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Abstract

In recent years, a low-dimensional model for thin magnetostrictive actuators that incorporated magneto-elastic coupling, inertial and

damping effects, ferromagnetic hysteresis and classical eddy current losses was developed using energy–balance principles by

Venkataraman and Krishnaprasad. This model, with the classical Preisach operator representing the hysteretic constitutive relation

between the magnetic field and magnetization in the axial direction, proved to be very successful in capturing dynamic hysteresis effects

with electrical inputs in the 0–50Hz range and constant mechanical loading. However, it is well known that for soft ferromagnetic

materials there exist excess losses in addition to the classical eddy current losses. In this work, we propose to extend the above mentioned

model for a magnetostrictive rod actuator by including excess losses via a nonlinear resistive element in the actuator circuit. We then

show existence and uniqueness of solutions for the proposed model for electrical voltage input in the space L2ð0;TÞ \ L1ð0;TÞ and
mechanical force input in the space L2ð0;TÞ:
r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Smart materials like piezoelectrics and magnetostrictives
have complex electro-magneto-visco-elastic constitutive
relationships that give rise to rate-dependent hysteretic
responses. Among them, magnetostrictive actuators show
considerably more complex responses due to the presence
of microscopic eddy-currents in both the magnetostrictive
actuator and its ferromagnetic casing. These eddy-currents
can be significant even when the frequency of the electrical
excitation is as low as 10Hz [1].

In early works [1,2], we have addressed the importance
of the eddy-current modeling using energy-balance ideas.
The result was a model that could be represented in the
block diagram form in Figs. 1 and 2 when the resistor
Rexcess is neglected. Fig. 1 shows a three branch circuit. It
models a magnetostrictive actuator connected to a voltage
supply uð�Þ; with a lead resistor R: The hysteretic inductor
shown in one branch is an ideal inductor that accounts
only for hysteresis losses. In the other two branches, the
classical eddy current and excess losses are introduced by
front matter r 2005 Elsevier B.V. All rights reserved.
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using the resistors Rclassical and Rexcess, respectively. The
current I1 is proportional to the average magnetic field H

in the axial direction for thin magnetostrictive actuators
and can be expressed as I1 ¼ k3H: The magnetic field H is
related to the axial magnetization M via a Preisach
operator as Mð�Þ ¼W½Hð�Þ;c�1�; where Hð�Þ;Mð�Þ 2
C½0;T �; and c�1 is the initial memory curve [3]. The
voltage V across the inductor in Fig. 1 depends on H and
M via Lenz’s law as in Eq. (2) below. Fig. 2 models the
transduction from the magnetization to the strain in
the axial direction for the actuator. In this figure, W is
the rate-independent hysteresis operator (which in this
paper will be a classical Preisach operator) that yields the
axial Magnetization M from the axial magnetic field H:
The quantity bM2 is a mechanical force F that combined
with an external load F ext; acts as an input to the linear
mechanical system yielding the strain of the magnetostric-
tive actuator.
It should be noted that in the original model in [1,2], the

relationship between H and M appears as Mð�Þ ¼

W½ðHð�Þ þ a1Mð�Þ þ a2yð�ÞÞ;c� 1�; for some constants
a1; a2X0: This is a more general moving model than the
one studied by Brokate and Della Torre [3]. Here, we
address the case a1 ¼ a2 ¼ 0: In earlier works [1,2,4,5], the
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Fig. 1. A magnetostrictive actuator connected to a power supply.

Fig. 2. Model of the transduction of the magnetic field Hð�Þ to the

actuator displacement yð�Þ:

R.V. Iyer, S. Manservisi / Physica B 372 (2006) 378–382 379
eddy currents losses were of the classical type with the
power loss per cycle for a sinusoidal excitation of frequency
f Hz given by

Ploss ¼ Physt þ Pclassical ¼ Physt þ k1f where k140.

This model works well in the 0–50Hz range, but for higher
frequencies, it is clear that excess losses must be included.
Detailed studies on soft ferromagnets [6,7] suggest that
over large frequency range (from near 0Hz to 100KHz),
the power loss consists of excess, hysteresis and classical
eddy current losses. It has also been found by several
researchers (see for example [8]) that laminating the
ferromagnets did not reduce the excess loss vis-a-vis the
classical losses. In fact for magnetostrictive actuators,
the problem is accentuated because of the use of magnetic
material inside the actuator casing provides a path for the
flux. Based on the work by Bertotti [9], and Fiorillo and
Novikov [7] on soft ferromagnets, we propose to consider
the power loss per cycle to be for a sinusoidal excitation of
frequency f Hz given by

Ploss ¼ Physt þ Pclassical þ Pexcess

¼ Physt þ k1f þ k2

ffiffiffi
f

p
where k1; k240.

