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Abstract. Abelian Chern-Simons theory relates classical theta func-
tions to the topological quantum field theory of the linking number of
knots. In this paper we explain how to derive the constructs of abelian
Chern-Simons theory directly from the theory of classical theta func-
tions. It turns out that the theory of classical theta functions, from the
representation theoretic point of view of A. Weil, is just an instance of
Chern-Simons theory. The group algebra of the finite Heisenberg group
is described as an algebra of curves on a surface, and its Schrödinger rep-
resentation is obtained as an action on curves in a handlebody. A careful
analysis of the discrete Fourier transform yields the Reshetikhin-Turaev
formula for invariants of 3-dimensional manifolds. In this context, we
give an explanation of why the composition of discrete Fourier trans-
forms and the non-additivity of the signature of 4-dimensional manifolds
under gluings obey the same formula.

1. Introduction

In this paper we construct the abelian Chern-Simons topological quantum
field theory directly from the theory of classical theta functions.

It has been known for years, in the context of abelian Chern-Simons
theory, that classical theta functions are related to low dimensional topology
[2], [33]. Abelian Chern-Simons theory is considerably simpler than its non-
abelian counterparts, and has been studied thoroughly (see for example [16]
and [17]). Here we do not start with abelian Chern-Simons theory, but
instead give a direct construction of the associated topological quantum
field theory based on the theory of classical theta functions and using skein
modules.

We consider classical theta functions in the representation theoretic point
of view introduced by André Weil [31]. From this point of view, the space
of theta functions is endowed with an action of a finite Heisenberg group
(the Schrödinger representation), which induces, via a Stone-von Neumann
theorem, the Hermite-Jacobi action of the modular group. All this structure
is what we shall mean by the theory of theta functions.
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We show how the finite Heisenberg group, or rather its group algebra
and its Schrödinger representation on the space of theta functions, lead
to algebras of curves on surfaces and their actions on spaces of curves in
handlebodies. These notions are formalized using skein modules.

The Hermite-Jacobi representation of the modular group on theta func-
tions is a discrete analogue of the metaplectic representation. The modular
group acts by automorphisms that are a particular case of the Fourier-Mukai
transform; in this paper we will refer to them as discrete Fourier transforms.
We will show that discrete Fourier transforms can be expressed as linear
combinations of curves. A careful analysis of their structure and of their re-
lationship to the Schrödinger representation yields the Reshetikhin-Turaev
formula [24] of invariants of 3-dimensional manifolds, for U(1) Chern-Simons
theory.

As a corollary of our point of view we obtain an explanation of why the
composition of discrete Fourier transforms and the non-additivity of the
signature of 4-dimensional manifolds obey the same formula.

The paper uses results and terminology from the theory of theta functions,
quantum mechanics, and low dimensional topology. To make it accessible
to different audiences we include a fair amount of detail.

In Section 2 we review the theory of classical theta functions on the Jaco-
bian variety of a surface. The action of the finite Heisenberg group on theta
functions can be defined via Weyl quantization of the Jacobian variety in
the holomorphic polarization. In fact it has been discovered in recent years
that Chern-Simons theory is related to Weyl quantization [8], [1], and this
was the starting point of our paper. The next section exhibits the algebraic
model of theta functions, the action of the finite Heisenberg group, and the
Hermite-Jacobi action.

Up to here, played no role, but in Section 4 we show that the algebraic
model of theta functions is topological in nature. We reformulate it using
algebras of curves on surfaces, together with their action on skeins of curves
in handlebodies which are associated to the linking number.

In Section 5 we derive a formula for the discrete Fourier transform as
a skein. This formula is interpreted in terms of surgery in the cylinder
over the surface. Section 6 analizes the exact Egorov identity which relates
the Hermite-Jacobi action to the Schrödinger representation. This anal-
ysis shows that the topological operation of handle slides is allowed over
the skeins that represent discrete Fourier transforms, and this yields in the
next section the abelian Chern-Simons invariants of 3-dimensional manifolds
defined by Murakami, Ohtsuki, and Okada. We point out that the above-
mentioned formula was introduced in an ad-hoc manner by its authors [19],
our paper shows how to derive it naturally.

Section 8 shows how to associate to the discrete Fourier transform a 4-
dimensional manifold. This will explain why the cocycle of the Hermite-
Jacobi action is related to that governing the non-additivity of the signature
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of 4-dimensional manifolds [30]. Section 9 should be taken as a conclusion;
it brings everything to the context of Chern-Simons theory.

2. Theta functions

We start with a closed genus g Riemann surface Σg, and consider a canon-
ical basis a1, a2, . . . , ag, b1, b2, . . . , bg for H1(Σg, R), like the one shown in
Figure 1. To it we associate a basis in the space of holomorphic differential
1-forms ζ1, ζ2, . . . , ζg, defined by the conditions

∫
ak

ζj = δjk, j, k = 1, 2, . . . , g.

The matrix Π with entries

πjk =

∫

bk

ζj, j, k = 1, . . . , g,

is symmetric with positive definite imaginary part. This means that if Π =
X + iY , then X = XT , Y = Y T and Y > 0. The g × 2g matrix (Ig,Π) is
called the period matrix of Σg, its columns λ1, λ2, . . . , λ2g, called periods,
generate a lattice L(Σg) in C

g = R
2g. The complex torus

J (Σg) = C
g/L(Σg)

is the Jacobian variety of Σg. The map
∑

j

αjaj +
∑

j

βjbj 7→ (α1, . . . , αn, β1, . . . , βn)

induces a homeomorphism H1(Σg, R)/H1(Σg, Z) → J (Σg).

aaa g

gb

1 2

b1 b2

Figure 1

The complex coordinates z = (z1, z2, . . . , zg) on J (Σg) are those inherited
from C

g. We introduce real coordinates (x, y) = (x1, x2, . . . , xg, y1, y2, . . . , yg)
by imposing z = x + Πy. A fundamental domain for the period lattice, in
terms of the (x, y) coordinates, is simply {(x, y) ∈ [0, 1]2g}. Moreover, J (Σg)
has a canonical symplectic form, which in the (x, y)-coordinates is given by

ω = 2π

g∑

j=1

dxj ∧ dyj .

