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a b s t r a c t

A capillary surface is the boundary between two immiscible fluids. When the two fluids are in contact
with a solid surface, there is a contact line. The physical phenomena that cause dissipation of energy
during a motion of the contact line are hysteresis in the contact angle dynamics, and viscosity of the
fluids involved.

In this paper, we consider a simplified problem where a liquid and a gas are bounded between two
parallel plane surfaces with a capillary surface between the liquid–gas interface. The liquid–plane
interface is considered to be non-ideal, which implies that the contact angle of the capillary surface at
the interface is set-valued, and change in the contact angle exhibits hysteresis. We analyze a two-point
boundary value problem for the fluid flow described by the Navier–Stokes and continuity equations,
wherein a capillary surface with one contact angle is deformed to another with a different contact angle.
The main contribution of this paper is that we show the existence of non-unique classical solutions to
this problem, and numerically compute the dissipation.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

A capillary surface is the boundary between two immiscible
fluids. When the two fluids are in contact with a solid surface, there
is a contact line. The physical phenomena that cause dissipation of
energy during a motion of the contact line are hysteresis in the
contact angle dynamics, and viscosity of the fluids involved. For a
specific combination of fluids, these two phenomena might have
widely differing contribution to the total energy loss. In this paper,
we start our investigation of contact line motion by studying the
the dissipation of energy due to viscosity when a capillary surface
is deformed from one shape to another due to the motion of the
boundary.

1.1. Contact angle hysteresis

Consider a liquid droplet on a solid surface with a contact angle
of θ. Experiments show that if the liquid is carefully added to the
droplet, the volume and contact angle of the droplet will increase
without changing the diameter d of the contact disk until the
contact angle reaches a critical value θa - called the advancing angle
[1]. Similarly, if the liquid is removed from a droplet, volume and
contact angle of the droplet decrease, but the contact diameter

remains the same until a critical angle called the receding angle θr is
reached.

Consider a liquid drop, which has a spherical cap shape, on
a solid surface. Let V, R, and d be the volume of the drop, the radius
of the sphere, and the diameter of the disc which forms the
contact region, respectively. Let θ be the contact angle, and δp
be the difference in pressure between the inside and outside of
the drop. We assume that the drop is small enough that the
pressure inside the drop is uniform (that is, the effect of gravity is
negligible). Then, we have the equations:

sin ðθÞ ¼ d
2R

; δp¼ 2γ
R

; V ¼ 2πR3

3
ð1� cos 3ðθÞÞ;

where γ is the surface tension of the liquid. Fig. 1 shows the
variation of the contact angle θ with the diameter d, while Fig. 2
shows the variation of (δp) with the volume V is.

The integral
R
δp dV computed on any path in Fig. 2 represents

the work that is done either by or on the droplet. Thus, if the
droplet begins with a certain contact diameter and contact angle
at point A, and the volume is increased until point B is reached,
followed by a decrease in volume to points C and D, and then an
increase in volume back to point A, then the area of the hysteresis
loop ABCDA is the net work that must be done by the droplet (or
the external agent) against the surrounding to overcome contact
angle hysteresis.

The important point to note is that if the contact line does not
move then there is no loss due to contact angle hysteresis. However,
there might be losses due to viscous dissipation.
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2. Model formulation for capillary surface

To make the problem amenable to analysis, we consider a
simplified problem where a liquid and a gas are bounded between
two parallel plane walls with a capillary surface between the
liquid–gas interface. The relative importance of the phenomena
causing dissipation of energy may be determined by analyzing this
system.

Using calculus of variations, we obtain the mathematical model
for a capillary surface at equilibrium, by minimizing the total
energy subject to a constant volume constraint [2–4]. In Ref. [3],
the author considers a liquid drop between two vertical plates, and
neglects the potential energy due gravity. The presence of gravity
makes the problem significantly different as it causes a pressure
change with depth in the fluid – mathematically, Eqs. (2) and (3)
form a two point boundary value problemwhich is well-posed due
to the fact that ga0.

In our analysis, we consider a liquid meniscus that formed
between two vertical plates, and assume the invariance of the
liquid surface in the z-direction (see Fig. 1(a)), which effectively
makes the problem a two-dimensional one, and the walls to be
hydrophilic. Furthermore, the potential energy due to the gravita-
tion is also included in our total energy functional. The capillary
surface f(x) defined over the interval ½0; L� satisfies a second-order
ordinary differential equation (1). Specification of the contact
angles at the two walls (θ1 and θ2), which are related to f ′ð0Þ
and f ′ðLÞ, yields a two point boundary value problem that we solve
numerically using the modified simple shooting method [5]. The

height of the capillary surface f(x) is specified with respect to the
depth where the liquid pressure equals the atmospheric pressure.