It has been shown in [7] that this is equivalent to
considering the Pexcess as proportional to

ffiffiffiffiffiffi
j _Bj

p
; where

BðtÞ is the time-varying average magnetic flux density in the
thin rod actuator. Since V ¼ K3=m0dB=dt for some
constant K3, adding the excess losses to the model is
equivalent to introducing a nonlinear resistor Rexcess ¼

K2

ffiffiffiffiffiffiffiffiffiffiffiffi
jV ðtÞj

p
; in parallel to Rclassical where V ðtÞ is the voltage

shown in Fig. 1. This leads to the following time dependent
coupled equations

K1HRþ V
R

Rclassical
þ 1

� �

þ signðV ÞðjV jÞ1=2
R

K2
¼ u, ð1Þ

K3
dM

dt
þ

dH

dt

� �
¼ V , (2)

Mð�Þ ¼W½Hð�Þ;c�1�, (3)

m
d2y

dt2
þ c1

dy

dt
þ c2y ¼ bM2

þ F ext. (4)

The constants K1;K2;K3;m40 and R; c1; c2; bX0: Eq. (1)
arises from Kirchoff’s voltage and current laws applied to
Fig. 1. Eq. (2) is Lenz’s law applied to the magnetostrictive
rod. Eq. (3) relates the average Magnetization in the axial
direction of the rod to the average magnetic field via a
classical Preisach operator. Finally, Eq. (4) relates the
displacement of the tip of the actuator y to the magneto-
motive force bM2 and the external force F ext while taking
into account viscous damping and elastic effects in the
material.
Tan and Baras in [4,5] consider the model without excess

losses and show the existence (and uniqueness) of solutions
ðH ;MÞ in the space C½0;T � � C½0;T �: However, a stronger
result that ðH;MÞ are not only continuous, but also

differentiable (in light of Eq. (2)) needs to be shown. We
show that the outline of Brokate and Sprekel’s arguments
for the heat equation with hysteresis [3] can be used to
conclude existence and uniqueness, in spite of the nonlinear
resistor Rexcess:

2. Existence and uniqueness of solutions

Let the Preisach operator W be a map W : C½0;T � !
C½0;T � such that
H1.
 W is continuous on C½0;T �;

H2.
 W is piecewise increasing;

H3.
 The Preisach density function has a bounded integral

(see assumption H4 in [3, p. 137]).
Consider Eqs. (1)–(3) in the variational form (for
appropriate a; b and function f )

aH þ V þ b signðV Þ
ffiffiffiffiffiffiffi
jV j

p
¼ f , (5)

Z T

0

dH

dt
fdtþ

Z T

0

dM

dt
fdt

¼

Z T

0

Vfdt 8f 2 L2ð0;TÞ, ð6Þ

Mð�Þ ¼W½Hð�Þ;c�1�. (7)

We leave (4) in its original form because existence and
uniqueness for y will follow from ODE theory once they
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are established for M: Consider a discretization of the time
interval ½0;T � given by 0 ¼ t0o � � �otN ¼ T . Let Hi

denote the value of HðtÞ at these points and similar
notation be used for the other functions. Eqs. (5)–(7) in
discretized form become

aHi þ Vi þ b signðV iÞ

ffiffiffiffiffiffiffiffi
jVij

q
¼ f i, (8)

Hi �Hi�1 þMi �Mi�1 ¼ hVi, (9)

Mi ¼W½H0; . . . ;Hi;c�1� (10)

for i ¼ 1; . . . ;N with H0, W½H0;c�1� initial conditions.

Lemma 2.1. Given f i; for each Hi in (8) we have a unique V i

and vice versa. Furthermore, we have jV ij2p2a2jHij2 þ

2jf i
j2 for all i ¼ 1; . . . ;N.

