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ABSTRACT

The phenomenon of hysteresis is commonly encountered in the study of magnetic materials. The Preisach
operator and its variants have been successfully used in the modeling of a physical system with hysteresis. In an
application, one has to determine a density function for the Preisach operator using the input-output behavior
of the system at hand. In this paper, we describe a method for numerically determining an approximation of
the density function when there is not enough experimental data to uniquely solve for the density function. We
also present numerical results where we estimate an approximate density function from data published in the
literature for a magnetostrictive actuator and an electro-active polymer.
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1. INTRODUCTION

The phenomena of nonlinear hysteresis has been well documented in magnetism and electricity. Hysteresis comes
from a Greek term meaning “to lag behind,” and describes a relationship between inputs and outputs of a certain
system. A system with scalar inputs and outputs is said to exhibit rate-independent hysteresis if: (a) the outputs
of the system do not depend on the rate at which the input is applied and (b) the outputs of the system at a
certain time, depend on the past history of the input function. Though dynamical systems exhibit the “memory”
requirement (b), they do not exhibit the “rate independence” requirement (a).

The Preisach operator is a mathematical tool that has been used to model the phenomena of hysteresis for
many years.1, 2 Part of what is needed to describe the Preisach operator for a particular system is a density
function defined for certain parameters. In the past, several researchers have addressed the problem of identifying
the Preisach density function. Mayergoyz2 first described a method to identify the density function in the proof
of his characterization theorem. However, this method cannot be used in practice when the output signal is
corrupted by noise, as it involves a differentiation of the output signal. Banks, Kurdila and Webb3 address the
problem of convergence of the approximate measures identified through experiments to the true density function,
while Hoffman and Meyer4; Hoffmann and Sprekels5; and Galinaitis and Rogers6 discuss the use of the linear
least squares method to identify the Preisach measure. In Venkataraman, Tan and Krishnaprasad, a constrained
linear least squares method is used to explicitly constrain the approximate density function to be positive.7

Galinaitis, Joseph and Rogers8 (and the references therein) use a parametrization of the density functions in
terms of basis functions in order to reduce the number of parameters to be identified. However this method has
some severe problems that are described in that paper.

In this paper, we consider the identification of the Preisach density function when there is not sufficient
experimental data. Mayergoyz’s representation theorem2 yields a sufficiency condition on the input-output
signal, so that a complete identification of the measure can be achieved. However, in practice, this would involve
a very large amount of data that has to be processed to obtain the density function. There is a need for a
method that uses limited information to obtain an approximation of the density function. Another instance of
the problem of insufficient data is encountered when one considers a fine discretization of the input signal in
order to obtain a smaller approximation error (this is described in more detail in Section 4). What is needed is
a method that utilizes all the available “information” in the experimental data to obtain the best approximation
of the actual density function.

We cast the identification problem as a constrained minimization problem (the details are in Section 3):

min
1
2
‖AX − Y ‖2 subject to X ≥ 0,



where A and Y are computed using the input and output signals respectively, and X is unknown. Our method-
ology involves the identification of the nullspace of the matrix AT A and obtaining a solution in its orthogonal
complement. In Section 2, we briefly describe the Preisach operator and describe the problem in Section 3. In
Section 4 we describe the results of our numerical experiments for a magnetostrictive actuator and an electro-
active polymer.

2. THE PREISACH OPERATOR

The Preisach operator has been used to model hysteresis in many applications. In the following section, we will
define the Preisach operator, and discuss its properties.

Consider a relay, Rβ,α (see figure 1), which at any given time is at one of two states: +1 or -1. Consider an
input function u(t) for the relay. Define the output v(t) to be1:

v(t) =





−1 if u(t) ≤ β
+1 if u(t) ≥ α
−1 if β < u(t) < α, and ∃ t1 : u(t1) ≤ β, and ∀τ ∈ (t1, t), u(τ) ∈ (β, α)
+1 if β < u(t) < α, and ∃ t1 : u(t1) ≥ α, and ∀τ ∈ (t1, t), u(τ) ∈ (β, α)

(1)

This gives us the relation shown in figure 1.
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Figure 1. Input-output relationship from (1)

To construct the Preisach operator when the input is u(·), denote vβ,α(·) = Rβ,α[u](·). The Preisach operator’s
input is u(·), and the output is given by8:

y(t) =
∫ ∫

α≥β

µ(β, α)Rβ,α[u](t) dβdα (2)

where µ(β, α) is a continuous density function with compact support. It can be shown that when u(·) is piecewise
monotone, then so is y(·).1

Denote the set of relays with value +1 at time t as S+(t), and the relays with value −1 at time t as S−(t). The
curve separating S+ and S− (henceforth referred to as a memory curve) corresponds to the state of a dynamical
system in the following sense1:

• If we knew the memory curve at time t and the input function over the interval [t, T ], then the memory
curve at time T can be computed uniquely;



• Equation (2) can be considered as a map from the space of memory curves to the set of output values; in
other words, the memory curve at a time t yields a unique output value at that time.

