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1. Introduction

The noncommutative generalization of the A-polynomial of a knot of

Cooper, Culler, Gillet, Long and Shalen [4] was introduced in [6] . This

generalization consists of a finitely generated left ideal of polynomials in

the quantum plane, the noncommutative A-ideal, and was defined based on

Kauffman bracket skein modules, by deforming the ideal generated by the

A-polynomial with respect to a parameter. The deformation was possible

because of the relationship between the skein module with the variable t of

the Kauffman bracket evaluated at −1 and the SL(2, C)-character variety

of the fundamental group, which was explained in [2]. The purpose of the

present paper is to compute the noncommutative A-ideal for the left- and

right-handed trefoil knots. As it will be seen below, this reduces to trigono-

metric operations in the noncommutative torus, the main device used being

the product-to-sum formula for noncommutative cosines.

The computation of the A-ideal relies on understanding how the skein

algebra of the cylinder over a torus acts on the skein module of the knot

complement. For the left-handed trefoil the action is described in Theorem

1. In Theorems 2 and 4 we describe the peripheral ideal of the left-handed

trefoil knot, which is the ideal that anihilates the empty skein. Finally,

Theorem 3 lists three generators for the noncommutative A-ideal of the left-

handed trefoil, when t is not an eighth root of unity. The case t = −1

makes the object of Theorem 5. In the last section, we list the analogous

results for the right-handed trefoil. The proofs of the results are sketchy,

since we preferred to skip long routine computations, and focussed only on

main ideas.

2. Preliminary facts

Througout this paper t will either denote the variable of the ring of Lau-

rent polynomials C[t, t−1], or a fixed complex number, with the distinction

specified whenever necessary. A framed link in an orientable manifold M
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is a disjoint union of embedded annuli. In the case where the manifold

is the cylinder over the torus, framed links will be identified with curves,

using the convention that the annulus is parallel to the surface. Let L

be the set of isotopy classes of framed links in the manifold M , including

the empty link. Consider the free module over C[t, t−1] with basis L, and

factor it by the smallest submodule containing all expressions of the form

− t − t−1 and © + t2 + t−2, where the links in each expression

are identical except in a ball in which they look like depicted. This quotient

is denoted by Kt(M) and is called the Kauffman bracket skein module of

the manifold [8]. In the case of a cylinder over a surface, the skein module

has an algebra structure induced by the operation of gluing one cylinder

on top of the other. The operation of gluing the cylinder over ∂M to M

induces a Kt(∂M × I)-left module structure on Kt(M). We denote by ∗

the multiplication in Kt(∂M × I) and by · the left action of this algebra on

Kt(M).

Let us discuss in more detail two structure results about the Kauffman

bracket skein algebra of the torus and the Kauffman bracket skein module

of the complement of the trefoil knot. For this we need the Chebyshev

polynomials of first and second type. The Chebyshev polynomials of first

type are Tn, n ≥ 0, defined by T0(x) = 2, T1(x) = x, and Tn+1(x) =

xTn − Tn−1. Recall that they arise when expressing 2 cosnα as a function

of 2 cosα. The Chebyshev polynomials of second type Sn, n ≥ 0 satisfy

the same reccurence relation, but with S0(x) = 1 and S1(x) = x. They

arise when writing sin (n+ 1)α/ sinα as a function of cosα, and satisfy

Sn = Tn +Tn−2 +Tn−4 + · · · , where the sum ends in a 1 (not 2) if n is even.

Extend both polynomials by the reccurence relation to all indices n ∈ Z.

Note that T−n = Tn, while S−n = −Sn−2.

For a link γ in a skein module we will denote by γn the link consisting

of n parallel copies of γ, and extend the notation to polynomials. For a

pair of integers (p, q), we denote by (p, q)T the element of the Kauffman
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bracket skein module of the cylinder over the torus defined in the following

way. Let n be the greatest common divisor of p and q, p′ = p/n, q′ = q/n

and let (p′, q′) be the simple closed curve of slope p′/q′ on the torus. Then

(p, q)T = Tn((p′, q′)), i.e. the formal polynomial in Kt(T
2 × I) obtained by

replacing the variable of the Chebyshev polynomial by the (p′, q′)-curve on

the torus. Define analogously (p, q)JW = Sn((p′, q′)). The index is motivated

by the fact that Sn((p′q′)) is the (p′, q′)-curve colored by the n-th Jones-

Wenzl idempotent.

