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Abstract—n the study of mechanics and optimal con- Although not the first to investigate the solutions of TP-
trol, one often encounters what is called a two-pointBVPs, one of the first publications to approach this sub-
boundary-value problem (TPBVP). A couple of meth- ject was by Keller [2]. Those initial methods were and
ods exist for solving these problems, such as the Simplstill are referred to as shooting methods.
Shooting Method (SSM) and its variation, the Multiple
Shooting Method (MSM). In this paper a new method Keller [3] develops the SSM and the MSM, referring
is proposed that was designed from the favorable asto the MSM as parallel shooting, and also proposes
pects of both the SSM and the MSM. The Modified a version of parallel shooting that he calls "stabilized
Simple Shooting Method (MSSM) sheds undesirablemarch.” Several years later, J. Stoer and R. Bulirsch [5]
aspects of both previously mentioned methods to yieldexplored both the SSM and the MSM in great detalil,
a superior, faster method for solving TPBVPs. Thewhile providing several examples and hints for practi-
convergence of the MSSM is proven under mild con-cal numerical implementation.
ditions on the TPBVP. A comparison of the MSM and
the MSSM is made for a problem where both methodsin this paper a new method is proposed for the solu-
converge. We also provide a second example wher&on of two-point boundary-value problems that seems
the MSM fails to converge while the MSSM converges to converge faster and more accurately than the MSM.
rapidly. The existence and uniqueness of solutions to the TP-
BVP is assumed.
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1. INTRODUCTION An existence and uniqueness theorem for initial-value
A general TPBVP can be written in the following form: problems can be found in Hale [1], which is but one of
many texts that provide this well known result. On the
y'(z)=f(z,y); a<x<b (1)  other hand, TPBVPs may have multiple or no solution
at all. For example, consider the following system:
r(y(a),y(b)) =0, )

z1(t 1
where (2) describes the boundary conditions satisfied [ :c;gtg } = { g(x1, 12) ] 4
by the system. Examples are the familiar initial-value
problem (IVP) and first order necessary conditions ob-whereg(-, -) is a continuous function of its arguments,
tained by an application of the Pontryagin Maximum andz;(0) = 1, z;(1) = —1. One can easily see that
Principle in optimal control theory. TPBVPs from op- the first equation will only allow values of; to in-
timal control (unconstrained) have separated boundargrease as time increases. Thus, there does not exist a
conditions of the type (y(a)) = 0 andra(y (b)) = 0. value forz,(0) that will drive the value ofc; from 1
att = 0to —1 att = 1. Because of this fact, ex-
0-7803-7231-X/01/$10.08/20031e2 istence and uniqueness theory for TPBVPs is consid-



erablyless developed and less understood than that of, = 9f 0
IVPs. Despite these drawbacks, below are two exis- @ gTy ~
tence and uniqueness theorems that are applicable to

h Il [ f functi .
much smaller classes of functiofiéz, y) (b) ‘gj <M

General Boundary Conditions
4. The coefficients in (3) satisfypa; > 0, boby >

Theorem 2.1:For the two-point boundary-value prob-
g et Jao| + [bol # 0

lem (1)-(2), let the following assumptions be satisfied: 0,

Then the boundary-value problem in (3) has a unique

1. fandD, f are continuous o8 = {(z,y)la <z < solution.

by € R}

Proof: For proof of this theorem, consult Keller

2. Thereis &(-) € Cla,b] with | D, f(z,y)| < k(x) [2], page 9. -

forall (z,y) € S.

Remark. Assumptionsl-4 of Theorem 2.1 are very
restrictive sufficient conditions. Even simple boundary
conditions exist that do not satisfy assumption 3; such
is the case with separated boundary conditions.