Proof. Given f i and Hi, as hðvÞ ¼ vþ b signðvÞ
ffiffiffiffiffi
jvj
p

is an
increasing function of v, we have a unique solution V i to
the equation hðV iÞ ¼ �aHi þ f i: Similarly, given f i and V i

we have a unique Hi. Next, we multiply both sides of (8)
by V i to get: aHiVi þ jV ij2 þ bjV ij

ffiffiffiffiffiffiffiffi
jVij

p
¼ f iV i:

As bjV ij
ffiffiffiffiffiffiffiffi
jV ij

p
X0; we have: jVij2pjf i

� aHijjVij: On
using Cauchy–Schwartz twice on the RHS, we get:
jV ij2p2ðjf i

j2 þ a2jHij2Þ. &

Lemma 2.2. Given f i; i ¼ 1; . . . ;N; Eqs. (8)–(10) with

initial condition H0 and W½H0;c�1� have a solution

ðVi;Hi;MiÞ for i ¼ 1; . . . ;N:

Proof. We prove this lemma by induction by proving that
(8)–(9) has a solution ðVi;HiÞ. We do not need Eq. (10) due
to the hypothesis H2. Suppose that there is a solution to
the equations for i � 1. Eqs. (8)–(9) can be seen as the
vector equation

SðVi;HiÞ ¼
ahHi

þ hV i
þ hb signðV iÞ

ffiffiffiffiffiffiffiffi
jV ij

p
� hf i

aðHi �Hi�1Þ þ aðMi �Mi�1Þ � ahVi

2
4

3
5

¼
0

0

" #
.

It is straightforward to see that limkðVi ;HiÞk!1 SðV i;HiÞ �

½ViðHi �Hi�1Þ�T=kðV i;HiÞk ! 1; using Hypothesis H2.
As SðVi;HiÞ is coercive with respect to the point ð0;Hi�1Þ;
Eqs. (8)–(9) have a solution ðVi;HiÞ by Proposition 1.3.1 of
[3]. The existence of Hi yields the existence of Mi in Eq.
(10). By using the similar argument for all i the lemma
yields. &

Theorem 2.1 (Existence of solutions). Let the Preisach

operator W satisfy the hypotheses H1–H3, f be in

L2ð0;TÞ \ L1ð0;TÞ and F ext 2 L2ð0;TÞ: Then the system

(1)–(4) has a weak solution ðH ;M;V ; yÞ 2 H1ð0;TÞ
\L1ð0;TÞ �H1ð0;TÞ � L2ð0;TÞ \ L1ð0;TÞ �H1ð0;TÞ.

Proof. Let h ¼ T=N be the step of a discretization sN of
the interval ½0;T � in N subintervals. Since M 2 H1ð0;TÞ
and F ext 2 L2ð0;TÞ implies y 2 H1ð0;TÞ we can discuss
only the system (5)–(7).
Let H ¼ Hh and M ¼Mh be linear approximations over
the discretization sN in H1ð0;TÞ. We denote by ðHi

h;M
i
hÞ

the values of ðHh;MhÞ at the vertices i ¼ 0; 1; 2; . . . ;N of
such approximation. Also let H̄h; V̄ h be a constant
piecewise approximation such that Hi

h;V
i
h are the constant

value in the subinterval i. The approximation
ðHh; H̄h;Mh; V̄hÞ satisfies for all f 2 L2ð0;TÞ:Z T

0

dHh

dt
fdtþ

Z T

0

dMh

dt
fdtþ

Z T

0

aH̄hfdt

þ b
Z T

0

signðV̄hÞ

ffiffiffiffiffiffiffiffiffi
jV̄ hj

q
fdt ¼

Z T

0

ffdt, ð11Þ

Mhð�Þ ¼W½Hhð�Þ;c�1�. (12)

In order to prove the theorem, we first construct a sequence
of solutions fðHi

h;M
i
h;V

i
hÞg

N
i¼0 for different h. Then we

prove that the sequence has a limit, and finally pass to the
limit Eqs. (11)–(12) as h tends to zero. The construction of
the sequence for different h is obtained by choosing f ¼ fh

as a standard constant piecewise approximation in
L2ð0;TÞ. Then (11)–(12) yields

ðHi �Hi�1Þ

h
þ
ðMi �Mi�1Þ

h
þ aHi

þ b signðViÞ

ffiffiffiffiffiffiffiffi
jV ij

q
¼ f i, ð13Þ

Mi ¼W½H0; . . . ;Hi;c�1�, (14)

where f i
¼
R ih
ði�1Þh

f ðtÞdt for i ¼ 1; . . . ;N. The above system
has a solution in agreement to Lemma 2. Therefore, we can
construct a sequence of solutions for h tending to zero.
Now we use compactness arguments to prove that
convergent subsequences can be found. We choose fh ¼

hdHh=dt in L2ð0;TÞ, which is a piecewise constant function
since Hh is linear, and obtain

jHi �Hi�1j2

h
þ
ðMi �Mi�1ÞðHi �Hi�1Þ

h
þ aHiðHi �Hi�1Þ

¼ f i
� b signðViÞjV ij1=2ðHi �Hi�1Þ.