The Jacobian variety with the complex structure and symplectic form ω is a
Kähler manifold. The symplectic form induces a Poisson bracket for smooth
functions on the Jacobian, given by {f, g} = ω(Xf ,Xg), where Xf denotes
the Hamiltonian vector field defined by df(·) = ω(Xf , ·).

The classical theta functions show up when quantizing J (Σg) in the com-
plex polarization, in the direction of this Poisson bracket. For the purpose of
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this paper, we perform this quantization in the case where Planck’s constant
is the reciprocal of an even positive integer: h = 1

N where N = 2r, r ∈ N.
The Hilbert space of the quantization consists of the holomorphic sections of
a line bundle obtained as the tensor product of a line bundle with curvature
Nω and the square root of the canonical line bundle. The latter is trivial
for the complex torus and we ignore it. The line bundle with curvature Nω
is the tensor product of a flat line bundle and the line bundle defined by the
cocycle Λ : C

g × L(Σg) → C
∗,

Λ(z, λj) = 1

Λ(z, λg+j) = e−2πiNzj−πiNπjj ,

j = 1, 2, . . . , g. (See e.g. §4.1.2 of [5] for a discussion of how this cocycle
gives rise to a line bundle with curvature Nω.) We choose the trivial flat
bundle to tensor with. As such, the Hilbert space can be identified with the
space of entire functions on C

g satisfying the periodicity conditions

f(z + λj) = f(z)

f(z + λg+j) = e−2πiNzj−πiNπjjf(z).

We denote this space by ΘΠ
N (Σg); its elements are called classical theta

functions.1 A basis of ΘΠ
N (Σg) consists of the theta series

θΠ
µ (z) =

∑

n∈Zg

e2πiN [ 1
2(

µ
N

+n)
T

Π( µ
N

+n)+( µ
N

+n)
T

z], µ ∈ {0, 1 . . . ,N − 1}g.

The definition of theta series will be extended for convenience to all µ ∈ Z
g,

by θµ+Nµ′ = θµ for any µ′ ∈ Z
g. Hence the index µ can be taken in Z

g
N .

The inner product that makes the theta series into an orthonormal basis
is

〈f, g〉 = (2N)g/2 det(Y )1/2

∫

[0,1]2g

f(x, y)g(x, y)e−2πNyT Y ydxdy. (2.1)

That the theta series form an orthonormal basis is a corollary of the proof
of Proposition 2.1 below.

To define the operators of the quantization, we use the Weyl quantization
method. This quantization method can be defined only on complex vector
spaces, the Jacobian variety is the quotient of such a space by a discrete
group, and the quantization method goes through. As such, the operator
Op(f) associated to a function f on J (Σg) is the Toeplitz operator with

symbol e
−h∆Π

4 f ([7] Proposition 2.97)2, where ∆Π is the Laplacian on func-
tions,

∆Π = −d∗ ◦ d, d : C∞(J (Σg)) → Ω1(J (Σg)).

1In fact the precise terminology is canonical theta functions, classical theta functions
being defined by a slight alteration of the periodicity condition. We use the name classical
theta functions in this paper to emphasize the distinction with the non-abelian theta
functions.

2The variable of f is not conjugated because we work in the momentum representation.
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On a general Riemannian manifold this operator is given in local coordinates
by the formula

∆Πf =
1√

det(g)

∂

∂xj

(
gjk

√
det(g)

∂f

∂xk

)
,

where g = (gjk) is the metric and g−1 = (gjk). In the Kähler case, if the
Kähler form is given in holomorphic coordinates by

ω =
i

2

∑

j,k

hjk dzj ∧ dz̄k,

then

∆Π = 4
∑

j,k

hjk ∂2

∂zj∂z̄k
,

where (hjk) = (hjk)
−1. In our situation, in the coordinates zj, z̄j , j =

1, 2, . . . , g, one computes that (hjk)
−1 = Y −1 and therefore (hjk) = Y (recall

that Y is the imaginary part of the matrix Π). For Weyl quantization one
introduces a factor of 1

2π in front of the operator. As such, the Laplace (or
rather Laplace-Beltrami) operator ∆Π is equal to

1

2π

g∑

j, k=1

Yjk

[
(Ig + iY −1X)∇x − iY −1∇y

]
j

[
(Ig − iY −1X)∇x + iY −1∇y

]
k
.

(A word about the notation being used: ∇ represents the usual (column)
vector of partial derivatives in the indicated variables, so that each object in
the square brackets is a column vector of partial derivatives. The subindices
j, k are the corresponding components of those vectors.) A tedious calcula-
tion that we omit results in the following formula for the Laplacian in the
(x, y) coordinates:

2π∆Π =
∑

(Y + XY −1X)jk
∂2

∂xj∂xk

−2(XY −1)jk
∂2

∂xj∂yk
+ Y jk ∂2

∂yj∂yk
.

We will only need to apply ∆Π explicitly to exponentials, as part of the
proof of the following basic proposition. Note that the exponential function

e2πi(pT x+qT y)

defines a function on the Jacobian provided p, q ∈ Z
g.

Proposition 2.1. The Weyl quantization of the exponentials is given by

Op
(
e2πi(pT x+qT y)

)
θΠ
µ (z) = e−

πi
N

pT q− 2πi
N

µT qθΠ
µ+p(z).

Proof. Let us introduce some useful notation local to the proof. Note that
N and Π are fixed throughout.

(1) e(t) := exp(2πiNt),
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(2) For n ∈ Z
g and µ ∈ {0, 1, . . . N − 1}g, nµ := n + µ

N .

(3) Q(nµ) := 1
2(nT

µΠnµ)

(4) Ep,q(x, y) = e2πi(pT x+qT y) = e( 1
N (pT x + qT y)).

With these notations, in the (x, y) coordinates

θµ(x, y) =
∑

n∈Zg

e(Q(nµ)) e(nT
µ (x + Πy)).

We first compute the matrix coefficients of the Toeplitz operator with symbol
Ep,q, that is

〈Ep,qθµ , θν〉

= (2N)g/2 det(Y )1/2

∫

[0,1]2g

Ep,q(x, y)θµ(x, y)θν(x, y) e−2πNyT Y y dxdy.