3. The matrix
P(u,v) = Dyr(u,v) + Dyr(u,v)

admits for allu,v € R" a repr_esentation of the fo_rm Optimal Control

P(u,v) = Po(I + M(u,v)) with a constant nonsin-

gular matrix P, and a matrixM/ = M(u,v), and Now consider the optimal control problem of finding a
there are constanys andm with || M (u,v)|| < u < u(-) for the following system:

1, PiDyr(u,v)|| < mforallu,v € R™. ]
167 Dor(u, )| i = f(x,u), £(0) = z0, 2(1) = x4, (4)

4. There is a numbek > 0 with A + x4 < 1 such that such that

fab k(t)dt < In(1+ 2). Thenthe boundary value 1
problem(1) has exactly one solution(z). J(u) = /0 L(z,u)dt

is minimized. The Pontryagin Maximum Principle

Proof: For a proof of this theorem, consult Stoer yields the existence of functions

and Bulirsch [5], page 510. | p(t) = [p1(t) pa(t) --- pn(t)]T

Sepaated Boundary Conditions with ¢t € [0,1]; H(x,u,p) = L(x,u) +p” f(x,u), and

For a theorem that will apply to separated boundary!’ = I8 il H(z,u, p) such that

conditions, we consult Keller [2]. Consider the follow- P 0o I
ing second-order system: [ . ] (t) = { I 0 } VH(z,u*,p)

p
y' = f(z,9,9); a<z<b satisfies 2(0) = =z and z(1) = ;. If
a) —a1y'(a) = a, |ag| + |ai| # 0; VH (z,argmin, H(x,u,p),p) is Lipschitz continu-

aoy( . . )
1Y — (3 ous in ther andp variables then we have uniqueness.
boy(b) + b1y (6) = B, fbol + [on] #0. - (3) A sufficient condition is the twice differentiability of

Theorem 2.2:Let the functionf (x, y,v’) in (3) satisfy H{(z,u,p).

the all of the following: . .
g Now that we have proof of existence and uniqueness

for small classes of TPBVPs, let’s explore the current
methods commonly used to numerically solve such a
problem and take a look at the new method that we
propose.

1. f(x,y,y’) is continuous oD = {(z,v,y’) |
a<z<b Y+ (y)? < oo}

2. f(x,y,y’) satisfies a uniform Lipschitz condition
H /

on i iny andy’” 3. CURRENT METHODS

3. f(z,y,y’) has continuous derivatives db which  Although Theorem 2.1 does not apply to the case of

satisfy, for some positive constahtf, separated boundary conditions and Theorem 2.2 itself



may be somewhat restrictive, separated boundary con
ditions are the most commonly encountered in optima
control. Because of this, separated boundary condi

tions will be used for explanation purposes. Thesystem._.._.i....... i .. i il Y.

now becomes

y'(z)=f
Ay(a) =

(z,y); a<z<b
, By(b) =8,

(5)

where A and B arem x n matrices withrank(A) +
rank(B) = n.

a

Simple Shooting

The Simple Shooting Method, as the name implies,
is the simplest method of finding a solution to such a
problem. The idea is to convert (5) into an initial-value
problem (IVP):

y(z)=f(z,y); a<z<b

y(a) = Ya, (6)
wherey, is composed of known states frody(a) =

a and guesses for the unknown staégsNow, y(z) €
R, o € R™ andf € RP. A necessary condition
to keep the problem from being inconsistent is that
m + p = n. To form an IVP out of (5), one needs
to guess initial conditions for thg: — m) components
of y(z) that do not already have initial conditions at
x = a. Letsy € "™ be the guess for the unknown
initial conditions ands; k£ > 1 subsequent corrections
of the vectorsy. With sg, one can now integrate (6) for-
ward in the time variable:.. Integration is performed
from z = a all the way tox = b. Then compute the
errore = || By(b) — 3|?. With this information, a cor-
rection is made to the initial guess to yield s;, and

1 Yso
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T

b
Figure 1 lllustration of the Simple Shooting Method

Multiple Shooting

The Multiple Shooting Method begins with the choice
of a Lipschitz continuous functiop(z) that satisfies
Ap(x) = e andByp(x) = (. An initial guess of un-
knowns,sg, must be made. Then, (6) is integrated until
ly(x, so) — @(x)|| > € for somes > 0. We designate
the time variable at this point as. Now the integra-
tion of the system continues fromy using o(x1) as
the initial 'guess’ for the solution. This process contin-
ues until the integration reaches= b. Now the error
functione(s) = ||y(z;) — y;|? is formulated where

s =[so w1 yk—1]T andy; is the initial state for
the trajectory in the intervake;, z;41]. After this is
accomplished, a correction is madestasing a modi-
fied Newton’s method, and the process is repeated. The
starting trajectory is not used after the first iteration.

