square finite elements,

where the grid is such that the rectangle enclosing the step would contain a uniform
n × 3n grid of elements of width h = 2/n. The cavity is discretized on an n × n
rectangular element grid; this problem is studied using both uniform grids (of width
h = 2/n) and nonuniform stretched grids with more points concentrated near the
domain boundaries. The discrete problems were generated using the ifiss software
package developed by Silvester, Elman, and Ramage [14].

Details of the computations are as follows. For each problem, the nonlinear
algebraic system derived from discretization of the steady Navier–Stokes equations
was solved by Picard iteration [7] so that the nonlinear residual satisfies∥∥∥∥∥

[
f −

(
F (u)u + BT p

)
g − (Bu − Cp)

]∥∥∥∥∥ ≤ 10−5

∥∥∥∥
[
f
g

]∥∥∥∥ .
The linear system for the correction that arises from the next Picard step is

(5.1)

[
F (u) BT

B −C

] [
Δu
Δp

]
=

[
f̂
ĝ

]
,

where the right-hand side is the nonlinear residual. The results reported in this section
correspond to the solution of such systems. We denote the system (5.1) as Ax = b
and report iteration counts for preconditioned GMRES to satisfy the tolerance

‖b−Axk‖2 ≤ 10−6‖b‖2,

with zero initial iterate.
Tables 5.1, 5.2, and 5.3 show the results for the element-based stabilized LSC

preconditioner, for various Reynolds numbers and grid sizes. Here Re = 2/ν. Each of
these tables shows on the left the iteration counts required when the stabilized LSC
preconditioner (4.13) is applied to problems arising from the (stabilized) Q1–Q1 and
Q1–P0 discretizations described in section 3. On the right, they show the analogous
counts when the LSC preconditioner (2.4) is used with a stable discretization, Q2–
Q1, which consists of biquadratic velocities and bilinear pressures. The main point to
observe here is that for each of the problems, the trends in iteration counts are the
same for the three discretizations. In particular, the stabilization strategies introduced
in section 4 lead to methods whose performance is the same as when no stabilization
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Table 5.1

Iteration counts for element-based LSC-preconditioned GMRES applied to the backward facing
step on a uniform 2n × 3 · 2n grid, for three choices of elements.

Stabilized Stable
Q1 −Q1 Q1 − P0 Q2 −Q1

n 4 5 6 7 4 5 6 7 4 5 6 7
Re=10 12 15 20 28 11 15 21 31 11 15 19 23

Re=100 19 17 20 29 17 16 22 32 18 17 21 29
Re=200 32 27 20 27 26 18 21 30 30 24 22 29

Table 5.2

Iteration counts for element-based LSC-preconditioned GMRES applied to the driven cavity
problem on a uniform 2n × 2n grid, for three choices of elements.

Stabilized Stable
Q1 −Q1 Q1 − P0 Q2 −Q1

n 5 6 7 5 6 7 5 6 7
Re=10 11 15 20 12 16 22 11 16 18

Re=100 17 19 25 17 21 28 16 21 27
Re=500 42 34 31 36 30 32 36 34 37

Re=1000 63 60 42 51 50 36 62 55 45

Table 5.3

Iteration counts for element-based LSC-preconditioned GMRES applied to the driven cavity
problem on a nonuniform 2n × 2n grid, for three choices of elements.

Stabilized Stable
Q1 −Q1 Q1 − P0 Q2 −Q1

n 4 5 6 7 4 5 6 7 4 5 6 7
Re=10 14 18 25 34 13 17 25 37 12 18 24 31

Re=100 21 31 41 53 19 26 37 51 17 26 37 53
Re=500 35 43 68 101 31 36 54 80 29 45 67 97

Re=1000 47 61 77 118 41 49 60 90 41 63 92 132

Table 5.4

Iteration counts for algebraic LSC-preconditioned GMRES applied to the backward facing step
on a uniform 2n × 3 · 2n grid, two stabilized elements.

Stabilized
Q1 −Q1 Q1 − P0

n 4 5 6 7 4 5 6 7
Re=10 22 22 25 29 16 18 26 37

Re=100 28 30 32 36 22 24 27 38
Re=200 30 30 32 35 26 28 29 37

is required. This conclusion is further substantiated in Figure 5.2, which plots the
residual norm through the course of the GMRES iteration for two of these examples,
corresponding to the backward step with n = 5 and Re = 100 and the cavity on a
nonuniform grid with n = 5 and Re = 500. In particular, these results indicate that
the weights given to the stabilization operators C1 and C2 are appropriate.