Then a calculation shows that

Ep,q(x, y)θµ(x, y)θν(x, y)

=
∑

m,n∈Zg

e
[
Q(nµ) − Q(mν) + (nµ+p − mν)

T x +
(qT

N
+ nT

µΠ − mT
ν Π

)
y
]
.

The integral over x ∈ [0, 1]g of the (m,n) term will be non-zero iff

N
(
nµ+p − mν

)
= µ + p − ν + N(n − m) = 0,

in which case the integral will be equal to one. Therefore 〈Ep,qθµ , θν〉 = 0
unless

[ν] = [µ + p],

where the brackets represent equivalence classes in Z
g
N . This shows that the

Toeplitz operator with multiplier Ep,q maps θµ to a scalar times θµ+p. We
now compute the scalar.

Taking µ in the fundamental domain {0, 1, · · · ,N − 1}g for Z
g
N , there is

a unique representative, ν, of [µ + p] in the same domain. This ν is of the
form

ν = µ + p + Nκ

for a unique κ ∈ Z
g. With respect to the previous notation, κ = n − m. It

follows that

〈Ep,qθµ , θν〉 = (2N)g/2 det(Y )1/2
∑

n∈Zg

∫

[0,1]g
e
[
Q(nµ) − Q(mν)

+
(qT

N
+ nT

µΠ − mT
ν Π

)
y + iyT Y y

]
dy,

where m = n − κ in the nth term.
Using that mν = nµ + 1

N p, one gets:

Q(nµ) − Q(mν) = inT
µY nµ −

1

N
pT Πnµ −

1

N2
Q(p)
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and

nT
µΠ − mT

ν Π = 2inT
µY −

1

N
pT Π,

and so we can write

〈Ep,qθµ , θν〉 = (2N)g/2 det(Y )1/2 e
[
−

1

N2
Q(p)

] ∑

n∈Zg

∫

[0,1]g
dy

e
[
inT

µY nµ −
1

N
pT Πnµ +

( 1

N
qT + 2inT

µY −
1

N
pT Π

)
y + iyT Y y

]
.

Making the change of variables w := y+nµ in the summand n, the argument
of the function e can be seen to be equal to

iwT Y w +
1

N

(
qT − pT Π

)
w −

1

N
qT nµ.

Since q and n are integer vectors,

e
( 1

N
qT nµ

)
= e−2πiqT µ/N .

The dependence on n of the integrand is a common factor that comes out
of the summation sign. The series now is of integral over the translates of
[0, 1]n that tile the whole space. Therefore

〈Ep,qθµ , θν〉 =

(2N)g/2 det(Y )1/2 e
[
−

1

N2
Q(p)

]
e−2πiqT µ/N

∫

Rg

e−2πNwT Y w+2πi
(
qT−pT Π

)
w dw.

A calculation of the integral3 yields that it is equal to
( 1

2N

)g/2
det(Y )−1/2 e−

π
2N

(qT −pT Π)Y −1(q−Πp).

and so

〈Ep,qθµ , θν〉 = e−
πi
N

pT Πp e−2πiqT µ/N e−
π

2N
(qT −pT Π)Y −1(q−Πp).

The exponent on the right-hand side is (−π/N) times

2iqT µ + ipT (X − iY )p +
1

2

(
[qT − pT (X − iY )]Y −1[q − (X − iY )p]

)

= 2iqT µ + ipT (X − iY )p +
1

2

(
[qT Y −1 − pT XY −1 + ipT ][q − Xp + iY p]

)

= 2iqT µ + ipT (X − iY )p +
1

2

(
qT Y −1q − 2qT Y −1Xp + 2iqT p

+pTXY −1Xp − 2ipT Xp − pT Y p
)

= 2iqT µ + iqT p +
1

2
R

where
R := qT Y −1q − 2qT Y −1Xp + pT (XY −1X + Y )p.

3R

Rg e−xT Ax+bT x dx =
“

πg

det A

”1/2

e
1

4
bT A−1b
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That is,

〈Ep,qθµ , θν〉 = e−
2πi
N

qtµ−πi
N

qT p− π
2N

R. (2.2)

On the other hand, it is easy to check that ∆Π(Ep,q) = −2πREp,q, and

therefore

e−
∆Π
4N (Ep,q) = e

π
2N

R Ep,q,

so that, by (2.2)

〈e−
∆Π
4N (Ep,q)θµ , θν〉 = e−

2πi
N

qtµ−πi
N

qT p,

as desired. �

Let us focus on the group of quantized exponentials. First note that the
symplectic form ω induces a nondegenerate bilinear form on R

2g, which we
denote also by ω, given by

ω((p, q), (p′, q′)) =

g∑

j=1

∣∣∣∣
pj qj

p′j q′j

∣∣∣∣ . (2.3)

As a corollary of Proposition 2.1 we obtain the following result.

Proposition 2.2. Quantized exponentials satisfy the multiplication rule

Op
(
e2πi(pT x+qT y)

)
Op

(
e2πi(p′T x+q′T y)

)

= e
πi
N

ω((p,q),(p′,q′))Op(e2πi((p+p′)T x+(q+q′)T y)).

This prompts us to define the Heisenberg group

H(Zg) = {(p, q, k), p, q ∈ Z
g, k ∈ Z}

with multiplication

(p, q, k)(p′, q′, k′) = (p + p′, q + q′, k + k′ + ω((p, q), (p′, q′))).

This group is a Z-extension of H1(Σg, Z), with the standard inclusion of
H1(Σg, Z) into it given by

∑
pjaj +

∑
qkbk 7→ (p1, . . . , pg, q1, . . . , qg, 0).

The map

(p, q, k) 7→ Op
(
e

πi
N

ke2πi(pT x+qT y)
)

defines a representation of H(Zg) on theta functions. To make this repre-
sentation faithful, we factor it by its kernel.

Proposition 2.3. The set of elements in H(Zg) that act on theta functions
as identity operators is the normal subgroup consisting of the N th powers of
elements of the form (p, q, k) with k even. The quotient group is isomorphic
to a finite Heisenberg group.
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Recall (cf. [20]) that a finite Heisenberg group H is a central extension

0 → Zm → H → K → 0

where K is a finite abelian group such that the commutator pairing K×K →
Zm, (k, k′) 7→ [k̃, k̃′] (k̃, and k̃′ being arbitrary lifts of k and k′ to H) identifies
K with the group of homomorphisms from K to Zm.