Figure 2 illustrates the MSM. Once again, three iter-

the integration is performed again. This process is redations are displayed for this method. The correction

peated over and over until< e, wheres > 0 is small.
How the correction is made will be addressed shortly.

For illustration purposes only, consider Figure 1Whic% e

represents an example of Simple Shooting for (6). We
assume that there exists a unique solution to the proh
lem. Every point on the plot represents a vectoRin

There can be serious problems with the accuracy of th

SSM. The problems occur when making the correction = i/« &

to the s, vector. This vector is usually corrected us-

ing a modified Newton’s Method, and in practice thgl— 7./

system must be linearized to use this methode i

process stops whetis) < 1 < & for somes; > 0.

"gso

large, then convergence can be quite slow (please r
fer to page 511 of Stoer and Bulirsch [5]). This draw-
back of the SSM can be fixed by implementing what is
known as the Multiple Shooting Method.

T xro

Figure 2. lllustration of the Multiple Shooting Method



A problem with the MSM is the discontinuity of the actual and desired final states to be small, we reduced

trajectory found by the MSM at the points; i = the time step tdh = 0.001. This time MSM corrects
1,...,k — 1. The integration and corrections ef the unknown states, to [0.42 0.42]T in 16.634 sec-
will continue until a desired level of closeness is de-onds. Figure 5 shows both the result of MSM and the
termined, but this final value of the vectercan still  final trajectory after re-integration.

be far from an optimal solution due to the unstable na-

ture of many systems in the forward direction. If (6) 2*

is re-integrated to result in one continuous trajectory

for the system, the end valuésy(b) need not be any- _ |

where close t@ and almost certainly will not be. An- ~ | |

other problem is computation. During the process,one | L '

must invert many matrices of the sige(k — 1) + p|, B — e -

wherek can be quite large depending on the guesses ° ** °* % %t o0 e er om0

[so  @(x1)- @(zr_1)]T for the initial trajectory. -

Note thatk cannot be reduced even as the guesses im-

prove. o ~

Example 3.1:Consider the following system: 1sf P |
yll (CC) y3 (1') 10 ...... 0'1 ....... ;2 o‘.s 0.‘4 0‘5 o‘.e 0.‘7 o.‘s o‘.e 1
ya(z) | _ | val) : : , . -
(@) | T | ) Flgure 3. D_|scor_1t|nuous segments _connectlng the ini-
v (z) ne tial and desired final states while using the MSM.

Y1 (0) _ 1 yl(l) — 2 (7) as
y2(0) L] | ye(l) 2 '
where 0 < x < 1. This system was solved with the

‘bad’ initial guesssy = [—100 2]7 with the parame- =
ters of the code as follows: 1

o Thetime stepgh = 0.01.

o cwas settd.
« Newton’s Method is stopped when the solution is Susp g |
found to be in arx; ball of sizes; = 103

