A RECURSIVE RELATION IN THE COMPLEMENT OF
THE (2p+1,2) TORUS KNOT

SUNDAY ESEBRE AND RAZVAN GELCA

ABSTRACT. It is known that the colored Jones polynomials of a knot in
the 3-dimensional sphere satisfy recursive relations, it is also known that
these recursive relations come from recurrence polynomials which have
been related, by the AJ conjecture, to the geometry of the knot com-
plement. In this paper we propose a new line of thought, by extending
the concept of colored Jones polynomials to knots in the 3-dimensional
manifold such as a knot complement, and then examining the case of
one particular knot in the complement of the (2p + 1,2) torus knot for
which an analogous recursive relation exists, and moreover, this relation
has an associated recurrence polynomial. Part of our study consists of
the writing in the standard basis of the genus two handlebody of two
families of skeins in this handlebody.

1. INTRODUCTION

In 1984 V.F.R Jones has discovered a polynomial invariant for knots in
the 3-dimensional sphere [13]. E. Witten has explained the Jones polynomial
using a quantum field theory whose action functional is the Chern-Simons
functional [20], showing that the Jones polynomial evaluated at a root of
unity is the expected value of the trace of the holonomy along the knot
of an su(2)-connection, which holonomy is computed in the fundamental
representation of SU(2). Witten has brought to attention the same expected
value computed for other possible representations of SU(2), among which a
special role is played by the irreducible representations. And as there is one
irreducible representation of SU(2) of dimension n + 1 for each n > 0, there
is a corresponding knot invariant, called the nth colored Jones polynomial
of the knot. The colored Jones polynomials of knots have been constructed
rigorously in [16] and [19] using quantum groups. There exists a slightly
modified version of Witten’s theory, based on the Kauffman bracket [14],
which can be found in [15], with its own version of colored Jones polynomials,
what we prefer to call the colored Kauffman brackets.

The combinatorial nature of Witten’s Chern-Simons theory is expressed
in skein relations, and these skein relations have led J. Przytycki to introduce
the concept of a skein module in an attempt to capture the combinatorial
aspects of Chern-Simons theory [18]. Our focus is on the Kauffman bracket

1991 Mathematics Subject Classification. 57TM27, 81T45.
Key words and phrases. colored Jones polynomials, Kauffman bracket, skein modules.
1



2 SUNDAY ESEBRE AND RAZVAN GELCA

skein modules. The Kauffman bracket skein module of a 3-dimensional
oriented manifold M is defined as follows. Let £ be the set of isotopy classes
of framed links in the manifold M, including the empty link. Consider the
free C[t,t~']-module with basis £, and factor it by the smallest subspace
containing all expressions of the form X —t X —¢t ) < and Q+t24+t2,
where the links in each expression are identical except in a ball in which they
look like depicted. The resulting quotient is the Kauffman bracket skein
module of M, denoted by K;(M).

It is in the context of Kauffman bracket skein modules that Ch. Frohman
has discovered that the colored Jones polynomials (or rather the colored
Kauffman brackets) of a knot in the 3-dimensional sphere are related to one
another [6]. The relation was expressed as an “orthogonality” between the
vector with entries the colored Jones polynomials and a vector computed
from a deformed version of the A-polynomial. The orthogonality relation
was further interpreted as a linear recursive relation for colored Jones poly-
nomials by the second author in [8]. This research has been further refined
by S. Garoufalidis and T.T.Q. Le in [7] using the concept of g-holonomicity,
to show that such recursive relations are build in the very definition of the
colored Jones polynomials. In this context they introduced the concepts
of recurrence polynomials and recurrence ideals for the colored Jones poly-
nomials of knots. It is important to point out that the Garoufalidis-Le
theory is for the actual colored Jones polynomials in the way they arise in
the Reshetikhin-Turaev theory based on quantum groups, and not for their
slightly modified Kauffman bracket versions.