Proof. By Proposition 2.1,

(p, q, k)θΠ
µ (z) = e−

πi
N

pT q− 2πi
N

µT q+ π
N

kθΠ
µ+p(z).

For (p, q, k) to act as the identity operator, we should have

e−
πi
N

pT q− 2πi
N

µT qθΠ
µ+p(z) = θΠ

µ (z)

for all µ ∈ {0, 1, . . . , N−1}g. Consequently, p should be in NZ
g. Then pT q is

a multiple of N , so the coefficient e−
πi
N

pT q− 2πi
N

µT q+ πi
N

k equals ±e−
2πi
N

µT q+ πi
N

k.
This coefficient should be equal to 1. For µ = (0, 0, . . . , 0) this implies that
−pT q + k should be an even multiple of N . But then by varying µ we
conclude that q is a multiple of N . Because N is even, it follows that pT q is
an even multiple of N , and consequently k is an even multiple of N . Thus
any element in the kernel of the representation must belong to NZ

2g×(2N)Z.
It is easy to see that any element of this form is in the kernel. These are
precisely the elements of the form (p, q, k)N with k even.

The quotient of H(Zg) by the kernel of the representation is a Z2N -

extension of the finite abelian group Z
2g
N , thus is a finite Heisenberg group.

This group is isomorphic to

{(p, q, k) | p, q ∈ Z
g
N , k ∈ Z2N}

with the multiplication rule

(p, q, k)(p′, q′, k′) = (p + p′, q + q′, k + k′ + 2pq′).

The isomorphism is induced by the map F : H(Zg) → Z
2g
N × Z2N ,

F (p, q, k) = (p mod N, q mod N, k + pq mod 2N). �

We denote by H(Zg
N ) this finite Heisenberg group and by exp(pT P+qTQ+

kE) the image of (p, q, k) in it. The representation of H(Zg
N ) on the space of

theta functions is called the Schrödinger representation. It is an analogue,
for the case of the 2g-dimensional torus, of the standard Schrödinger repre-
sentation of the Heisenberg group with real entries on L2(R). In particular
we have

exp(pT P )θΠ
µ (z) = θΠ

µ+p(z)

exp(qT Q)θΠ
µ (z) = e−

2πi
N

qT µθΠ
µ (z)

exp(kE)θΠ
µ (z) = e

πi
N

kθΠ
µ (z).

(2.4)
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Theorem 2.4. (Stone-von Neumann) The Schrödinger representation of
H(Zg

N ) is the unique (up to an isomorphism) irreducible unitary represen-

tation of this group with the property that exp(kE) acts as e
πi
N

kId for all
k ∈ Z.

Proof. Let Xj = exp(Pj), Yj = exp(Qj), j = 1, 2, . . . , g, Z = exp(E). Then
XjYj = Z2YjXj, XjYk = YkXj if j 6= k, XjXk = XkXj , YjYk = YkYj,
ZXj = XjZ, ZYj = YjZ, for all i, j, and XN

j = Y N
j = Z2N = Id for all j.

Because Y1, Y2, . . . , Yg commute pairwise, they have a common eigenvector
v. And because Y N

j = Id for all j, the eigenvalues λ1, λ2, . . . , λg of v with
respect to the Y1, Y2, . . . , Yg are roots of unity. The equalities

YjXjv = e−
2πi
N XjYj = e−

2πi
N λjXjv,

YjXkv = XkYjv = λjXkv, if j 6= k

show that by applying Xj’s repeatedly we can produce an eigenvector v0 of
the commuting system Y1, Y2, . . . , Yg whose eigenvalues are all equal to 1.
The irreducible representation is spanned by the vectors Xn1

1 Xn2

2 · · ·X
ng
g v0,

ni ∈ {0, 1, . . . , N − 1}. Any such vector is an eigenvector of the system

Y1, Y2, . . . , Yg, with eigenvalues respectively e
2πi
N

n1 , e
2πi
N

n2 , . . . , e
2πi
N

ng . So
these vectors are linearly independent and form a basis of the irreducible
representation. It is not hard to see that the action of H(Zg

N ) on the vector
space spanned by these vectors is the Schrödinger representation. �

Proposition 2.5. The operators Op
(
e2πi(pT x+qT y)

)
, p, q ∈ {0, 1, . . . ,N −

1}g form a basis of the space of linear operators on ΘΠ
N (Σg).

Proof. For simplicity, we will show that the operators

e
πi
N

pT qOp
(
e2πi(pT x+qT y)

)
, p, q ∈ {0, 1, . . . ,N − 1}g,

form a basis. Denote by Mp,q the respective matrices of these operators in
the basis (θΠ

µ )µ. For a fixed p, the nonzero entries of the matrices Mp,q,
q ∈ {0, 1, . . . , N − 1}g are precisely those in the slots (m,m + p), with
m ∈ {0, 1, . . . , N − 1}g (here m + p is taken modulo N). If we vary m and
q and arrange these nonzero entries in a matrix, we obtain the gth power of
a Vandermonde matrix, which is nonsingular. We conclude that for fixed p,
the matrices Mp,q, q ∈ {0, 1, . . . ,N −1}g form a basis for the vector space of
matrices with nonzero entries in the slots of the form (m,m + p). Varying
p, we obtain the desired conclusion. �

Corollary 2.6. The algebra L(ΘΠ
N (Σg)) of linear operators on the space of

theta functions is isomorphic to the algebra obtained by factoring C[H(Zg
N )]

by the relation (0, 0, 1) = e
iπ
N .

Let us now recall the action of the modular group on theta functions. The
modular group, known also as the mapping class group, of a simple closed
surface Σg is the quotient of the group of homemorphisms of Σg by the
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subgroup of homeomorphisms that are isotopic to the identity map. It is at
this point where it is essential that N is even.

