Homework 5 - Math 1451-008 (Howle)

Due Friday 4/20/2012 in class

This cover sheet must be attached as the top page of your homework. See homework requirements in the syllabus.

1. A Norman window has the shape of a semicircle atop a rectangle so that the diameter of the semicircle is equal to the width of the rectangle. What is the area of the largest possible Norman window with a perimeter of 50 feet?
2. A ball it thrown directly upward from ground level with an initial velocity $v(0)=96 \mathrm{ft} / \mathrm{s}$. Assuming that the ball's only acceleration is that due to gravity, i.e, $a(t)=-32 f t / s^{2}$, determine the maximum height reached by the ball and determine the time it takes to return to ground level.
3. Given the following integral:

$$
\int_{1}^{3} 4 x^{2}+2 d x
$$

(a) Estimate the value of the integral using a Riemann sum $S_{n}=\sum_{k=1}^{n} f(a+k \Delta x) \Delta x$ with $n=4$ and using right endpoints.
(b) Evaluate the definite integral using the definition. Use equal width subintervals and evaluate the function at right endpoints. So in this case, you are evaluating

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f(a+k \Delta x) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$.