In this paper we advance the problem of finding relations among colored
Jones polynomials to a different setting. We do this with the example of one
knot in the complement of the (2p + 1,2) torus knot. Let us recall that it
was shown in [4] that the Kauffman bracket skein module of the complement
in the three dimensional sphere of a regular neighborhood of the (2p + 1,2)
torus knot (in short the complement of the (2p + 1,2) torus knot) is a free
CJt,t~']-module with a basis consisting of the skeins

zMy", m=>0, 0<n<p,

where  and y are the curves shown in Figure 1. Our convention here
and throughout the paper is that we use the blackboard framing of curves,
and that the monomial x™y"™ means the multicurve consisting of m parallel
copies of x and n parallel copies of y.

FIGURE 1
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We recall the two families of (normalized) Chebyshev polynomials, those
of the first kind, T,,(£), defined by T,,(2cosf) = 2cosnf, and those of the
second kind, S;,(§), defined by S,(2cosf) = sin(n + 1)0/sinf, where n
ranges over all integers, positive and negative.

For the Kauffman bracket skein module of the complement of the torus
knot it is then sensible to use the basis

Sm(2)Sn(y), m=>0, 0<n<p,

motivated by the fact that the polynomial S, (&) is the character of the n+1st
irreducible representation of the Lie group SU(2), and so Sy, (x)Sy(y) would
correspond, in the Kauffman bracket picture, to the link x Uy decorated by
the m + 1st and n + 1st irreducible representations of this group (or of its
quantum version).

The present paper is focussed on just one example, and this example is
the knot in the complement of the (2p + 1, 2) torus knot that is the curve y
(endowed with the blackboard framing). Our main result is the following:

Theorem 1.1. For all n € 7Z, the following identity holds in the Kauffman
bracket skein module of the complement of the (2p + 1,2) torus knot

S () + 1Sy 1 (y) = (1) San (@) (ESp-1(y) + ¢ Sp(y))-

This formula was noticed by J. Sain and proved for 0 < n < p+1 in [10],
but unfortunately that proof does not extend to other n. In this paper we
use some results of the second author and his collaborators about the Kauff-
man bracket skein module of the genus two handlebody to find a different
proof that works in general. In the process we address in Proposition 2.3
a problem raised by R.P. Bakshi and J. Przytycki in conjuction with their
work on connected sums of handlebodies from [3], the problem being about
expressing a certain skein in the genus two handlebody in terms of the stan-
dard basis elements. Regarding this proposition, the authors would like to
express their gratitude to T.T.Q. Le for observing and correcting two errors
in the formula from the statement of the proposition.

By using Theorem 1.1 in §4 of this paper we put the colored Jones poly-
nomials of y in the context of theory developed by Garoufalidis and Le in
[7]. The question, of course, is what should the analogue of the nth colored
Jones polynomial of a knot K in an arbitrary manifold be? Based on the
considerations explained in [1], we define these “colored Jones polynomials”
to be the skeins S, (K), n > 0, inside the skein module defined by the skein
relations derived in [17] for the Reshetikhin-Turaev theory [19] (see §4 below
for the definition). If we apply mutatis mutandis the method of [7], then
we find the recurrence polynomial for the colored Jones polynomials of the
curve y in the complement of the (2p + 1,2) torus knot to be

[L? — t}(x? — 2)L + %) L2PT 4¢P 8 [L2 — (22 — 2)L + 1] M*.

This simple polynomial contains all the necessary information for computing
S,(y) as a linear combination with coefficients in C[t, ¢!, z] of So(y), S1(y),



4 SUNDAY ESEBRE AND RAZVAN GELCA

.., Sp(y) for n > p. Does there exist a geometric interpretation of this poly-
nomial analogous to the one found in [6], [7] for the recurrence polynomials
of colored Jones polynomials of knots in the 3-dimensional sphere?