As an C[t, t−1]-module, Kt(T
2 × I) is spanned by the elements (p, q)T ,

p ≥ 0. It was proved in [5] that Kt(T
2 × I) is canonically isomorphic to the

subalgebra of the noncommutative torus [3] spanned by noncommutative

cosines. Here the torus is deformed with respect to the parameter t. The

isomorphism is a consequence of the product-to-sum formula for skeins in

Kt(T
2 × I) (which is actually the product-to-sum formula for noncommuta-

tive cosines):

(p, q)T ∗ (r, s)T = t|
pq
rs |(p + r, q + s)T + t−|pq

rs |(p− r, q − s)T .

This formula will be essential for all computations in the paper.

It was proved in [1] that the Kauffman bracket skein module of the com-

plement of the trefoil (whether left or right), is the free module generated

by xn and xny, where n ≥ 0, and x and y are the curves shown in Fig.

1. As we will see below, it is more useful to consider a different basis of

y

x

Figure 1.

this module, namely Sn(x) and Sn(x)y, n ≥ 0. This recalls the case of the
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unknot [5], where again the Chebyshev polynomials of second type helped

produce concise formulas.

If M is the complement of a knot K, then one can introduce a non-

commutative generalization of the A-polynomial of K defined in [4], in the

following way (see [6]). Denote by π the map between skein modules in-

duced by the inclusion (∂M × I) ⊂ M and let It(K) be the kernel of π.

The noncommutative A-ideal of K is defined to be the left ideal obtained by

extending It(K) to the subalgebra of the noncommutative torus consisting

of trigonometric polynomials, and then intersecting it with Ct[l,m] (i.e. by

contracting to the quantum plane). Recall that the algebra of noncommuta-

tive trigonometric polynomials is Ct[l, l
−1,m,m−1], while Ct[l,m] is usually

called the quantum plane [7], where in both l and m satisfy lm = t2ml. The

classical A-polynomial is obtained by working with t = −1, replacing l and

m by −l and −m respectively, and taking the generator of the radical of the

part of the ideal that has Krull dimension equal to 1. The fact that this is

indeed the A-polynomial follows from Bullock’s [2] characterization of the

Kauffman bracket skein module at t = −1 as the affine SL(2, C)-character

variety ring of the fundamental group (see also [9]), together with the fact

that K−1(T
2 × I) has no nilpotents. It is important to stress out the fact

that, as it usually happens in the theory of skein modules, the A-ideal for

t = −1 is not obtained by simply substituting in formulas the variable t by

its particular value [6]. Rather the computation has to be done separately

for particular values of t.

With the above notation, the elements ep,q = t−pqlpmq in Ct[l, l
−1,m,m−1]

are called noncommutative exponentials, the elements cost(p, q) = (ep,q +

e−p,−q)/2 are called noncommutative cosines, and the elements sint(p.q) =

(ep,q − e−p,−q)/2 are called noncommutative sines. The morphism from

Kt(T
2 × I) to the noncommutative torus maps (p, q)T to 2 cost(p, q), and

under this identification the computations become trigonometric manipula-

tions of cost(p, q) and sint(np, nq)/ sint(p, q), hence the title of the paper.
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3. The Kt(T
2 × I)-module structure of the skein module of the

complement of the left-handed trefoil knot

In this section K will denote the left-handed trefoil knot and M the

complement of a regular neighborhood of this knot.

Lemma 1. In the Kauffman bracket skein module of the complement of the

trefoil knot, the following equality holds

y2 = −t2S2(x)y − t4S2(x) + S0(x).

Proof. The element y2 can be obtained by the Kauffman bracket skein rela-

tion for the unknot like in Fig. 2. To compute the skein on the right side, one

can proceed like in Fig. 3. It is not hard to see that in the end one obtains

−t4y + t4x2y + t6x2. Since the unknot with a positive twist from Fig. 1 is

equal to (−t3)(−t2−t−2), we obtain y2 = 1+t4+t2y−t2x2y−t4x2. Grouping

these terms appropriately we obtain the formula from the statement. �

Lemma 2. In the Kauffman bracket skein module of the complement of the

trefoil knot, the following equality holds

y3 = t4S4(x)y + 2S0(x)y + t6S4(x) + t10S0(x).