The mapping class group acts on the Jacobian in the following way. An
element h of this group induces a linear automorphism h∗ of H1(Σg, R). The

matrix of h∗ has integer entries, determinant 1, and satisfies h∗J0h∗
T = J0,

where J0 =

(
0 Ig

Ig 0

)
is the intersection form in H1(Σg, R). As such, h∗ is

a symplectic linear automorphism of H1(Σg, R), where the symplectic form
is the intersection form. Identifying J (Σg) with H1(Σg, R)/H1(Σg, Z), we

see that h∗ induces a symplectomorphism h̃ of J (Σg). The map h → h̃
induces an action of the mapping class group of Σg on the Jacobian variety.
This action can be described explicitly as follows. Decompose h∗ into g × g
blocks as

h∗ =

(
A B
C D

)
.

Then h̃ maps the complex torus defined by the lattice (Ig,Π) and complex
variable z to the complex torus defined by the lattice (Ig,Π

′) and complex
variable z′, where Π′ = (ΠC + D)−1(ΠA + B) and z′ = (ΠC + D)−1z.

This action of the mapping class group of the surface on the Jacobian
induces an action of the mapping class group on the finite Heisenberg group
by

h · exp(pT P + qT Q + kE) = exp[(Ap + Bq)TP + (Cp + Dq)T Q + kE].

The nature of this action is as follows: Since h induces a diffeomorphism
on the Jacobian, we can compose h with an exponential and then quantize;
the resulting operator is as above. We point out that if N were not even,
this action would be defined only for h∗ in the subgroup Spθ(2n, Z) of the
symplectic group (this is because only for N even is the kernel of the map
F defined in Proposition 2.3 preserved under the action of h∗).

As a corollary of Theorem 2.4, the representation of the finite Heisenberg
group on theta functions given by u · θΠ

µ = (h · u)θΠ
µ is equivalent to the

Schrödinger representation, hence there is an automorphism ρ(h) of ΘΠ
N (Σg)

that satisfies the exact Egorov identity:

h · exp(pT P + qT Q + kE) = ρ(h) exp(pT P + qTQ + kE)ρ(h)−1. (2.5)

(Compare with [7], Theorem 2.15, which is the analogous statement in quan-
tum mechanics in Euclidean space.) Moreover, by Schur’s lemma, ρ(h) is
unique up to multiplication by a constant. We thus have a projective repre-
sentation of the mapping class group of the surface on the space of classical
theta functions that statisfies with the action of the finite Heisenberg group
the exact Egorov identity from (2.5). This is the finite dimensional counter-
part of the metaplectic representation, called the Hermite-Jacobi action.
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Remark 2.7. We emphasize that the action of the mapping class group of
Σg on theta functions factors through an action of the symplectic group
Sp(2n, Z).

Up to multiplication by a constant,

ρ(h)θΠ
µ (z) = exp[−πizT C(ΠC + D)−1z]θΠ′

µ (z′) (2.6)

(cf. (5.6.3) in [20]). When the Riemann surface is the complex torus ob-
tained as the quotient of the complex plane by the integer lattice, and h = S
is the map induced by a 90◦ rotation around the origin, then ρ(S) is the
discrete Fourier transform. In general, ρ(h) is an instance of the general
Fourier-Mukai transform, and like the metaplectic representation (see [15]),
can be written as a composition of partial discrete Fourier transforms. For
this reason, we will refer, throughout the paper, to ρ(h) as a discrete Fourier
transform.

3. Theta functions in the abstract setting

In this section we apply to the finite Heisenberg group the standard con-
struction that gives the Schrödinger representation as left translations on
the space of equivariant functions on the Heisenberg group (see for exam-
ple [15]). This construction is standard in the representation theory of finite
groups, it is the representation induced by an irreducible representation (i.e.
a character) of a maximal abelian subgroup.

We start with a Lagrangian subspace of H1(Σg, R) with respect to the
intersection form, which for our purpose will be the space spanned by the
elements b1, b2, . . . , bg of the canonical basis. Let L be the intersection of this
space with H1(Σg, Z). Under the standard inclusion H1(Σg, Z) ⊂ H(Zg), L

becomes an abelian subgroup of the Heisenberg group with integer entries.
This factors to an abelian subgroup exp(L) of H(Zg

N ). Let exp(L + ZE) be
the subgroup of H(Zg

N ) containing both exp(L) and the scalars exp(ZE).
Then exp(L+ZE) is a maximal abelian subgroup. Being abelian this group
has only 1-dimensional irreducible representations, and these representations
are characters.

In view of the Stone-von Neumann Theorem, we consider the induced
representation defined by the the character χL : exp(L + ZE) → C, χL(l +

kE) = e
πi
N

k. This representation is

Ind
H(Zg

N )

exp(L+ZE) = C[H(Zg
N )]

⊗

C[exp(L+ZE)]

C

with H(Zg
N ) acting on the left in the first factor of the tensor product.

Explicitly, the vector space of the representation is
the quotient of the group algebra C[H(Zg

N )] by the vector subspace spanned
by all elements of the form

u − χL(u′)−1uu′
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with u ∈ H(Zg
N ) and u′ ∈ exp(L+ZE). We denote the vector space which is

the quotient by HN,g(L), and let πL : C[H(Zg
N )] → HN,g(L) be the quotient

map.
The left regular action of the Heisenberg group H(Zg

N ) on its group alge-
bra descends to an action on HN,g(L).

Proposition 3.1. The map θΠ
µ (z) 7→ πL(exp(µT P )), µ ∈ Z

g
N defines a

unitary map between the space of theta functions ΘΠ
N (Σg) and HN,g(L),

which intertwines the Schrödinger representation and the left action of the
finite Heisenberg group.

Proof. It is not hard to see that ΘΠ
N (Σg) and HN,g(L) have the same dimen-

sion. Also, for µ 6= µ′ ∈ Z
g
N , exp(µT P ) and exp(µ′T P ) are not equivalent

modulo exp(L+ ZE), hence the map from the statement is an isomorphism
of finite dimensional spaces. The norm of πL(exp(µT P )) is one, hence this
map is unitary. We have

exp(pT P ) exp(µT P ) = exp((p + µ)T )P )

and

exp(qT Q) exp(µT P ) = e−
πi
N

qT µ exp(µT P ) exp(qT Q).