2. SOME SEQUENCES OF SKEINS IN THE COMPLEMENT OF THE GENUS 2
HANDLEBODY

To enhance our ability to prove Theorem 1.1, we have to take a detour
through the skein theory of the genus two handlebody. Specifically, we
discuss three sequences of skeins in the Kauffman bracket skein module of the
genus two handlebody, the third of which has appeared in our previous work
[9]. Our discussion requires some basic knowledge about linear recursive
sequences; a good reference for the necessary techniques is [2].

We interpret the genus two handlebody as the cylinder over the twice
punctured disk and we represent it schematically sideways, by drawing only
the two curves that trace the punctures in the cylinder. Przytycki [18] has
shown that the Kauffman bracket skein module of the genus two handelbody
is free with basis 2™y"z*, m,n,k > 0, where = and z are curves that are
parallel to the boundaries of the two open disks that have been removed,
and y is a curve parallel to the boundary of the original disk. The curves

x,y, z are shown in Figure 2.
(3
(jy
-

FIGURE 2

The first two sequences of skeins that we have in mind have been intro-
duced in [12]. They are X; xy™ and Y7 *y™ depicted in Figure 3. Modifying

~ i
LN

FIGURE 3

appropriately the argument of Lemma 2.1 in [12] we obtain

Lemma 2.1. The sequences Xy xy™, Y1 xy™ satisfy the recursive relations
Xy xy" ™ =thy Xy w4 (2 — )Yy + (1 -t (2 + 22"
Yix gy =7y x gy (2 — O X kg 4201 — Y zzy”,
Xy = —thy — 222, YVisy'=—t2 -2
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We are interested in finding explicit formulas for X; * ¢y and Yj * y",
but as experience has taught us, it is better to replace the “powers” of y by
Chebyshev polynomials in y. So instead we will find explicit formulas for
X1 xT,(y) and Yy * T),(y), where T,, is the Chebyshev polynomial of first
kind defined in the introduction.

Theorem 2.2. The following formulas hold

X1+ Toly) = —t" 81 (y) — 7S 1 (y) + " Shoa(y)
4G s(y) — 2228, (y) + 2228, o (y)

n—1
+(1 — t') Z =% (2% 4+ 23S _on_1(y)
k=0
n—1
+2(1 - t4n) Z t_4k_2x25n—2k—2(y)7 n = 17
k=0
Yi#To(y) = —(7" 2 474 72) S (y) + (7" — t4")2S,-1(y)
n—1
FETE TS, o (y) + (1=t (@ + 27)D TS, g a(y)
k=0
n—1
+2(1 — ™)z 2 Z t= RS, oa(y), n> 1.
k=0

Proof. The argument is based on the recursive relation for the vector
(Xl * yn7 Yl * yn)

exhibited in Lemma 2.1. We introduce the auxiliary variable w so that y =
w+w™! (w has no geometric meaning, it is used solely for computations).
The coefficient matrix of the recursive relation,

tly 72— 1S
A - < t2 _ t_6 t—4y )
has eigenvalues

1
A2 = 5[(t4 +t7Hy £ (' — 7Yy — 4] = thwt + T

with eigenvectors (t?w, 1) and (w™!,¢2), respectively. Hence this coefficient
matrix is diagonalized as

1 tPw wlt thw 4+t~ 4wt 0 t=2 —w !
w— w1 1 t2 0 trw=! + 4w -1 t*w

Now we split the sequence (X7 * y™, Y7 % y") into (an,bn) + (¢, d,) where
(an, by) satisfies the homogeneous recursive relation

ot =A I , ag = Xl * y07 bO = Yi * y07
bn—i—l bn
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and (¢, dy,) satisfies the nonhomogenous recursive relation with trivial initial
condition

Cn+1 B Cn (1- t4)(;1:2 + Z2)yn -
<dn+1>_A<dn>+< 2(1 — t™Hzzy" , co=do=0.