For this examplep(x) = ]}[1 1]T =+ [1 1]T The % 01 02 03 0.4 05 06 0.7 0.8 0.9 1
following resultsTwere obtained. The.MSM corrects Figure 4 Plot of the states while using the result of
s0 10 [0.70 0.70]" in 8.543 seconds. Figure 3 shows the MSM (2 = 0.01 d
! . . 1 = 0.01 seconds).
the discontinuous segments obtained after the conver-
gence of the iterations. One can see the discontinuous
segments connecting the given initial and desired final 4. MODIFIED SIMPLE SHOOTING
states. However, when this very system is re-integrate
using thesqy vector determined to be the correct one
by the MSM, the first two components of the solution The Modified Simple Shooting Method begins with the
do not end up withinl0—2 of [2 2] (please see Fig- selection of a Lipschitz continuous starting path of in-
ure 4). Instead, the solution ends up being close tdegrationy(x), such thatdp(a) = a andBy(b) = .
[2.25 2.25]7. Obviously, these are not desirable re- Again, an initial guess of unknowns; must be made.
sults. Then, (6) is integrated untjly(z, so) — ¢(x)|| > € for
somee > 0. Then we designate;, = so. A modified
Note that while using the MSMne does not have con- Newton’s Method is then used to correct the 'guess’
trol over the error in the states at the final time. It de- s;,. The iteration stops whelfy(z, s1,) — ¢(z)|| < &1
pends on the particular system being considered. Fowheree; is chosen such that; < . We then let
the sample problem, in order for the error between thes; = s;,, and proceed with the integration of the

(E)escription of Algorithm



x(1)

x(2)

X9 T

O i e 1 Figure 6. lllustration of the Modified Simple Shooting
1 oz 03 o4 05 06 07 08 o Method
Figure 5 Plot of the states while using the result of

the MSM (h = 0.001 seconds).
( ) (5) for an entire family of boundary conditions. More

specifically, suppose that the BVPs
system,(6) wherg(a) is found usingAy(a) = « and v (2) = f(a,y)
S1.
' Ay(a) = o, By(z) = By(x)

The modified Newton’s Method mentioned above is have unique solutions whege ) was the function cho-
found in Stoer and Bulirsch [5]. The following is an sen initially. This is necessary to assume, as a solution

outline of that method for the first iteration: to the overall problem may not directly imply the exis-
tence of a solution to one of the intermediate reduced
1. Choose a starting pois € R" "™ problems. Now we can consider the main theorem of
2. For eachi = 0,1,... defines;, , from s, as fol-  this report on the convergence of the Modified Simple
lows: Shooting Method with certain assumptions.
(a) Set
d; = DF(s1,) ' F(s1,), Theorem 4.1:Consider the Two-Point Boundary-Value
o 1 _ _ o Problem as described in (5). L denote the solu-
Yi = cond(DF(s1.))’ and lethi(r) = h(si, — 7dy), tion to this problem. The Moﬁggie)d Simple Shooting
where h(s) = F(s)"F(s). Determine the small- Method, as described earlier, convergeg o) when
est integerj > 0 satisfying ;(277) < hi(0) —  applied to (5).
279 |dil [[Dh(s1,)|-
(b) Determine)\; so thath(s1,,,) = ming<,<; hi(27%), Proof: In order for the MSSM to converge to
andlets;,,, = s1, + Aids. y(x), it must first converge t@; (=) at each interme-

_ diate pointx;, where: = 1,2,... .k — 1, andg;(z)

The MSSM continues untily(z, s;) — ¢(z)| < eat s the solution of the reduced problem én z;] for
eachr € [a, b]. Inthis last step, we are performing ex- ; — 1,2, ... k — 1. For example; (z) is the solution
actly the SSM for the original system, but with a start- to the problem
ing initial guesss, that keepsBy(b) close tog. This , -
will prevent any numerical divergence. vi(@) = f(z,4h), a<x<x

Ay(a) = a, By(z1) = p(21)
wherep(z) is the reference path mentioned in the de-

scription of the algorithm. As such, it is only necessary
to show two things to complete this proof.

Figure 3 illustrates the Modified Simple Shooting
Method. In this case, it took three overall 'shots’ to
integrate frome = atox = b.