It follows that

exp(pT P )πL(exp(µT P )) = πL((p + µ)T P )

exp(qT Q)πL(exp(µT P )) = e−
πi
N

qT µπL(exp(µT P ))

in agreement with the Schrödinger representation (2.4). �

We rephrase the Hermite-Jacobi action in this setting. To this end, fix an
element h of the mapping class group of the Riemann surface Σg. Let L be
the subgroup of H1(Σg, Z) associated to a canonical basis as explained in the
beginning of this section, which determines the maximal abelian subgroup
exp(L + ZE).

The automorphism of H1(Σg, mathbbZ) defined by aj 7→ h∗(aj), bj 7→
h∗(bj), j = 1, 2, . . . , g, maps isomorphically L to L′ = h∗(L), and thus
allows us to identify in a canonical fashion HN,g(L) and HN,g(L

′). Given
this identification, we can view the discrete Fourier tranform as a map ρ(h) :
HN,g(L) and HN,g(L

′).
The discrete Fourier transform should map an element u mod ker(πL) in

C[H(Zg
N )]/ker(πL) to u mod ker(πh∗(L)) in C[H(Zg

N )]/ker(πh∗(L)). In this
form the map is not well defined, since different representatives for the class
of u might yield different images. The idea is to consider all possible liftings
of u and average them. For lifting the element u mod ker(πL) we use the
section of πL defined as

sL(u mod ker(πL)) =
1

2Ng+1

∑

u1∈exp(L+ZE)

χL(u1)
−1uu1. (3.1)
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Then, up to multiplication by a constant

ρ(h) (u mod ker(πL))

=
1

2Ng+1

∑

u1∈exp(L+ZE)

χL(u1)
−1uu1 mod ker(πh∗(L)). (3.2)

This formula identifies ρ(h) as a Fourier transform. That this map agrees
with the one defined by (2.6) up to multiplication by a constant follows from
Schur’s lemma, since both maps satisfy the exact Egorov identity (2.5).

4. A topological model for theta functions

The finite Heisenberg group, the equivalence relation defined by the kernel
of πL, and the Schrödinger representation can be given topological interpre-
tations, which we will explicate below. First, a heuristical discussion that
explains how to arrive at the topological model.

The Heisenberg group. The group H(Zg) is a Z-extension of the abelian
group H1(Σg, Z). The bilinear form ω from (2.3), which defines the cocycle
of this extension, is the intersection form in H1(Σg, Z). Cycles in H1(Σg, Z)
can be represented by families of non-intersecting simple closed curves on the
surface. As vector spaces, we can identify C[H(Zg)] with C[t, t−1]H1(Σg, Z),
where t is an abstract variable whose exponent equals the last coordinate in
the Heisenberg group.

We start with an example on the torus. Here and throughout the paper
we agree that (p, q) denotes the curve of slope q/p on the torus, oriented
from the origin to the point (p, q) when viewing the torus as a quotient of
the plane by integer translations. Consider the multiplication

(1, 0)(0, 1) = t(1, 1),

shown graphically in Figure 2. The product curve (1, 1) can be obtained by
cutting open the curves (1, 0) and (0, 1) at the crossing and joining the ends
in such a way that the orientations agree. This operation is called smoothing
of the crossing. It is easy to check that this works in general, for arbitrary
surfaces, and so whenever we multiply two families of curves we introduce a
coefficient of t raised to the algebraic intersection number of the two families
and we smoothen all crossings. Such algebras of curves, with multiplication
related to polynomial invariants of knots, were first considered in [27].

t

Figure 2
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The group H(Zg
N ) is a quotient of H(Zg), but can also be viewed as an

extension of H1(Σg, ZN ). As such, the elements of C[H(Zg
N)] can be rep-

resented by families of non-intersecting simple closed curves on the surface
with the convention that any N parallel curves can be deleted. The above

observation applies to this case as well, provided that we set t = e
iπ
N .

It follows that the space of linear operators L(ΘΠ
N (Σg)) can be represented

as an algebra of simple closed curves on the surface with the convention that
any N parallel curves can be deleted. The multiplication of two families of

simple closed curves is defined by introducing a coefficient of e
iπ
N raised to

the algebraic intersection number of the two families and smoothing the
crossings.

Theta functions. Next, we examine the space of theta functions, in its
abstract framework from Section 3. To better understand the factorization
modulo the kernel of πL, we look again at the torus. If the canonical basis
is (1, 0) and (0, 1) with L = Z(0, 1) , then an equivalence modulo ker(πL) is
shown in Figure 3. If we map the torus to the boundary of a solid torus in
such a way that L becomes null-homologous, then the first and last curves
from Figure 3 are homologous in the solid torus. To keep track of t we apply a
standard method in topology which consists of framing the curves. A framed
curve in a manifold is an embedding of an annulus. One can think of the
curve as being one of the boundary components of the annulus, and then
the annulus itself keeps track of the number of ways that the curve twists
around itself. Changing the framing by a full twist amounts to multiplying
by t or t−1 depending whether the twist is positive or negative. Then the
equality from Figure 3 holds in the solid torus. It is not hard to check for
a general surface Σg the equivalence relation modulo ker(πL) is of this form
in the handlebody bounded by Σg in such a way that L is null-homologous.

t

Figure 3

The Schrödinger representation. One can frame the curves on Σg by using
the blackboard framing, namely by embedding the annulus in the surface.
As such, the Schrödinger representation is the left action of an algebra of
framed curves on a surface on the vector space of framed curves in the
handlebody induced by the inclusion of the surface in the handlebody. We
will make this precise using the language of skein modules [21].

Let M be an orientable 3-dimensional manifold, with a choice of orien-
tation. A framed link in M is a smooth embedding of a disjoint union of
finitely many annuli. The embedded annuli are called link components. We
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consider oriented framed links. The orientation of a link component is an
orientation of one of the circles that bound the annulus. When M is the
cylinder over a surface, we represent framed links as oriented curves with the
blackboard framing, meaning that the annulus giving the framing is always
parallel to the surface.

Let t be a free variable, and consider the free C[t, t−1]-module with basis
the isotopy classes of framed oriented links in M including the empty link
∅. Let S be the the submodule spanned by all elements of the form depicted
in Figure 4, where the two terms in each skein relation depict framed links
that are identical except in an embedded ball, in which they look as shown.
The ball containing the crossing can be embedded in any possible way. To
normalize, we add to S the element consisting of the difference between the
unknot in M and the empty link ∅. Recall that the unknot is an embedded
circle that bounds an embedded disk in M and whose framing annulus lies
inside the disk.