We obtain

an \ _ 1 2w w! (trw 4+t~ 4w~ H)" 0
bn ) w—w! 1t 0 (trw! + t7hw)"

y =2 —w! —t(w +w™t) — 222
-1 tw —t2 — 72 ‘

T, (tw 4+t tw™) = t"w" + t 7w T (t tw + tw™h) =t "™ + "

Using the equalities

we deduce that the “homogeneous” part of (X1 * T),(y), Y1 * T (y)) is

1 2w w! A 4 A 0
w— w L 1 t—2 0 A A

y t=2 —w! —t(w +w™t) — 222
-1 tw —t2 — 72

n+1

Using the fact that
_ ,w—n—l
w— w1
we obtain that this is further equal to
8 (y) =t Spa(y) (" — 74" Sha(y) —tly — 2wz
( 2 =) S 1 (y) T S(y) — 11" Sn 2 (y) ) ( —t? — 7 )

So the “homogeneous” part of X; * T, (y) is
—t S 1 (y) — ¢S (y) + S (y) + ¢S5 (y)
— 12028, (y) + 712228, o (y),
while the “homogeneous” part of Y7 x T}, (y) is
(TS (y) + (1 = 1)@z S, (y)
HAT TS, a(y).
On the other hand
e\ =t Pw w?
(i) e=mr (7 )
t" 4 T — ™ — ™ 0

« thw + 7w —w —w?
0 t4nw—n + t—4nwn —w" —w

=t + tw —w—w !
y =2 —w! —t2(2? + 2?)
-1 2w 2 212 ’

n
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Rewrite this expression as

n _ Z€—4n —n
t—2(t4n o 1) t2w ,w—l —ww — t_4wuil 0
w—w ! 1 2 0 w

" =2 —w! —t2(2? + 22)
-1 2w 2 222

Pt —1) (A B —t2(2? + 22)
T ow—w! C D 2 212 ’

where
e ,wn—i-l _ 75—4nw—n-|—l ,w—n—l _ t—4nwn—l
N w— t~4w1 w~l —t~dw
B t2 w’ — t—4nw—n w™ — t—4nwn
N w—t 4w wl—t~4w )’
o= t_2 w" — t—4nw—n w " — t—4nwn
n w—t~4w—1! wl —t~4w )’
D wn—l _ 75—4nw—n—l w—n—i—l _ t—4nwn+l
T w—t ! w—l — ¢t~
And we have
1 n—1
A — B _
oo wT T 2 Semn) G = ) T S ly)
k=0 k=0
C n—1 D n—1
_ —4k—2 o — 4k
P ;;)t Sn—2k—2(Y), ol kz_ot Sn—2k-3(Yy)-

After a final multiplication we obtain that the nonhomogeneos parts of X
T,.(y) and Y7 x T, (y) are, respectively,

n—1 n—1
(1= t")Y (@ + 2%) Spoanr () + 200 — ) > 72228, o o(y),
k=0 k=0
n—1 n—1
(L= t") (@ +y*) Y 728, apa(y) + 21 — t")az Y 17718, o 3(y).
k=0 k=0
The conclusion follows. O

As hinted in the introduction, in the work of Bakshi and Przytycki has
appeared the question of expressing the skein from Figure 4 in terms of
the basis 2™y"z"F of the Kauffman bracket skein module of the genus two
handlebody. Again, it is advantageous to work with curves decorated by
Chebyshev polynomials instead of “powers”, we will therefore compute in-
stead the skein in which y™ is replaced by T),(y), and let us call this skein
on. And we use the basis Sy, (x)S,(y)Sk(2), m,n,k > 0.
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FIGURE 4

Proposition 2.3. We have
on =t 1 (y) + 1S, (y) — TS (y) — RS, (y)
181 (2) S (y)S1(2) + 1 1"S1() Sn—a(y)S1(2)
—t7151(2) Sy )51(2) +t7151(2)Sn-a(y)S1(2)

e (e Zt‘”"“ (Sa(z) + S2(2) + 2)Sn—2k—1(y)

2t~ — Zt_4k51 Sn—2k—2(y)S1(2).