Convergence of the MSSM 1. The sequence of poinfs:,, } -, € R converges to

Theorem 2.1 provided us with a somewhat limited exis-the right endpoinb.

tence and uniqueness theorem. Theorem 2.2 was mo@& The SSM converges when existence is known.
useful in the sense that it applied to the case of sep-

arated boundary conditions. For the purpose of thisThe latter is a result of the modified Newton’s Method,
section, we shall assume the existence of a solution tavhich is guaranteed to find a solution for large classes



of functions, if it exists. As existence of a solutigti)
is being assumed, the modified Newton’s Method guar-
antees that the SSM convergeg/ta). 2r

Now assume that after the modified Newton’s Method  *sf 1
is performed atr € [a,b], the integration proceeds | e

to z* > z. Itis necessary to show thét* — z) N B TR T S A e —"
is bounded below by a positive numbey(z, s,) IS
a continuous function of and ¢(z) is a Lipschitz
continuous function ofe. Thus, d(p;y, sm)(z) =
lly(z, sm) — @(x)| is a Lipschitz continuous func-
tion of . By the compactness df,b], there is a
uniform Lipschitz constantk for d(y;y,-). Thus, | e '
|d(©; Y, $m)(x) —d(@;y, sm) (2*)| < klz—a*|. When | o™

the integration of the system stopéd(y; y, s;)(z) —
d(0; Yy, 8m)(x*)| = e—e1. Thene—e; < k(z*—x),0r  Figure 7. Plot of the states for the trajectory planning
(r* — ) > =5 > 0. This means that the integration problem using MSSM.

continues past, and by the compactness [of b], the

process must extend all the wayaite= b. |

x(2)

2 laeneeeee 1 L I I I I L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q,Q, P, andP, are all functions of time, but the de-
Examples pendence on time, has been suppressed for ease of

. : . writing. 2, P;, and P, are vectors iffit3, whereas) is
Remark. All com ions in the following exampl o o : L o
ema computations In the following examples a matrix inR3*3. () is a little more complicated; it is

were performed in the MATLAB environment, Ver- a skew-symmetric matrix formed from the vecforas
sion 6.1.0.450 Release 12.1, running on a Microsoft uch y

Windows 2000 Professional operating system with anIS]c

AMD Athlon processor running at 1.2 GHz. 0,
. Q=1 Q2 |,
A Linear Example— Qs
Example 4.1:Consider the simple system of Example then 0 0. Q
3.1. The MSSM was applied to the same system with a-| o 70 3 é
the same parameters in the code. - 5 0 _0 !
a2 1

The MSSM finds a solution in 1.001 seconds With  Q;nitial, Qinitials Qdesired ANAQgesired are known.

corrected td0.39 0.39]7, which is about 8 times faster The solution is sought fdr < ¢ < 1.

than the MSM. The corrections toby both methods

do not give the same result. The discontinuity problemFor this particular example, further obstacles were to

does not arise with the MSSM, since the final trajectorybe overcome. It was required th@ft) € SO(3) at ev-

is a continuous one. ery instant of time. Furthermore, there was the obsta-
cle that we must integrate forward in time four equa-

An Application inSO(3)—Now we will look at an  tions, three of which are vector valued equations and

example in the three dimensional special orthogonabne matrix valued equation. But, the matrix equation

group orSO(3). SO(n) is defined as follows: depended only upon the valuefofand hencé at each
instant of time. Because of this and the fact that none
SO(n)={Ae R " det A=1, ATA=1,.,}. of the other equations depend @ it was possible to

integrate the matrix equation separately, but still for-
This example is actually an optimization problem onward in time at the same time as the vector equations.
the set of orientation matrices in three dimensionalTo keepQ(t) € SO(3), Rodriques’ formula was used,

space. Consider the following system. which can be found in Murray, Li, and Sastry [4]. The
formulais
Y 04 ) ) )
) @ @ e =T+ Qsin® + Q%*(1 — cos O).
0 P,
Py = —3PLxQ+Qx (P, xQ) |8) Theinitial and final values of) and(2 were generated

P, —3Px Q- Py randomly by MATLAB and were exactly the same for



boththe MSSM and the MSM. Those values were [10g(Q(1)T Qesirea)|| = 0.0003.