Definition 4.1. The result of the factorization of the free C[t, t−1]-module
with basis the isotopy classes of framed oriented links by the submodule S
is called the linking number skein module of M , and is denoted by Lt(M).
The elements of Lt(M) are called skeins.

In other words, we are allowed to smoothen each crossing, to change the
framing provided that we multiply by the appropriate power of t, and to
identify the unknot with the empty link.

t t −1;

t ;
−1t

Figure 4

The “linking number” in the name is motivated by the fact that the skein
relations from Figure 4 are used for computing the linking number. These
skein modules were first introduced by Przytycki in [22] as one-parameter
deformations of the group algebra of H1(M, Z). Przytycki computed them
for all 3-dimensional manifolds.

Lemma 4.2. Any trivial link component, namely any link component that
bounds a disk disjoint from the rest of the link in such a way that the framing
is an annulus inside the disk, can be deleted.

Proof. The proof of the lemma is given in Figure 5. �

If M = Σg × [0, 1], the cylinder over a surface, then the identification

Σg × [0, 1] ∪ Σg × [0, 1] ≈ Σ × [0, 1]
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t −1

Figure 5

obtained by gluing the boundary component Σg×{0} in the first cylinder to
the boundary component Σg×{1} in the second cylinder by the identity map
induces a multiplication on Lt(Σg × [0, 1]). This turns Lt(Σg × [0, 1]) into an
algebra, called the linking number skein algebra. As such, the product of two
skeins is obtained by placing the first skein on top of the second. The nth
power of an oriented, framed, simple closed curve consists then of n parallel
copies of that curve. We adopt the same terminology even if the manifold
is not a cylinder, so γn stands for n parallel copies of γ. Additionally, γ−1

is obtained from γ by reversing orientation, and γ−n = (γ−1)n.

Definition 4.3. For a fixed positive integer N , we define the reduced link-

ing number skein module of the manifold M , denoted by L̃t(M), to be the
quotient of Lt(M) obtained by imposing that γN = ∅ for every oriented,

framed, simple closed curve γ, and by setting t = e
πi
N . As such, L = L′

whenever L′ is obtained from L by removing N parallel link components.

Remark 4.4. As a rule followed throughout the paper, whenever we talk
about skein modules, t is a free variable, and when we talk about reduced
skein modules, t is a root of unity. The isomorphisms Lt(S

3) ∼= C[t, t−1] and

L̃t(S
3) ∼= C allow us to identify the linking number skein module of S3 with

the set of Laurent polynomials in t and the reduced skein module with C.

For a closed, oriented, genus g surface Σg, consider a canonical basis of its
first homology a1, a2, . . . , ag, b1, b2, . . . , bg (see Section 1). The basis elements
are oriented simple closed curves on the surface, which we endow with the
blackboard framing. Let Hg be a genus g handlebody and h0 : Σg → ∂Hg be
a homeomorphism that maps b1, b2, . . . , bg to null homologous curves. Then
a1, a2, . . . ag is a basis of the first homology of the handlebody. Endow these
curves in the handlebody with the framing they had on the surface.

The linking number skein module of a 3-manifold M with boundary is a
module over the skein algebra of a boundary component Σg. The module
structure is induced by the identification

Σg × [0, 1] ∪ M ≈ M

where Σg × [0, 1] is glued to M along Σg × {0} by the identity map. This
means that the module structure is induced by identifying Σg × [0, 1] with
a regular neighborhood of the boundary of M . The product of a skein in
a regular neighborhood of the boundary and a skein in the interior is the
union of the two skeins. This module structure descends to relative skein
modules.
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In particular Lt(Σg × [0, 1]) acts on the left on Lt(Hg), with the action
induced by the homeomorpism h0 : Σg → ∂Hg, and this action descends to
relative skein modules.

Theorem 4.5. (a) The linking number skein module Lt(Σg× [0, 1]) is a free
C[t, t−1]-module with basis

am1

1 am2

2 · · · a
mg
g bn1

1 bn2

2 · · · b
ng
g , m1,m2, . . . ,mg, n1, n2, . . . , ng ∈ Z.

(b) The linking number skein module Lt(Hg) is a free C[t, t−1]-module with
basis

am1

1 am2

2 · · · a
mg
g , m1,m2, . . . ,mg ∈ Z.

(c) The algebras Lt(Σg × [0, 1]) and C[H(Zg)] are isomorphic, with the iso-
morphism defined by the map

tkγ 7→ ([γ], k).

where γ ranges over all skeins represented by oriented simple closed curves
on Σg (with the blackboard framing) and [γ] is the homology class of this
curve in H1(Σg, Z) = Z

2g.

Proof. Parts (a) and (b) are consequences of a general result in [22]; we
include their proof for sake of completeness.
(a) We bring all skeins in the blackboard framing (of the surface). A skein
tkL, where L is an oriented framed link in the cylinder over the surface
is equivalent modulo the skein relations to a skein tk+mL′ where L′ is an
oriented framed link such that the projection of L′ onto the surface has no
crossings, and m is the sum of the positive crossings of the projection of
L minus the sum of negative crossings. Moreover, because any embedded
ball can be isotoped to be a cylinder over a disk, any skein tnL′′ that is
equivalent to tkL and in which L′′ is a framed link with no crossings has the
property that n = k + m.

φ

Figure 6

If L is an oriented link with blackboard framing whose projection onto the
surface has no crossings, and if it is null-homologous in H1(Σg × [0, 1], Z),
then L is equivalent modulo skein relations to the empty skein. This follows
from the computations in Figure 6 given the fact that the closed orientable
surface Σg can be decomposed into pairs of pants and annuli.
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View Σg as a sphere with g punctured tori attached to it. Then L is
equivalent to a link L′ that consists of simple closed curves on these tori,
which therefore is of the form

(p1, q1)
k1(p2, q2)

k2 · · · (pg, qg)
kg ,

where (pj , qj) denotes the curve of slope pj/qj on the jth torus. This last
link is equivalent, modulo skein relations, to

t
P

j kjpjqjak1p1

1 ak2p2

2 · · · a
kgpg
g bk1q1

1 bk2q2

2 · · · b
kgqg
g . (4.1)

It is not hard to check that if we change the link by a Reidemeister move
and then resolve all crossings, we obtain the same expression (4.1). Hence
the result does only depend on the link and not on how it projects to the
surface. This completes the proof of (a).