Tables 5.4, 5.5, and 5.6 show the iteration counts required when the same set of
problems are solved with preconditioned GMRES using the “algebraic” versions of
the stabilized LSC preconditioner described in section 4.2. These results should be
compared with those in Tables 5.1–5.3. They indicate that the algebraic approach is
highly competitive with the element-based method: it tends to be somewhat slower
for the finest meshes but faster in cases with coarse mesh and large Reynolds numbers.
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Fig. 5.2. Performance of element-based LSC-preconditioned GMRES on two benchmark prob-
lems. Left: backward facing step, Re = 100, n = 5. Right: driven cavity, Re = 500, n = 5,
nonuniform grid.

Table 5.5

Iteration counts for algebraic LSC-preconditioned GMRES applied to the driven cavity problem
on a uniform 2n × 2n grid, for two stabilized elements.

Stabilized
Q1 −Q1 Q1 − P0

n 5 6 7 5 6 7
Re=10 17 18 22 18 23 33

Re=100 27 30 32 22 28 40
Re=500 37 42 45 32 36 42

Re=1000 43 49 56 41 44 52

Table 5.6

Iteration counts for algebraic LSC-preconditioned GMRES applied to the driven cavity problem
on a nonuniform 2n × 2n grid, for two stabilized elements.

Stabilized
Q1 −Q1 Q1 − P0

n 4 5 6 7 4 5 6 7
Re=10 20 25 34 50 20 27 40 68

Re=100 26 34 46 67 24 30 48 79
Re=500 34 38 59 99 34 36 57 100

Re=1000 35 47 63 107 41 46 61 107

Finally, we investigate the sensitivity of the linear solve to our choices of the
α and γ parameters and the matrix D in the “algebraic” preconditioner. There
is little sensitivity to the use of diag(F ) versus F in (4.29) or in the matrix D in
(4.15) and (4.29). In practice, we have found that replacing diag(F ) with the full F
matrix in the algebraic preconditioner has little effect on iteration counts. However,
there is a more noticeable effect from other approximations in our choices of α and
γ. This can be seen in Tables 5.7 and 5.8, where we ran a simple optimization
loop over α and γ with initial values taken to be those determined by the Fourier
analysis, minimizing with respect to iteration count. Table 5.7 displays the lowest
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Table 5.7

Iteration counts for optimized algebraic LSC-preconditioned GMRES applied to the backward
facing step on a uniform 2n × 3 · 2n grid, two stabilized elements.

Stabilized
Q1 −Q1 Q1 − P0

n 4 5 6 7 4 5 6 7
Re=10 20 19 18 19 15 16 16 17

Re=100 28 30 32 35 22 23 25 28
Re=200 29 30 32 34 26 26 28 30

Table 5.8

Iteration counts for optimized algebraic LSC-preconditioned GMRES applied to the driven cavity
problem on a uniform 2n × 2n grid, for two stabilized elements.

Stabilized
Q1 −Q1 Q1 − P0

n 5 6 7 5 6 7
Re=10 15 13 13 14 14 14

Re=100 26 29 29 22 24 27
Re=500 37 40 42 32 36 37

Re=1000 41 46 52 40 44 46

iteration count determined by this simple optimization on the backward facing step
problem. Comparison of these results with Table 5.4 indicates that our analysis
has given reasonable values for the parameters for the higher Reynolds numbers,
with the optimized parameters sometimes reducing the iteration count by a small
amount, but not dramatically. There is a more noticeable reduction in iteration
count with the optimized parameters for lower Reynolds numbers. Similarly, Table 5.8
displays the optimized iteration count on the lid-driven cavity problem. Comparison
with Table 5.5 again shows that our analysis has given reasonable values for the
parameters in the higher Reynolds number case, but that they are less optimal for
lower Reynolds numbers. One explanation for the parameters being less optimal for
lower Reynolds numbers is the effect of our approximating F̂ by ρ(F̂ ) in (4.25) and
(4.29). This approximation is chosen because it does not have significant impact
on the high frequency modes. The high frequency modes are more dominant, and
thus our approximation is better, for higher Reynolds number problems where the
boundary layers in the solution become thinner, that is, where the solution becomes
less smooth.

6. Concluding remarks. In this study we have shown that the least squares
commutator preconditioner for the discrete linearized Navier–Stokes equations can be
extended for use in solving the systems of equations that arise from stabilized finite
element discretizations. The new preconditioner is developed by stabilizing the com-
ponents of the LSC operator in a manner analogous to what is done to stabilize the
discretization operator, and as in the case for stable problems, a version of the precon-
ditioner can also be constructed from purely algebraic considerations. Note that the
costs of implementing the element-based and algebraic versions of this preconditioner
are virtually identical; the difference lies in the technique used for stabilization. The
performance of the new method for stabilized discrete problems is virtually identical
to the performance of the LSC preconditioner for stable problems.
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