Proof. This follows from the fact that
on =tX1 % Tp(y) +t 22T, (y) = tX1 « Ty (y) + t t22(Sp(y) — Sn_a(y))
and then applying Theorem 2.2. O

Finally, let us recall the skeins X; from the Kauffman bracket skein module
of the genus two handlebody, which were defined in [9] and are depicted in
Figure 5.

FIGURE 5

Adapting the proof of Lemma 1 from [9] to the case where z # z, we see
that the X; satisfy the recursive relation
Xipo =2y X — t*X; — 20%22, Xo=—t2 —t72, X; = —tty — t?2z.
and consequently
Xi=—t7%72Si(y) — t ¥ w281 (y) + S0 (y)
i—2
—2t7 22y, Z t2kS,-_k_2(y).
k=0
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This formula has been proved in [9]; it can be easily verified by induction,
and it can be determined using the fact that t=2!S;(y) and ¢t=21=25;_; form
a basis for the space of solutions to the homogeneous recursion X; o =
tzyXH_l — t4XZ'.

3. PROOF OF THE MAIN RESULT

In this section we prove Theorem 1.1. Because S_,,(y) = —S,—2(y), we
only need to check the identity

2 S (y) + Sy (y) = (1) San (@) (ESp-1(y) + ¢ Sp(y))

for n > 0. This identity has been checked already in [10] forn = 0,1,2,...,p+
1, but, as mentioned before, that proof cannot be extended for larger n.
We will use instead the equality derived in Figure 6. This equality trans-

FIGURE 6

lates to

Xyxym =y " Xop,
where X1 * T,(y) and Xy, are the skeins discussed in the previous section
(viewed as lying inside the handlebody marked in the figure with dots), %
denotes the mirror image of the skein ¥ (with respect to a natural reflection
of the handlebody onto itself) and on the right-side we have the product of
y"™ and X—gp defined by the cylinder structure of the genus two handlebody.
Note that when passing to the mirror image ¢ should be replaced by ¢!,
As a consequence of this identity we obtain

(3.1) X1 % T (y) = Tuly) Xap,
which is the key ingredient in the proof of Theorem 1.1.



10 SUNDAY ESEBRE AND RAZVAN GELCA

Using the (trigonometric) identity Si(z)T),(z) = Skin(x) + Sk—n(x) and
Theorem 2.2 we can write (3.1) explicitly as

_t—4n—45n+1(y) o t4nSn_1(y) + t—4n5n_1(y) + t4n—45n_3(y)
—4n—2 25« _2—2 25 _ 44n-—2 25« 2—2 25«
+t X n(y) t x n(y) t €T n—2(y) + 2tz n—2(y)
2n—1
+2t72(1 — ¢t Z S, () + 77280, 0 (y) + 77285, 0 (y)

P22 S 14 (y) + P2 So 10 (y) — TP Sp 0 0 (y)
2p—2

_t_4p+252p—2—n(y) + 2t_4p+2$2 Z tzk [S2p—k—2+n(y) + S2p—k—2—n(y)]
k=0

=0.

Both this recursive relation and the one from the main theorem (Theo-
rem 1.1) completely determine the values of S, (y) for n > p from Sy(y),
S1(y), ..., Sp(y). To complete the proof of Theoreml.1 it suffices to show
that the sequence S,,(y) defined by the recursive relation from the statement
of this theorem also satisfies the above identity. So from this moment on we
assume that Sy, (y) is the sequence defined by the recursive relation from the
statement of Theorem 1.1 and we prove that it satisfies this identity.
For the proof, we further transform this desired identity into

R (g () — 2P, (y))
Il il ) g ()
g2l 2 (-2 2n+152p Lin(y) — PT0LG,
T2 il gy )y g2=2nmlg
(t
(t

2(

(y )
o —2p+2n 1 —2p 2n+3S2p_2+n(y) t2p+2n 35 (y))
—2p 2n—1 —2p+2n+3S2p_2_n(y) ))