Proof. To compute y3 we use the relation from Fig. 4. It is not hard to see

that the skein on the left is equal to (t + t5)y, while the skein on the right

can be transformed like in Fig. 5.

In the last line of Fig. 5, the second skein is equal to t4x2y2 and the third

to t6x2y. Since we already computed y2, it only remains to compute the

remaining one skein. To this end we write a Kauffman bracket skein relation

as in Fig. 6. The first diagram from the right side can be easily transformed

like in Fig. 7, and applying the skein relation we obtain that this is equal

to −t−2x2 − t−4y. For the diagram on the left we use the computation from

Fig. 8 to conclude that is equal to t7 + t3 − 2t3x2 − tx2y. Hence the missing

skein is equal to t8 + t4 − 2t4x2 + x2 + t−2y − t4x2y. In the end we deduce
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that y3 = t10 + t6 − 3t6x2 + t6x4 + 2y+ t4y− 2t4x2y− t4x2y+ t4x4y, and by

grouping terms we obtain the formula from the statement.

�

Lemma 3. The following equalities hold

a). π((1, 0)T ) = t6S6(x) − t2S0(x) + t4S4(x)y − S0(x)y.

b). π((1,−1)T ) = t5S5(x) + t3S3(x)y.
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Proof. Using the Kauffman bracket skein relation we obtain the expansion

from Fig. 9. Using the computation from Fig. 7 we see that the first

diagram is equal to (−t−2m2 − t−4y)3. The second and the fourth diagram

are equal to (−t2 − t−2)2 and (−t2 − t−2), respectively. It remains to find

the value of the third diagram. The computations from Fig. 10 and Fig.

11, combined with that of Fig. 7, show that the desired value of diagram is

1 + t−4 + t−6x2y + t−8x4 + t−10y. On the other hand, the first skein from

Fig. 7 is almost the image in the skein module of the knot complement of

the (1, 0) curve on the torus. To obtain the image of the curve multiply this
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skein by the framing factor of −t9, induced by the twistings of the (1, 0)

curve around the torus, and a) follows. The proof of b). is analogous, even

simpler, and is left to the reader.

�

Lemma 4. For any q ∈ Z one has

π((1, q)T ) = tq+6Sq+6(x) − tq+2Sq(x) + tq+4Sq+4(x)y − tqSq(x)y.
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Proof. The proof is by induction on q, based on Lemma 3 and the product-

to-sum formula:

(1, q)T ∗ (0, 1)T = t(1, q + 1)T + t−1(1, q − 1)T .

Here we use the fact that π((0, 1)T ) = x. �

An element of the skein module of a manifold is called peripheral if it is

the image through the inclusion map of an element of the skein algebra of

the cylinder over the boundary. A skein module is peripheral if all of its

elements are peripheral. As a consequence of Lemma 4 we obtain:

Lemma 5. In Kt(M), one has

(t4 − t−4)y = π
(

t4(1,−4)T − t−2(1,−2)T + t2(0, 4)T − t6(0, 2)T − t6 + t−2
)

.

So if t is not an eighth root of unity, then y is peripheral, hence the skein

module Kt(M) is peripheral.

Let m,n be two integers. Denote by xn,m the skein in the mapping cylin-

der of a pair of pants given in Fig. 12. Here if m or n is negative, the kinks

are in the other direction. Recall that the mapping cylinder of a pair of

{
}

n times

m times 

xm,n

α

β

γ

Figure 12.

pants is the free module with basis αmβnγp, m,n, p ≥ 0 where the curve α,

β and γ are shown in Fig. 12.

Lemma 6.

xm,n = (−t−2)m+n−1Sm(α)Sn(β) − (t−2)m+nSm−1(α)Sn−1(β)γ +

(−t−2)n+m+1Sm−2(α)Sn−2(β).
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Proof. Sliding the strand one might produce a kink which, when resolved

via the Kauffman bracket skein relation, produces two configurations with

less complexity. Hence an induction on both m and n works to prove the

formula. �

Lemma 7. For q ∈ Z one has

(1, q)T · y = tqSq−2(x) − tq+8Sq+6(x) + tq−2Sq−2(x)y − tq+6Sq+4(x)y.