0.57 0.82 0.08 The MSM took more than 10 times as long and the
Qinitiar = | —0.78 0.57 —0.25 |, results are not close at all to the desired values; these
—0.25 0.08 0.97 results speak for themselves.
0.95 1
Qinitiar = | 434 |, ol et
=00 : o ) L -]
—0.27 0.96 —0.01 035, o1 02 03 o | .0.‘5. - o6 o7 08 09 1
Qdesired — —-0.84 —-0.23 0.50 ) 05— ‘ — \ — \ \ : \ \ \ \
048 0.4 0.87 F ]
1.90 o ) N
Qdesi?'ed = 8.67 -15 L L L 1 L L . ‘ U ‘ = L
4 . 1 8 00 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
The results for this example again heavily favored the §
Modified Simple Shooting Method. After 47.12 sec- ™ ]
onds, the MSSM obtained the following values for Po o1 0z o3 o4 05 08 07 o8 08 1
andQ at timet = 1, Figure 8 Plot of ZYX Euler angles.
—-0.27 096 —0.01
Q)= | —084 —023 050 |, o————
048 0.4 087 S R
1.90 of 1
Q(l) = 8.67 . 02, o1 0z 03 0 os 06 o7 08 09 1

4.19 1 T T T T T \J“

The Multiple Shooting Method proved inadequate for 3
this problem. After 606.89 seconds, the MSM obtained  °| R 1

these reSUIt87 7050 — 0‘1 = 0‘2 = .0.‘3 0‘.4 0‘5 0.‘6 017 0.‘8 0‘.9 1
0.09 —0.01 1.00 T
Q(1)=1] 099 —-0.06 —0.09 |, S-osk .o .
0.06 1.00 0.00 ¥ .
2 ) 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
Q)= | 10.81 |. Figure 9. Q matrix components.
5.89
To measure closeness the normal Euclidean norm can 5. CONCLUSIONS

be used to compar®,.s;-.q andQ(1); however, this . . )
P8 desired (1) In this report, a new method for solving two-point

is not the case withl) gesireq @ndQ(1). One must be .
more careful. It is desired to have a measure of Closepoundary-value problems was described.  Although

ness within the grousO(3), not the space of aff x 3 convergence is not so laborious to investigate, it was
matrices. To do so, we tz;\ke the matrix logarithm of.ShOWn by two examples of theorems how difficult it

. . o is to prove existence and uniqueness for two-point
the quantityQ(1)” Q gesired,» Which will yield a skew-
symmetric matrix. We then take the norm of this ma- boundary-value problems. Nonetheless, three exam-

. : . . ples were given, among many performed, that clearly
trix. The Multiple Shooting Method yields show that the Modified Simple Shooting Method per-

1Q¢esirea — Q(1)]] = 2.74, forms better and faster than the Multiple Shooting
Method.
|| log(Q(l)TQdesired)H = 2.62.
The Modified Simple Shooting Method yields First, it requires the inversion of much smaller matri-

ces than those required to be inverted in the MSM. The
|Qdesirea — 2(1)]| = 0.0013, MSSM requires the inversion of matrices thataren;



Figure 10. Angular velocity.

whereas, the MSM requires the inversion of matrices
that argn(k — 1) +p] x [n(k—1) + p]. This fact alone
could account for many seconds of computation time
saved as systems become larger and larger.

Another fact that makes the MSSM more appealing

is continuity of integration trajectory. This property
is very important in optimal control problems where

Analysis. Springer-Verlag, second edition, 1993.
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fied Simple Shooting Method integrates the system in
one continuous path every time it shoots the system for

an updateds vector. The Multiple Shooting Method
does not have this characteristic. In fact, for a partic-
ular example of the MSM, it intermediate shots are
taken then every overall shot of the system from: a

to x = b will consist of k — 1 discontinuities. Each
of these discontinuities are impossible to correct. The
best the method has to offer is to reduce the magniy
tude of the discontinuities. Due to the instability of

many systems in the forward direction, an erroneous
solution may be obtained if the system is re-integrated
with what is supposed to be an accurate approximation
to the actual unknown initial conditions.
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