By applying the Schwartz and the Young’s inequalities and
Lemma 2.1 on the RHS, we have

jHi �Hi�1j2

2h
þ
ðMi �Mi�1ÞðHi �Hi�1Þ

h

þ aHiðHi �Hi�1Þp
h

2
ðjf i
j2 þ b2jV ijÞ

p
h

2
jf i
j2 þ

2aTb4

2
þ
jV ij2

4aT

� �

p
h

2
jf i
j2 þ b4aT þ

2ða2jHij2 þ jf i
j2Þ

4aT

� �
. ð15Þ

By induction:
Pn

i¼1HiðHi �Hi�1Þ ¼
Pn

i¼1jH
i �Hi�1j2=2þ

ðjHnj2=2� jH0j2Þ=2: If we sum (15) over all i ¼ 1; 2; . . . ; n;
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where npN; we have

Xn

i¼1

h

2

jHi �Hi�1j2

h2
þ
Xn

i¼1

ðMi �Mi�1ÞðHi �Hi�1Þ

h

þ
a
2

Xn

i¼1

jHi �Hi�1j2 þ
a
2
ðjHnj2 � jH0j2Þ

p
1

2

Xn

i¼1

h jf i
j2 þ b4aT þ

ða2jHij2 þ jf i
j2Þ

2aT

� �
. ð16Þ

From the theorem hypotheses f is in L2½0;T �, i.e.,PN
i¼1hjf

i
j2pkf kL2oC1; and therefore, taking the max

over 1pnpN, we have

XN

i¼1

h

2

jHi �Hi�1j2

h2
þ
XN

i¼1

ðMi �Mi�1ÞðHi �Hi�1Þ

h

þ
a
2

XN

i¼1

jHi �Hi�1j2 þ
a
2
ðkHhk

2
L1 � jH

0j2Þ

pC2 þ
a
4T

XN

i¼1

hjHij2 for some C240. ð17Þ

By hypothesis H2

1

2

dHh

dt

����
����

L2
þ

a
2

Xn

i¼1

jHi �Hi�1j2 þ
a
2
kHhk

2
L1

pC2 þ
a
4
kHhk

2
L1

1

2

dHh

dt

����
����

L2
þ

a
2

Xn

i¼1

jHi �Hi�1j2 þ
a
4
kHhk

2
L1

pC2,

and therefore the norms kHhk
2
L1 , kdHh=dtkL2 andPn

i¼1jH
i �Hi�1j2 are bounded for all h. From the

definition of Hh and H̄h we have

kHh � H̄hkL2ð0;TÞ ¼
T

3N

XN

i¼1

jHi �Hi�1j2, (18)

which tends to 0 as N !1 since
PN

i¼1jH
i �Hi�1j2

remains bounded. By Lemma 2.1

kV hk
2pða2kHhk

2 þ kf hk
2ÞpC3 for some C340. (19)

By the above results and by Eq. (6), we have:Z T

0

dMh

dt
fdt

����
����pC4kfkL2ð0;TÞ

8f 2 L2ð0;TÞ for some C440. ð20Þ

Therefore, it is possible, from the previous sequences, to
extract subsequences such that

fHhgj ! H weakly-star in H1ð0;TÞ \ L1ð0;TÞ, (21)
fH̄hgj ! H̄ weakly-star in L1ð0;TÞ, (22)

fMhgj !M weakly in H1ð0;TÞ, (23)

fVhgj ! V weakly-star in L2ð0;TÞ \ L1ð0;TÞ. (24)

By using these results and the fact that, from (18), H̄ ¼ H

and f h ! f as h tends to zero we can pass to the limit (11)
and obtain the desired result if the hysteresis operator
equation holds in these spaces. In order to prove this, we
note that the compactness and continuity of the imbedding

of H1ð0;TÞ in C½0;T � (see [3, p. 17]) yields that the
subsequence Hh converges also in C½0;T �. Let

M̄h ¼W½Hh�. Since Hh ! H; by strong continuity we

have that M̄ ¼W½H�; and the theorem follows if M ¼ M̄.
By assumption H3 and Proposition 2.4.11 in [3], the
Preisach operator W is Lipschitz continuous on C½0;T �:
Therefore

kMh � M̄hk1 ¼ kW½Hh;c�1� �W½H̄h;c�1�k1
pC5kHh � H̄hk1 for some C540.