Y))

t2p 2n— 35 (y

2n—1
=2t 7227 | Sp(y) + Snoa(y) + (" = 1) Y 175, _p(y)
k=0
2p—2
= D TSy k() + Sapk-2-n(y)) |
k=0

and then rewrite it as

gl = pmn=lg, L (y) — PTG ()
AT (TG (y) + TS, 1 (y))
TR (TG () — PTRTIS, o (y))
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_|_t—2p—2n—lx2(t—2p+2n+152p_n_1( )+t2p 2n— 15 (y))
_t—2p+2n—l(t—2p—2n+35«2p_2+n(y) . 75210—i—2n 35 (y))

A (e PN () By e IR ()
2n—1

— 2t 232 [Sn(y) — Sp_a(y) + (t~ dn Z 2k k(Y

2p—2

- Z t_z Sk—i—n +Sk n( ))] :

Finally, we bring it into the form

t—2p+2n—1(t—2p—2n—152p+n(y) o Z6210-1—2714-15 (y))

AT TIEEN T G (y) + PTG, 1 (y))

IR 2 (L gy Ly 242nmlg ()
T2l gy ) g2 nmlg ()
(g, () 0, ()
_t—2p—2n—1(t—2p+2n+352p_2_n(y) t2p 2n— 35n+1(y))
2n—1 2p—2
=227 (" = 1) ) S k(y) = Dt (Skn(y) + Sk-n(v))
k=0 k=1

We will therefore prove that the sequence S, (y) defined by the recursive
relation from the statement of Theorem 1.1 satisfies this identity. Using the
formula from the statement of the theorem we deduce that the left-hand
side of the identity to be checked is equal to

t—2p+2n—1(_1)P+"52p+2n($)y + t—2p—2n—1(_1)p—n52p_2n(x)y
Rl 2 yptneley o o ()Y
A2 (PTG oo (7)Y

(=

T PTG, o a(@)Y — T )PT2G,  o a(2)Y,

where we use the short hand notation Y = ¢t715,(y) + ¢S,_1(y). This ex-
pression is

(=Pt 2P0 (S 4o —o (%) + Sapyan—a(2))Y
7T (S, o o) + 52p—2n—4(£17))y] .

Now let us work on the right side of the identity. We have
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2p—2 2p—2
D (Shnly) + Sinl®)) = Y 7 S ()
= k=1
2p—2 2
+ Y TS s ke na(y) = (L=t D S (y)
P k=1
2p—2
" Z g2 a2k Gy kg1 (y) + PTRTITLG ()]
k=1

By using the formula from the statement of the theorem, this becomes

2p—2 2p—2
SOy g, @)Y (L) S S ().
k=1 k=1

We are left to checking that the sequence S,,(y) satisfies the simpler identity

[t (Soptan—2(T) + Sopron—a(x)) + Sop—2n—2(z) + Sop—2n—a(z)
2p—2

+ Z (—1)*2% S0y —on—2k-2(x)]Y

:( 1)p+nt2p 1 2 752n = 2n

2n—1 2p—2

Z S w(y) + Y t_2ksn+k(y)] :
k=1

Transform this into

[t (Soptan—2(x) + Sapron—a(x)) + Sop—2n—2(z) + Sop—2n—a(z)
p—2
—(=1)" (=1) 2% Sgj—20(2)]Y
j=1-p

2n—1 2p—2
then into

[t (Sopton—2(x) + Sapron—a(x)) + Sop—2n—2(z) + Sop—2n—a(z)
—Sopton—2(z) — Sopron—a(z) — Sop—2n—2(z) — Sop—2n—a(2)]Y
2n—1 2p—2
= (=1)PFMRP I (2 — 7P [Z %S, k(y) + Z t_2kSn+k(y)] -
=1

k=0
This can be simplified as

(Sopran—2(x) + S2pran—a(x))Y

2n—1 2p—2
— (_1)P+nt2p—2n—1$2 [Z t%Sn_k(y) + Z t_2k5n+k(y)] )
k=1

k=0
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And now we check that the sequence S,,(y) defined by the recursive relation
from the statement of Theorem 1.1 satisfies this identity by induction on n.
Set
2n—1 2p—2