Proof. Note that we have the equality from Fig. 13. If we denote by un−3 the

skein from Fig. 14 multiplied by (−t3)n · (−t9), then the image of (1, p)T · y

in Kt(M) is obtained from the sum in Fig. 13 by capping each term of the

sum with up−3. Let us denote by a1, a2, · · · , a12 be the twelve skeins of the

sum respectively, and let us denote the capping operation by ◦. Then one

can easily see that

x1 ◦ un = π((1, n)T )

x2 ◦ un = (−t−3)xπ((1, n + 1)T )

x3 ◦ un = (−t3)xπ((1, n − 1)T ).

Also using Lemma 6 we obtain

x4 ◦ un = tn+6x2Sn+6(x) + tn+4xSn+5(x)y

x5 ◦ un = tn+6xS2(x)Sn+5(x) + tn+4x2Sn+4(x) + tn+2xSn+3(x)

x6 ◦ un = tn+10xSn+5(x) − tn+6xSn+3(x)

x7 ◦ un = tn+10x2Sn+4(x) + tn+8xSn+3(x)y

x8 ◦ un = −tn+8x3Sn+5(x) − tn+6x2Sn+4(x)y

x9 ◦ un = −tn+8xSn+5(x) − tn+6Sn+4(x)y

x10 ◦ un = −tn+8xSn+5(x) − tn+6Sn+4(x)y

x11 ◦ un = −tn+8Sn+6(x) + tn+4Sn+4(x)

x12 ◦ un = −tn+8S2(x)Sn+4(x) − tn+6xSn+3(x)y − tn+4Sn+2(x).



NONCOMMUTATIVE TRIGONOMETRY AND THE A-POLYNOMIAL 13

= ( t 2+t -2 ) + t 4 + t
-4

+ t 2 + t 2

+

+

++ + +

+ t + t -2 -2

Figure 13.
n times

Figure 14.

On the other hand, xSn(x) = Sn+1(x) + Sn−1(x) and

xπ((p, q)T ) = π((p, q)T ∗ (0, 1)T ) = tpπ((p, q + 1)T ) + t−pπ((p, q − 1)T ).

Using these observations and Lemma 4, we see how to write all right-hand

sides in the above relations in the basis of Kt(M). A lengthy computation

with many cancellations produces the formula from the statement. �

Define ǫk to be equal to 1 if k is odd, and 0 if k is even.

Theorem 1. If p > 0 then

π((p, q)T ) = t6p2+pqSq+6p(x) + t6p2+pq−2Sq+6p−2(x)y +

2p−1
∑

k=1

(−1)[
k+1

2 ]t6p2−([k
2 ]+1)(6[ k

2 ]+4ǫk)+pqSq+6p−3k+ǫk−2(x)(1 + t−2y).
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The action of Kt(T
2 × I) on Kt(M) is determined by

(p, q)T · y = −t6p2+pq+2Sq+6p(x) − t6p2+pqSq+6p−2(x)y +

2p−2
∑

k=1

(−1)[
k−1

2 ]t6p2−([k
2 ]+1)(6[ k

2 ]+4ǫk)+pqSq+6p−3k+ǫk−2(x)(t
2 + y) +

(−1)p−1Sq(x)t
−2q+pq(t2 + y).

Proof. The two equations are proved simultaneously by induction. By Lemma

4 and Lemma 7, they are true for p = 1, and the inductive step is based on

the product-to-sum formula

(1, 0)T ∗ (p, q)T = tp(p+ 1, q)T + t−p(p− 1, q)T .

and the fact that, by Lemma 7,

(1, 0)T · y = −1 − t8S6(x) − t−2y − t6S4(x)y.

�

4. The noncommutative A-ideal of the left-handed trefoil

The considerations below hold if t is a the polynomial variable or if t is a

complex number, which is not an eighth root of unity. For m ≥ 1, denote by

Im
t (K) the intersection of It(K) with the linear span of (p, q)T , 0 ≤ p ≤ m,

q ∈ Z.