Thus we can define a Preisach operator to be a map Γ : Cpm[0, T ] → Cpm[0, T ], where u(·) 7→ y(·). It has been
shown that Γ has several useful mathematical properties1: (a) Lipschitz continuity, (b) regularity, (c) invertibility.
In addition it has the so-called “congruency”, and “wiping-out” properties (please refer the Mayergoyz for an
excellent description2). The wiping out property is observed in magnetic materials and “smart” actuators such as
those based on piezoelectricity and magneto-striction. This makes the Preisach operator a valuable mathematical
tool for researchers in smart structures.

3. THE PROBLEM

When using the Preisach operator to model a physical system, it is necessary to find the density function µ(β, α),
that models the physical phenomenon. We have to determine µ from experiments, by observing outputs y(·)
that correspond to inputs u(·). What we would like is an approximation of the density function µ to put into the
Preisach operator which fits the current input and output data.

The proof of Mayergoyz’s representation theorem2 yields a way to exactly compute the density function µ,
but we need continuous inputs and no sensor noise. The second condition cannot be assumed from experimental
data and so we need another method to determine µ. Due to the experimental limitations, we have to discretize
the input values. This leads to a discretization of the Preisach plane. This procedure is described in what follows.

To implement this, the first thing to do is to discretize the input function u(t). We divide the time interval
[0 , T ] into nodes t = t0, t1, ..., tn, where t0 = 0, and tn = T. Assume that a tolerance d for the input has been
specified, and use this to round the input values to the nearest multiple of the tolerance. Thus u(ti); i = 0, ..., n
takes values in the set Nd, where N ∈ II, a subset of the set of ZZ.
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Figure 2. Input increasing to α1, then decreasing to β1, and then increasing to α2 ∈ (β1, α1)

Once the input is discretized, the Preisach plane, defined to be {(α, β)|m ≤ α, β ≤ M} ,(where m is the
minimum value of α and β, and M is the maximum value of α and β) is dicretized accordingly. Round the lower
bound m down to the nearest accuracy from the tolerance, m̂, and round the upper bound M up to the nearest
accuracy of the tolerance, M̂.

The next step is to divide the α and β axes into pieces of length d. On each axis start with m̂ and make a
division at m̂ + d, the next at m̂ + 2d, and so on. When this is completed, there will be ( M̂−m̂

d ) intervals along
both axis, and the plane will be divided into a finite number of partitions (see figure below). Let D ⊂ P be
defined so that our input is restricted to P \ D, then we only need to discretize the compliment of D. In the
following, we denote the contribution to the output due to the set D to be a constant c.



The result is that if we plot a discretized input function u(t) the input values will match up along the grid
formed on P. This is because we used the same tolerance for both u(t) and P. From here, we would like to assign
a number to label each piece of P. There will be [ M̂−m̂

d − 1][ M̂−m̂
d ]/2 total partitions.

Now, to approximate µ at some point p we will find the density measure of a neighborhood R of p, then
assume that R has a uniform density. Then, we can let µ(p) = µ(R). Let (n− 1) be the number of partitions of
the plane, and let us assume a uniform density in each partition. Let xi represent the density of the i’th section
of the plane, ∀i = 1, . . . , (n− 1). To make things easier, put the entries x̄i into a vector X̄, so that

X̄ =




x̄1

...
x̄n−1




Now the problem becomes finding an approximation for the vector X̄. We find X̄ using the input and output
data.

Consider the Preisach plane with a memory curve. Let this be the state at time t. Since we partitioned
the Preisach plane from discretization of the input, each point on the memory curve has (α, β) coordinates
(M1d, M2d), for some M1, M2 ∈ II. The result is that the memory curve lines up with the plane’s partition.
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Figure 3. Partitioned plane with a memory curve

Let X̄1 be the set of x̄i below the memory curve. Thus X̄ \ X̄1 is the set of x̄i above the memory curve.
Then, we would like to say that the output y(t) at time t is approximated by

y(t) ≈
∑

m∈X̄1

x̄m +
∑

m∈X̄\X̄1

(−1)x̄m + c (3)

In the case of Figure 3 we would have

y ≈ (+1)[x̄1 + x̄5 + x̄6 + x̄8 + x̄9 + x̄10] + (−1)[x̄2 + x̄3 + x̄4 + x̄7] + c (4)

Why can we divide the Preisach plane, and approximate the density at each piece? It turns out that as the
partition gets finer (converging to a point), the density approximation converges to the actual density at each
point in P. This is stated in the following proposition.

