## Homework 5 - Due 10/4/2010 in class

This cover sheet must be attached as the top page of your homework.

1. Let $s(t)=t^{4}-4 t^{3}+8 t$ describe the position at time $t$ of an object moving along a line.
(a) Find the velocity at time $t$.
(b) Find the acceleration at time $t$.
(c) Describe the motion of the object from time $t=0$ to time $t=4$. When is it advancing? When is it retreating? Compute the total distance traveled by the object over the given time.
(d) When is the object accelerating and when is it decelerating?
2. A bucket containing 5 gallons of water has a leak. After $t$ seconds, there are

$$
Q(t)=5\left(1-\frac{t}{25}\right)^{2}
$$

gallons of water in the bucket.
(a) At what rate (to nearest hundredth gallon) is water leaking from the bucket after 2 seconds?
(b) How long does it take to for all of the water to leak out of the bucket?
(c) At what rate is the water leaking when the last drop leaks out?
3. Find the derivatives of the following functions:
(a) $f(x)=\left(x^{3}-3 x\right)^{13}$
(b) $g(x)=\ln \left(4 x^{4}+x^{2}-2\right)$
(c) $h(t)=\ln (\sec x+\tan x)$
(d) $F(s)=\sin \left(x^{2}\right) \cos \left(x^{2}\right)$
(e) $G(x)=\tan ^{-1}\left(\frac{1}{x}\right)$
4. Find an equation for the tangent line to the graph of $y(x)$ at the point $(1,0)$, where $y(x)$ is given implicitly by the following equation:

$$
\sin ^{-1}(x y)+\frac{\pi}{2}=\cos ^{-1}(y) .
$$

5. Find $\frac{d y}{d x}$ for $y(x)$ given implicitly by the following equation:

$$
3^{x}+\log _{2}(x y)=10
$$