Lemma 8. Every element in I1
t (K) is of the form p((0, 1)) ∗ τ , where

τ = (1,−5)T − t−8(1,−1)T + t−3(0, 5)T − t(0, 1)T .

and p is a polynomial with complex coefficients .

Proof. There is a part of I1
t (K) that arises via Lemmas 4 and 5, namely

that spanned by the elements

φq = (t4 − t−4)((1, q)T − tq+6(0, q + 6)JW + tq+2(0, q)JW ) −

(tq+4(0, q + 4)JW − tq(0, q)JW ) ∗ (t4(1,−4)T − t−2(1,−2)T +

+t2(0, 4)T − t6(0, 2)T − t6 + t−2).
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For example, for q = −5 we obtain τ , and for q = −6, we get the element

in the kernel

(1,−6)T + t−2(1,−4)T − t−8(1,−2)T − t−10(1, 0)T + t−4(0, 6)T +

t−4(0, 4)T − (0, 2)T − 2,

and it is not hard to see that it is equal to (0, 1)T ∗ τ . On the other hand,

using the product-to-sum formula, we can write (0, 1)T ∗φq = t−1φq+1+tφq−1

so an induction in both direction shows that all elements φq are of the

form p((0, 1)T ) ∗ τ . Note also that if q ≥ 0, then the terms with extreme

second coordinate that appear in the formula of φq are t−2(1, q + 2)T and

t2q+2(1,−q − 8)T .

Among all elements in the part of I1
t (K) not spanned by φq’s, choose one,

ψ, such that the maximum of |q + 1| with (1, q)T appearing in the writing

of ψ, is minimal. Let a(1, q + 2)T + (b(1,−q − 4)T be the part where the

maximum is attained (here q ≥ 0). Note that in Kt(M), π(ψ) had the

coordinate of Sq+6(x)y equal to atq+6 + btq−8, hence a and b are in the same

proportion as those of φq. But then by subtracting a multiple of q, we can

eliminate them, contradicting the minimality of ψ. This shows that there

are no other elements in I1
t (K), and the lemma is proved. �

Theorem 2. The ideal It(K) is generated by

(1,−5)T − t−8(1,−1)T + t−3(0, 5)T − t(0, 1)T ,

(2,−6)T − (t6 + t−6)(1, 0)T + (t4 + t−4)(1,−6)T + (0, 6)T − 2(t4 + t−4),

(2,−7)T + t−5(1,−7)T + (t−5 − t−1)(1,−3)T − t5(1,−1)T +

+(t2 − t−2)(0, 3)T − t−6(0, 1)T .

Proof. Let us denote by J the ideal generated by the three skeins from the

statement. The fact that J ⊂ It(K) follows from from Lemmas 4, 5 and 8.

Let us prove the equality. First, we check that there are no other generators

in I2
t (K). By Lemma 8, we only need to check the part of I2

t (K) of elements
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that actually contain (2, q)T ’s. But using the product-to-sum formula

(2, q)T ∗ (0, 1)T = t2(2, q + 1)T + t−2(2, q − 1)T

we can prove inductively that each such element in I2
t (K) can be reduced

modulo J to one in I1
t (K), and the latter is in J by Lemma 8.

We will prove that Im
t (K) is contained in J by induction on m. First

note that It(K) is spanned by the elements that arise by using the first

formula from Theorem 1, in which we replace x by (0, 1)T and y by its value

given in Lemma 5. Indeed, the right-hand side of the formulas produces

only elements in (0, n)T , (1, n)T , we can eliminate all (p, q)T ’s that appear

in the writing of an elements in the kernel using them and reduce such an

element modulo J to an element that only contains (p, q)T with p ≤ 2, and

then use the first part of the proof.

On the other hand, using the product-to-sum formula

(1, 0)t ∗ (p, q)T = tq(p+ 1, q)T + t−q(p− 1, q)T

we see that inductively we can reduce any element in Im
t (K) to one in I2

t (K)

modulo J , and the conclusion follows. �

Theorem 3. The ideal At(K) is generated by

[m4(l + t10) − t−4(l + t2)](l − t6m6),

(l + t24)(l + t10)(l + t2)(l − t6m6),

(m2 − t−22)(l + t10)(l + t2)(l − t6m6).