Ap = Z tzksn—k(y) + Z t_2ksn+k(y)'
k=1 k=1

Then
Apy1 — 2 A, = t_4p+45n+2p—1(y) + t4p+25_"(y)
=t a1 (y) — 7S, o (y)
= ¢RI (2L () — EPYPLS, o (y))
= (—1)p+n_1t_2p+2n+252n+2p—2(‘T)Y7

where for the last equality we used the identity from the statement of the
theorem. We are attempting to prove that

(Sonr2p-2() + Sonsap-a(@]Y = (~1PP 22 A,

holds for all n and as induction step we assume that this equality holds for
n and prove it for n4 1. But if we add the equality for n to the one for n+1
we obtain something obvious, as the following computation shows:

[Sont2p(7) + 2S2n42p—2(%) + S2nt2p—a(2)]Y = 220,42y 2(2)Y
— (_ 1)p+n+lt2p—2n—2x2(_ 1)p+n—1t—2p+2n+252n+2p_2(x)Y
— (_1)p+nt2p—2n—2x2[_An+1 + t2An].

The induction is now complete because the base case was checked in [10].

4. A RECURRENCE POLYNOMIAL FOR THE COLORED JONES POLYNOMIALS
OF ¥y

In this section we will explain how the recurrence polynomial for the
colored Jones polynomials of the curve y is constructed. The nth colored
Jones polynomial of a knot K in S® has been introduced in [20] as the
quantized Wilson line associated to the knot K and the n + 1-dimensional
irreducible representation of SU(2) and has been constructed rigorously in
[16] and [19] using the n + 1st irreducible representation of the quantum
group of SU(2). It is known that the nth colored Jones polynomial of the
knot K is

(4.1) J(K.n) = (~1)" (S (K)

where (-) is the Kauffman bracket. The equality (4.1) can be placed in the
setting of skein modules as follows.

Alongside with the Kauffman bracket skein module K;(M) of a manifold
M one can introduce the skein module of the Reshetikhin-Turaev theory,
which was denoted by RT;(M) and was defined in [11] as follows. As in the
case of the Kauffman bracket skein module we consider the free C[t, ¢ 1]-
module with bases the isotopy classes of framed links in M. To obtain
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RT; (M) we factor this module by the submodule generated by three families

K=

L

=) (

FIGURE 7

The first family consists of elements of the form
LUO — (? +t72)L,

where LUQO consits of the link L to which a trivial knot component is added.
The second family consists of elements of the form

L—tH -tV

where L, H,V are links that are identical except inside an embedded ball
in which they look as depicted in Figure 7, and additionally, the crossing
in this figure comes from different link components of L. The third family
consists of elements of the form

L—etH —t7'V),

where again L, H,V are links that are identical except inside an embedded
ball in which they look as depicted in Figure 7, but this time the crossing
in the figure is the self-crossing of a link component of L and € is the sign
of that crossing. These skein relations have been derived in [17] for the
Reshetikhin-Turaev theory.

Let S2 be the 3-dimensional sphere. In K;(S?) one has

Sn(K) = (Sn(K)) 0 =0,
and in RT;(S®) one has
Sn(K) — J(K,n)) = 0;

moreover, as explained in [1], in RT;(S%) one has S, (K)—(—1)" (S, (K)) 0 =
0. This gives the skein theoretical explanation for the equality (4.1). In fact
it is the cabling principle stated in [17] that implies that the nth colored
Jones polynomial of a knot K in S® is the polynomial that is the coefficient
of the empty link when we write the skein S, (K) € RT;(M) in the basis
consisting of the empty link.

