Homework 6 - Due 11/15/2010 in class

This cover sheet must be attached as the top page of your homework.

1. Given the following function:

$$
f(x)=x^{4}-4 x^{3}+10
$$

(a) Find where all extrema (relative max or mins) of f occur.
(b) Determine the intervals on which f is increasing and intervals on which it is decreasing.
(c) Find where the graph of f is concave up and where it is concave down.
(d) Plot the following specific points: local maximum or minimum points, points of inflection, and the y-intercept.
Using these points and your information from (a) - (c), sketch a graph of f.
2. Given the following function:

$$
f(x)=\frac{(x+1)^{2}}{1+x^{2}}
$$

(a) Determine the domain of $f(x)$.
(b) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$. (You are welcome to use something like wolframalpha.com to do or to check these derivatives.)
(c) Find critical points of $f(x)$ and determine relative maximum and minimum points.
(d) Find where $f(x)$ is increasing or decreasing, where it is concave up or concave down, and inflection points.
(e) Find any vertical or horizontal asymptotes.
(f) Plot a few specific points such as relative max or mins, inflection points, and the y intercept.
Sketch a graph of $f(x)$ incorporating the information from (a) through (e).
3. Find the volume of the largest right circular cone that can be inscribed in a sphere of radius 3.
4. You are 2 miles offshore in a boat and wish to reach a person who is 6 miles down a straight shoreline from the point nearest the boat. You can row 2 miles per hour and you can walk 5 miles per hour. Where on the shoreline should you land your boat to reach the person in the least amount of time?