Before we start the proposition, we need the following definition.

Definition 3.1. The diameter of a set A, which is a subset of an Euclidean space, (notated diam(A)), is defined
as

diam(A) = max{|p− q| : ∀p, q ∈ A}



Proposition 3.1. Let P represent the Preisach plane, and let Pn represent the pieces of the discretized
plane. Furthermore, let y be the output for the Preisach operator, then

∑
m∈X1

xm +
∑

m∈X\X1
(−1)xm → y as

max{diam(Pn) : Pn ∈ P} → 0.

For a proof please refer to Banks, Kurdila, and Webb.3

During an experiment, the outputs might get corrupted by sensor noise, and this might cause the measure-
ments yi to be inexact. To model this, we write the output at time t as:

y(t) =
∑

m∈X̄1

x̄m +
∑

m∈X̄\X̄1

(−1)x̄m + c + ε (5)

where the ε term takes care of the approximation error, and the error due to noise.

Define a row vector A1 to be A1 = [δ1 · · · δn−1], where the i’th element is

δi =
{

1 if x̄i ∈ X̄1

−1 if x̄i ∈ X̄ \ X̄1

Using this new vector, the output at this state is

y(t1) = Ā1X̄ + c + ε = [δ1 · · · δn−1]




x̄1

...
x̄n−1


 + c + ε =

n−1∑

i=1

δix̄i + c + ε (6)

For easier notation let A1 = [Ā1 1] and X =
[

X̄
c

]
, then (6) becomes y(t1) = A1X

If we do this for m instances of time then we get m row vectors {Aj : j = 1, . . . ,m}, with each Aj =
[δj1 · · · δj(n−1) 1]. If we denote y(tj) = yj , we also have m outputs {yj ≈ AjX: j = 1, . . . , m}. The system
looks like the following: 




y1 = A1 X +ε1
y2 = A2 X +ε2
...

...
ym = Am X +εm

Let




y1

...
ym


 = Y,




A1

...
Am


 = A , and




ε1
...

εm


 = ε

Then, we have the linear equation
Y = AX + ε (7)

We need is a way to solve for X that will best fit the data, but at the same time keep xi ≥ 0, since X represents
a density function.

We would like to minimize the function

f(X) =
1
2
‖AX − Y ‖2 (8)

where



A : IRn → IRm, X ∈ IRn, Y ∈ IRm, and rank(A) = m

with the inequality constraint g(X) = X ≥ 0.

The Lagrange multiplier theorem yields the existence of a λ ∈ IRn, such that the necessary conditions for X
to minimize (8) are,9

1.
λi = 0 when Xi 6= 0 (9)

2.
λi ≥ 0 when Xi = 0 (10)

3. The augmented function
f̄(X) = f(X)− λT g(X)

= f(X)− λT X
(11)

satisfies

∂f̄(X)
∂X

= XT AT A− Y T A− λT = 0 (12)

We used the MATLAB routine “quadprog” to solve this problem and the results are described in Section 4
(please see Figures 4 and 5).

3.1. Insufficient experimental data

The method described earlier works very well when the experimental input-output data is in a form to yield an
m× n A matrix with rank n. However, if we do not have such an situation (which can easily arise by choosing a
finer discretization of the input), we must reformulate the problem. In the following, we consider an even more
general problem where the rank of A is less than min{m, n} :

minimize f(X) =
1
2
‖AX − Y ‖2; rank(A) < min {m, n}, (13)

with the conditions:

AX = Y + ε
Xi ≥ 0, ∀ i = 1, . . . , n

(14)

Now, we need to minimize (13), and 1
2 ‖X‖2. This problem can be tackled in two ways. The first method

involves a regularization:

minimize g(X) =
α

2
‖X2‖+

1
2
‖AX − Y ‖2, subject to Xi ≥ 0, ∀ i = 1, . . . , n, where α > 0 (15)

The second method involves a singular value decomposition of A so that we now perform the minimization
on an orthogonal subspace to the nullspace of AT A. We found that the regularization approach is unstable
numerically, as the choice of α affects the solution greatly. We now describe the second solution method below.