We extend the definition of the colored Jones polynomial to a knot K
in some arbitrary 3-dimensional oriented manifold M by stating that this
polynomial is the skein S, (K) in the skein module RT;(M). Of course if
RT,(M) is a free module and we know a basis, then we can express S, (K)
in that basis and we obtain a family of actual polynomials, but this is less
relevant for us at this moment, because we are actually concerned with how
Sn(K), n € Z, relate to one another.
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As a consequence of Theorem 2.1 in [1] (see also §3.2 in the same paper)
the colored Jones polynomials of the curve y satisfy

t—2n—15p+n(y) . t2”+15p_n—1(y) = Sgn(x)(t‘lSp(y) — tSp—l(y))7

(in the new context the factor (—1)" dissapears). If we add the correspond-
ing relations for n 4+ 1 and n — 1 and subtract the one for n multiplied by
Ty(x) = 22 — 2 we obtain the homogeneous recursive relation

t_2"_35p+n+1(y) _ t2n+35p—n—2(y) _ t_2n_1(1'2 — 2)Sp+n(y)
2 (22 = 2)S 1 (y) TS 1 (y) — 2T Spa(y) = 0.
We rewrite this as

t_2n_35n+p+l(y) + t2n+35’n_p(y) — t_zn_1($2 — 2)Sn+p(y)
— 2" (2% — 2)S, 1 (y) + S o1 (y) + TS poa(y) = 0.

We want to associate to this relation a polynomial following the guidelines
of [7]. Let us first construct a coefficient ring for these polynomials.

If K is a knot and N(K) is an open regular neighborhood of K in S3,
then the module RT;(S*\N(K)) has also a module structure over the skein
algebra of the boundary, RT}(ON(K)), defined by gluing the cylinder over
the boundary to the knot complement. But ON(K) is the 2-dimensional
torus T2, and so RT;(S?\N(K)) = RT;(T?). It has been shown in [11]
that the latter is canonically isomorphic to K;(T?) and the multiplicative
structure of this algebra has been exhibited in [5]. When identifying the
boundary of the knot complement with the standard torus, we require that
the curve (1,0) in T? is identified with the longitude of the knot K while the
curve (0,1) is identified with the meridian of the knot. Note that (0,1)-0 =
x, where z is the curve from Figure 1. If we consider the subalgebra of
RT;(T?) generated by (0,1), then this is the same as the polynomial ring
R = CJ[t,t7Y[x], and we think of = as both the variable of the polynomial
ring and as the curve z. Now we view RT}(S3\N(K)) as an R-module.

For a function

f:Z— RT(S\N(K)),
following [7] we define the operators
(Mf)(n) =t*"f(n), (Lf)(n)=f(n+1).

The operators L and M and their inverses generate the ring 7, which is the
quotient

RIL, LY, M, MY /(LM = t*ML,LL™ ' = L7'L =1, MM~ = M~'M =1)
A recurrence polynomial of the function f is an element P € 7T, such that
Pf=0.

Turning to our particular example we notice that a recurrence polynomial
in R[L,L~', M, M~'] for the function

f : Z - Sn(y),
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whose values are the colored Jones polynomials of the curve y in the com-
plement of the (2p + 1,2) torus knot, is

tSB3PIIMT L B3P M — 7 (2 - 2)LPM T — t(2® — 2)LPTIM

+tIP7 M P2

We can then find a recurrence polynomial in the variables L and M only,
namely

PPN (3P  3LP M — ¢ (2 — 2)LP M

—t(z® = 2)LPIM 4 tLP M 4t L P2

_ L2p+3 4 t4p+8L2M2 . t4($2 _ 2)L2p+2 o t4p+8(.’1'2 . 2)LM2
—I—t8L2p+1 + 754;04—8]\42

— L2p+3 _ t4(a:2 o 2)L2p+2 + t8L2p+l + t4p+8[L2 . (1’2 . 2)L + 1]M2
= [L? — t*(2® — 2)L + 3] LT 48[ — (2? — 2)L + 1] M2,

Remark 4.1. When t = 1 (the “classical” setting of the Reshetikhin-Turaev
theory as opposed to t = —1 for the Kauffman bracket) this polynomial
factors as

(1]

2]
B3]

(L% — (2® — 2)L + 1)(L*PT! + M?).
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