Consider two plates of unit-width as in Fig. 3(a). The x�z plane
corresponds to the depth where the pressure in the liquid is equal
to the atmospheric pressure. Let the liquid volume between the
x�z plane and under the capillary surface be V0. Let ρ denote the
density of the liquid, γ denote its surface tension coefficient, β1;β2
denote the relative adhesion coefficients for the two walls, and g
denotes the magnitude of gravitational acceleration. The necessary
condition for the energy minimization [4] lead to the following
systems:

ρgf ðxÞ�γ
f ″ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ f ′2ðxÞÞ3
q þλ¼ 0 in ½0; L�; ð1Þ

Z L

0
f ðxÞ dx¼ V0 ð2Þ

β1þ
f ′ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f ′2ð0Þ

q ¼ 0;
f ′ðLÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f ′2ðLÞ

q �β2 ¼ 0: ð3Þ

Fig. 1. Plot of the contact angle θ versus contact diameter d for a drop on a solid
surface. The advancing angle is θa, and the receding angle is θr.

0 0.5 1 1.5 2 2.5
x 10−7

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 104

Fig. 2. Hysteresis curves for a liquid drop with R¼0.02 m. δp indicates the pressure
difference between the liquid–gas interface of a liquid drop. Points B and C
correspond to the advancing (θa ¼ 401) and receding (θd ¼ 101) contact angles of
the droplet.
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Fig. 3. (a) The y-axis is placed along the vertical plate, and the x-axis is perpendicular
to the plates. Gravitational acceleration g, acts along the �y direction. (b) Initial
(dashed) and final (solid-bold) capillary surface profiles. The intermediate curves
(solid-thin) are computed by solving a two-point boundary value problem for the
Navier–Stokes and continuity equations for N¼10 and ε¼5000.
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The Lagrange multiplier λ may be calculated by integrating Eq. (1)
and using f xð0Þ ¼ �cot θ1, f xðLÞ ¼ cot θ2, where θ1 and θ2 denote
the contact angles between the liquid meniscus and the plates 1
and 2, respectively. Hence, one can relate the value of βi that is given
in the constraint equation (3) with the corresponding contact angle
θi, which yields to

β1 ¼ cos θ1; β2 ¼ cos θ2: ð4Þ

First, we obtain the initial capillary surface (yi(x)) by solving (1)
with λ¼ 0 together with the boundary conditions: f ′ð0Þ ¼
�cot θ1 and f ′ðLÞ ¼ cot θ2. We calculate the corresponding liquid
volume V0 using Eq. (2), and it serves as the constraint on the
volume for the subsequent deformations of the initial surface. The
second surface (yf(x)) is numerically obtained by solving (1) and
(2) with the boundary conditions: f ð0Þ and f(L), where f ðLÞ ¼ yiðLÞ.
Due to the contact angle hysteresis phenomenon [1], the initial
and final capillary surfaces have different contact angle values
(and heights) at the walls 1 and 2.

3. Analysis of the fluid flow leading to deformation of the
capillary surface

In this section, we solve for the initial velocity field of the liquid
that takes an initial capillary surface yið�Þ to a final one yf ð�Þ while
obeying the Navier–Stokes and continuity equations. We consider
a Newtonian, incompressible fluid, with dynamic viscosity μ, and
velocity u¼ ðuðx; y; tÞ; vðx; y; tÞÞ. As the liquid has zero velocity in
the x direction at x¼0 and x¼L, a choice uðx; y; tÞ ¼ u0ðtÞ sin ðπx=LÞ
leads to one class of solutions.

From the x-component of the N–S equation [6], we have
both u0ðtÞ ¼ e�μ=ρðπ2=L2Þtu0 and ðρ=2Þu2

0ðtÞ sin ð2πx=LÞπ=L¼ �∂p=∂x.
Therefore, the pressure inside the fluid is pðx; y; tÞ ¼ ðρ=4Þu2

0ðtÞ
cos ð2πx=LÞþpðy; tÞ. The continuity equation [6] yields

vðx; y; tÞ ¼ Aðx; tÞ� π
L
u0ðtÞ cos

πx
L

� �Z y

0
ϕðsÞ ds;

for some function ϕ. The choice ϕðsÞ ¼ 1 yields one solution. Next, we
apply techniques of Fourier analysis to the y-component of the N–S
equation. Assume that Aðx; tÞ is given by