Let rank(A) = q < min {m, n}. If we perform a singular value decomposition on AT A, then we get
AT A = USV T , where S is an n× n diagonal matrix with rank q < n. If we eliminate the rows and columns of
S that are zero and the corresponding columns of U and V, then we end up with a q × q diagonal matrix that



we call Ŝ, and two n× q matrices Û and V̂ . As AT A is symmetric, Û and V̂ are identical. This fact we exploit
in the following.

We have V̂ ŜV̂ T = AT A, where V̂ T V̂ is a q× q identity matrix. Now if we let X = V̂ Z then the Problem (8)
becomes:

minimize f(Z) = ZT ŜZ − Y T AV̂ Z, (16)

subject to the constraint g(Z) = V̂ Z ≥ 0. Then once we have a minimizer Z∗ to the above problem, then
X∗ = V̂ T Z∗ solves Problem (8). The constrained minimization problem (16) can be solved by using the
MATLAB routine “quadprog”.

In section 4, we considered a finer discretization of the input which led to the case considered in this subsection.
The results can be seen in Figures 6 and 7.

4. NUMERICAL RESULTS

The following experiments were performed in a MATLAB environment on a PC running a 1.6 GHz Athlon
Processor, with a 1 GB RAM. We used experimental data from a commercial magnetostrictive actuator from
Venkataraman, Tan and Krishnaprasad7 in our initial numerical experiments. There, a Preisach operator was
used to model the average magnetic field versus magnetization characteristic. In the experiment, the magnetic
field input took values between 10A/m and 410 A/m. The output values were measured in Oe. We discretized
the Preisach plane into intervals of 20 A/m. We used input data to create an A matrix, whose dimensions were
1036× 211. The rank of A was 211, and so we used the MATLAB command “quadprog” which solves (8). The
time taken for the computation of X was 6.076 seconds, and the maximum difference max1≤i≤1036 |AiX−Y (i)| =
6.626× 104 Oe, (where Ai denotes the i− th row of A). This error can be compared against the maximum and
minimum values of Y that were 7.708× 105 Oe and 2.143× 105 Oe respectively. A comparison between the AX
and Y can be seen in figure 5. The discretized density obtained can be seen in figure 4.
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Figure 4. The Preisach density calculated with an input magnetic field discretization of 20 A/m.

In order to reduce the error maxi |AiX − Y (i)|, we discretized the Preisach plane into intervals of 10 A/m.
The input data led to a 1036×821 A matrix. However, this time the rank(A) = 516 so we had to use the method
described in Subsection 3.1. We used the MATLAB command “svd” to obtain a singular value decomposition
for AT A, and then used the “quadprog” command to obtain the minimizer X∗. The discretized density function
obtained can be seen in figure 6. It took 616 seconds for the computation, but maxi|AiX−Y (i)| = 3.206×104. As
expected, the comparison between AX and the experimental output showed a better match than the discretization
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Figure 5. The approximation to the output magnetization calculated with an input magnetic field discretization of
20 A/m, compared against data from experiment.

level of 20, the results can be seen in figure 7. Finally, Figure 8 shows the magnetic field versus magnetization
characteristic for the magnetostrictive actuator obtained as a result of the identification experiment.
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Figure 6. The Preisach density calculated with an input magnetic field discretization of 10 A/m.

The next numerical experiments conducted were on data published by Petchsuk and Chung10 on an electro-
active polymer (VDF/TrFE/HFP (55.17/42.35/2.46) terpolymer 121) at 42◦ C. This polymer exhibits significant
hysteresis in its Electric Displacement vs Electric Field characteristic. The discretization was of the Electric Field
was chosen to be 12.5 MV/m The identified Preisach density function can be seen in Figure 9. The comparison
between the fitted data and the experimental data obtained from Petchsuk and Chung10 can be seen in Figure
10.

5. CONCLUSIONS

In this paper, we have described a method to compute (an approximation of) the Preisach density function when
there is insufficient experimental data. This is a situation that is frequently encountered in practice. Previous
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Figure 7. The approximation to the magnetization output calculated with an input magnetic field discretization of
10 A/m, compared against data from experiment.
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Figure 8. Fitted Magnetic field versus Magnetization characteristic.

methods assumed the availability of sufficient data for the identification to be performed, or considered a very
coarse grid on the Preisach plane leading to a poor approximation of the actual density function. We describe
a method that utilizes all the information present in the input-output data to obtain the best approximation
possible. We also present numerical results using experimental input-output data, where we compare the results
of our identification with published data.
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