Proof. The first generator of It(K) given in Theorem 2 gives rise to the

element

t5(lm−5 + l−1m5) − t−7(lm−1 + l−1m) + t−3(m5 +m−5) − t(m+m−1)

in the subring of the noncommutative torus consisting of trigonometric poly-

nomials. After multiplying by t11 this element contracts to

t−4l2 + t16m10 − t−16l2m4 − t4m6 + t−2lm10 + t−2l − t2lm6 − t2lm4
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in the quantum plane. It is not hard to see that it factors as [m4(l + t10) −

t−4(l + t2)](l − t6m6). The other two generators of It(K) give rise to two

more generators of At(K). The ones from the statement are obtained from

these two after some algebraic manipulations which involve also the first

generator. �

Note the presence of the factor (l − t6m6), which is the noncommutative

analogue of the factor of the classical A-polynomial that stands for the

irreducible SL(2, C)-representations of the fundamental group.

Now let t = −1. Note the presence of a discontinuity, due to Lemma

5. In this case, the same arguments apply mutatis mutandis to prove the

following two results.

Theorem 4. The ideal I−1(K) is generated by (1,−4)T −(1,−2)T +(0, 4)T −

(0, 2)T − 2 and (2,−6)T − (0, 6)T .

Theorem 5. The ideal A−1(K) is generated by (l2 − 1)(l + 1)(l −m6) and

(m2 − 1)(l + 1)(l −m6).

Note that the classical A-polynomial is obtained by replacing l by −l and

m by −m, and then taking the common factors of the two generators (i.e.

eliminating the embedded primes). The change of sign in the variables is

due to the fact that the relationship between skein modules and character

varieties is established by the negative of the trace.

5. The case of the right-handed trefoil

When taking the mirror image the (p, q) curve in the boundary of the

left-handed trefoil becomes the (p,−q) curve on the boundary of the right-

handed trefoil. Also, in the Kauffman bracket skein relation, taking the

mirror image changes t to t−1. So for K the right-handed trefoil knot we

obtain the following results.
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Theorem 6. If p > 0 then

π((p, q)T ) = t−6p2+pqS−q+6p(x) + t−6p2+pq+2S−q+6p−2(x)y +

2p−1
∑

k=1

(−1)[
k+1

2 ]t−6p2+([k
2 ]+1)(6[k

2 ]+4ǫk)+pqS−q+6p−3k+ǫk−2(x)(1 + t2y).

The action of Kt(T
2 × I) on Kt(M) is determined by

(p, q)T · y = −t−6p2+pq+2S−q+6p(x) − t−6p2+pqS−q+6p−2(x)y +

2p−2
∑

k=1

(−1)[
k−1

2 ]t−6p2+([k
2 ]+1)(6[ k

2 ]+4ǫk)+pqS−q+6p−3k+ǫk−2(x)(t
−22 + y) +

(−1)p−1S−q(x)t
−2q+pq(t−2 + y).

Theorem 7. If t is not an eighth root of unity, the ideal It(K) is generated

by

(1, 5)T − t8(1, 1)T + t3(0, 5)T − t−1(0, 1)T ,

(2, 6)T − (t6 + t−6)(1, 0)T + (t4 + t−4)(1, 6)T + (0, 6)T − 2(t4 + t−4),

(2, 7)T + t5(1, 7)T + (t5 − t)(1, 3)T − t−5(1, 1)T −

−(t2 − t−2)(0, 3)T − t6(0, 1)T .

Theorem 8. If t is not an eighth root of unity, the ideal At(K) is generated

by

[m4(l + t10) − t−4(l + t2)](lm6 − t6),

(l + t24)(l + t10)(l + t2)(lm6 − t6),

(m2 − t−22)(l + t10)(l + t2)(lm6 − t6).

Theorem 9. The ideal I−1(K) is generated by (1, 4)T − (1, 2)T + (0, 4)T −

(0, 2)T −2 and (2, 6)T −(0, 6)T , and the ideal A−1 is generated by (l2−1)(l+

1)(lm6 − 1) and (m2 − 1)(l + 1)(lm6 − 1)
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