Aðx; tÞ ¼ α0ðtÞ
2

þ ∑
1

k ¼ 1
αkðtÞ cos

kπx
L

� �
ð5Þ

over the interval ½�L; L�; where for each t, it is also assumed that
Aðx; tÞ ¼ Að�x; tÞ. We substitute in the series for Aðx; tÞ into the y
component of the N–S equation and equate terms on each side for
each k. For k¼0, we have

α′
0ðtÞ
2

� π
L
u0ðtÞα1ðtÞþ

π2

L2
u2
0ðtÞy¼ �g� 1

ρ
∂p
∂y

: ð6Þ

If, for some function ξ, the functions α0, α1, u0, and p satisfy
α′
0ðtÞ=2�ðπ=LÞu0ðtÞα1ðtÞ ¼ ξðtÞ and ðπ2L2Þu2

0ðtÞyþgþ1=ρ ∂p=∂y¼
�ξðtÞ then they automatically satisfy (6). Thus, different choices
of ξ lead to different solutions. We choose ξðtÞ ¼ �εα0ðtÞ for ε40,
as otherwise the y-component of the N–S equations lead to an
unstable system.

Consider the boundary value problem defined by the initial and
the final capillary surfaces yi(x) and yf(x), and suppose yf ðxÞ�yiðxÞ
¼ a0=2þ∑N

k ¼ 1ak cos ðkπx=LÞ. By using the kinematic free surface
boundary condition, the meniscus profile at time t, that is yðx; tÞ, may
be expressed using

yðx; tÞ ¼ yiðxÞþ
Z t

0
ðvðx; yðx; sÞ; sÞ� ∂yðx; sÞ

∂x
uðx; sÞÞ ds

which yields

yf ðxÞ ¼ yiðxÞþ
Z 1

0
vðx; yðx; tÞ; tÞ� ∂yðx; tÞ

∂x
uðx; tÞ

� �
dt: ð7Þ

By using the series expansions of vðx; y; tÞ and yf ðxÞ�yiðxÞ, we rewrite
Eq. (7) in the following form:

a0
2

þ ∑
N

k ¼ 1
ak cos

kπx
L

� �
¼ � c0

2
þ ∑

N

k ¼ 1
ck cos

kπx
L

� � !

þ
Z 1

0

α0ðtÞ
2

þ ∑
N

k ¼ 1
αkðtÞ cos

kπx
L

� �
dt;

where we assume that the term:
R1
0 ðπ=L cos ðπx=LÞyðx; tÞu0ðtÞ

þ∂yðx; tÞ=∂xuðx; tÞÞ dt has the Fourier series c0=2þ∑N
k ¼ 1ck

cos ðkπx=LÞ. Then, the resulting system of equations is solved together
using a modified simple shooting method [5] to obtain αkðtÞ, kZ0:

4. Numerical results and discussion

The non-uniqueness in the solutions are due to (a) choice of the
form for uðx; y; tÞ, (b) choice of the form for vðx; y; tÞ, and (c) choice of
ξðtÞ. The first two reasons lead to theoretically non-unique solutions.
Even after the form of u and v are fixed, the last reason leads to non-
uniqueness in numerically computed solutions. This is because no
matter what ξ is, Eq. (6) is always satisfied. However, the choice of ξ
can yield numerically different solutions unless one is careful in
selecting ε and the number of modes N for a solution. For discretiza-
tion parameters δt and δx for time and the spatial coordinate
respectively, we select NrL=10δx and 5N2ηrεr� lnð0:5Þ=δt: For
δt ¼ 10�4 and δx¼ 10�3, the choice of N and two different ε values
shown in the table (Table 1) above show similar results. It must be
noted that for a choice of ε¼ 2000 and N¼10, which does not satisfy
the inequalities presented above, we found the kinetic energy to be
KE¼0.0075 ergs, and the energy dissipated due to viscosity to be
D¼ 2:21� 10�4 ergs. This shows that there exist numerically non-
unique solutions depending on the choice of ξ.

The numerical results are shown in Fig. 3(b). Other numerical
solutions corresponding to different choices of u and v needs to be
done in the future.

5. Conclusions

In this paper, we investigated the dynamic motion of a capillary
surface that forms between two vertical plates. We considered the
Navier–Stokes and continuity equations to set up a two-point bound-
ary value problem for fluid motion that deforms the capillary surface.
We showed that there exist non-unique solutions to the problem.
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Table 1
Viscous energy dissipation and initial kinetic energy variations with different ε

values.

N ε D� 10�4 (erg) KEini (erg)

10 5000 3.64 0.0210
7000 3.54 0.0201
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