Therefore Mh � M̄h ! 0 strongly in C½0;T �:
Let F ext;h be a linear approximation of F ext over the

discretization sN in L2ð0;TÞ: The regularity of y comes
from standard theory since both Mh and F ext;h are in
H1ð0;TÞ and therefore in C½0;T �. &

Next, we prove uniqueness by using the idea behind
Hilpert’s inequality as found in the proof of Theorem 3.3.7
in [3]. As noted in [3], Hilpert’s inequality is not directly
applicable when the hysteresis operator is a Preisach
operator, due to its non-local memory. But the idea can
still be applied by taking advantage of the definition of this
operator. We need to introduce one more notation before
the uniqueness result can be shown. A Preisach operator
W is defined by an output mapping Q on the space of
memory curves C0 (see [3, p. 52]) of the form

QðfÞ ¼
Z 1
0

qðr;fðrÞÞdnðrÞ þ w00, (25)

where n is a finite Borel measure on Rþ; w00 2 R and
qðr; sÞ ¼ 2

R s

0 oðr; sÞds for a given function o 2 L1
locðRþ �

R; n� lÞ: Corresponding to an input H 2 C½0;T �; the
memory curve c 2 C0 at time t 2 ½0;T � is given by [3]:
ciðt; rÞ ¼Fr½Hð�Þx½0;t�;c�1ðrÞ�; where c�1 is the ‘‘initial’’
memory curve at t ¼ 0; xð�Þ is the characteristic function;
Fr is the Play operator with parameter r:

Theorem 2.2 (Uniqueness of solutions). Let the Preisach

operator W satisfy Hypotheses H1–H3, and let f be in

L2ð0;TÞ \ L1ð0;TÞ and F ext 2 L2ð0;TÞ: Then the solution of

the system (5)–(7) ðH;M ;V ; yÞ 2 H1ð0;TÞ \ L1ð0;TÞ �
H1ð0;TÞ � L2ð0;TÞ \ L1ð0;TÞ �H1ð0;TÞ is unique.

Proof. The proof uses Hypothesis H3 in the same fashion
as Theorem 3.3.7 of Brokate and Sprekels [3]. Let
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ðH1;M1;V 1; y1Þ and ðH2;M2;V2; y1Þ be two solutions of
(5)–(7). Then, we have

aðH1 �H2Þ þ hðV1Þ � hðV 2Þ ¼ 0, (26)

Z T

0

d

dt
ðH1 �H2Þfdtþ

Z T

0

d

dt
ðM1 �M2Þfdt

þ

Z T

0

ðV 2 � V 1Þfdt ¼ 0; 8f 2 L2ð0;TÞ, ð27Þ

with hðV Þ ¼ V þ signðV Þ
ffiffiffiffiffiffiffi
jV j
p

a monotone increasing
function. Let f ¼ HeðH1 �H2Þw½0;t� where Heð�Þ is the
Heaviside function, and w the characteristic function over
½0; t�. Denote wiðr; tÞ ¼ qðr;Fr½Hi;c�1;iðrÞ�ðtÞÞ for i ¼ 1; 2:
Then we have after integration (with ðH1 �H2Þð0Þ ¼ 0 and
kc�1;1 � c�1;2k1 ¼ 0), and applying Hilpert’s inequality as
used in Theorem 3.3.7 of [3]:

ðH1 �H2ÞþðtÞ þ

Z 1
0

ðw1ðr; tÞ � w2ðr; tÞÞþ dt

þ

Z t

0

ðV 2 � V1ÞHeðH1 �H2Þdtp0, ð28Þ

where the function zþ ¼ maxf0; zg. We note that hðV Þ is
strictly monotone increasing function which implies V2 �

V140 if H14H2. Since all terms are non-negative, Eq.
(28) implies H1 ¼ H2, w1 ¼ w2 and V 1 ¼ V 2 if H14H2.
The same result can be proved if H1pH2: As

jM1 �M2jðtÞp
Z 1
0

jw1ðr; tÞ � w2ðr; tÞjdt,

we have M1ð�Þ ¼M2ð�Þ: The uniqueness of y follows from
standard theory for ODE’s. &
3. Conclusion

In this paper, we have considered the low-dimensional
model for magnetostriction [1,2,5] and added excess eddy
current losses to the model. This amounts to inserting a
non-linear resistor into the electrical part of the model. For
input voltages in L2ð0;TÞ \ L1ð0;TÞ and mechanical force
inputs in L2ð0;TÞ we have also proved existence and
uniqueness of solutions for the model.
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