(b) This case is analogous to (a), given that a genus g handlebody is the
cylinder over a disk with g punctures.

(c) Recall Corollary 2.6. The fact that the specified map is a linear isomor-
phism follows from (a). It is straightforward to check that the multiplication
rule is the same. �

Remark 4.6. Explicitly, the map

tkam1

1 am2

2 · · · a
mg
g bn1

1 bn2

2 · · · b
ng
g 7→ (m1,m2, . . . ,mg, n1, n2, . . . , ng, k),

for all mj, nj, k ∈ Z, defines an isomorphism of the algebras Lt(Σg × [0, 1])
and C[H(Zg)].

Theorem 4.7. (a) The reduced linking number skein module L̃t(Σg × [0, 1])
is a finite dimensional vector space with basis

am1

1 am2

2 · · · a
mg
g bn1

1 bn2

2 · · · b
ng
g , m1,m2, . . . ,mg, n1, n2, . . . , ng ∈ ZN .

(b) The reduced linking number skein module L̃t(Hg) is a finite dimensional
vector space with basis

am1

1 am2

2 · · · a
mg
g , m1,m2, . . . ,mg ∈ ZN .

Moreover, there is a linear isomorphism of the spaces L̃t(Hg) and ΘΠ
N (Σg)

given by

γ → θ[γ],

where γ ranges among all oriented simple closed curves in B2
g with the black-

board framing and [γ] is the homology class of γ in H1(Hg, Z
g
N ) = Z

g
N .

(c) The algebra isomorphism defined in Theorem 4.5 factors to an algebra

isomorphism of L̃t(Σg × [0, 1]) and L(ΘΠ
N (Σg)), the algebra of linear op-

erators on the space of theta functions. The isomorphism defined in (b)

intertwines the left action of L̃t(Σg × [0, 1]) on L̃t(Hg) and the Schrödinger
representation.
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Proof. (a) Using Theorem 4.5 we can identify Lt(Σg × [0, 1]) with C[H(Zg)].
Setting t to a 2Nth root of unity and deleting any N parallel copies of a
link component are precisely the relations by which we factor the Heisenberg
group in Proposition 2.3. The only question is whether factoring by this ad-
ditional relation before applying the other skein relations factors any further
the skein module. However, we see that when a curve is crossed by N par-
allel copies of another curve, there is no distinction between overcrossings
and undercrossings. Hence if a link contains N parallel copies of a curve,
we can move this curve so that it is inside a cylinder Σg × [0, ǫ] that does
not contain other link components and we can also resolve all self-crossings
of this curve without introducing factors of t. Then we can delete the curve
without introducing new factoring relations. This proves (a).

For (b), notice that we factor L̃t(Σg× [0, 1]) to obtain L̃t(Hg) by the same
relations by which we factor C[H(Zg

N )] to obtain HN,g(L) in Section 3.
(c) An easy check shows that that the left action of the skein algebra of

the cylinder over the surface on the skein module of the handlebody is the
same as the one from Propositions 2.1 and 3.1. �

Remark 4.8. The isomorphism between the reduced skein module of the
handlebody and the space of theta functions is given explicitly by

an1

1 an2

2 · · · a
ng
g 7→ θΠ

n1,n2,...,ng
, for all n1, n2, . . . , ng ∈ ZN .

In view of Theorem 4.7 we endow L̃t(Hg) with the Hilbert space structure
of the space of theta functions.

Now we turn our attention to the discrete Fourier transform, and translate
in topological language formula (3.2). Let h be an element of the mapping
class group of the surface Σg. The action of the mapping class group on the
finite Heisenberg group described in Section 2 becomes the action on skeins
in the cylinder over the surface given by

σ 7→ h(σ),

where h(σ) is obtained by replacing each framed curve of the skein σ by its
image through the homeomorphism h.

Consider h1 and h2 two homeomorphisms of Σg onto the boundary of
the handlebody Hg such that h2 = h ◦ h1. These homeomorphisms extend
to embeddings of Σg × [0, 1] into Hg which we denote by h1 and h2 as
well. The homeomorphisms h1 and h2 define the action of the reduced skein
module of the cylinder over the surface on the reduced skein module of the
handlebody in two different ways, i.e. they give two different constructions
of the Schrödinger representations. By the Stone-von Neumann theorem,
these are unitary equivalent; they are related by the isomorphism ρ(h). We
want to give ρ(h) a topological definition. To this end, let us take a closer
look at the lifting map sL defined in (3.1). First, it is standard to remark
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that one should only average over exp(L + ZE)/ exp(ZE) = exp(L), hence

sL(u mod ker(πL)) =
1

Ng

∑

u1∈exp(L)

uu1.

If u = u ∈ H(Zg
N ), then, as a skein, u is of the form γk where γ is a

framed oriented curve on Σg = ∂Hg and k is an integer. The element û =
u mod ker(πL(u)) is just this skein viewed as lying inside the handlebody;
it consists of k parallel framed oriented curves in Hg.

On the other hand, as a skein, u1 is of the form bn1

1 bn2

2 . . . b
ng
g , and as

such, the product uu1 becomes after smoothing all crossings another lift
of the skein û to the boundary obtained by lifting γ to the boundary and
then taking k parallel copies. Such a lift is obtained by pushing û inside a
regular neighborhood of the boundary and then viewing it as an element in

L̃t(Σg × [0, 1]). When u1 ranges over all exp(L) we obtain all possible lifts of
û to the boundary obtained by pushing γ to the boundary and then taking
k parallel copies.

Theorem 4.9. For a skein of the form γk in L̃t(Hg), where γ is a curve

in Hg and k a positive integer, consider all possible liftings to L̃(Σg × [0, 1])
using h1, obtained by pushing the curve γ to the boundary and then taking
k parallel copies. Take the average of these liftings and map the average by

h2 to L̃(Hg). This defines a linear endomorphism of L̃t(Hg) which is, up to
multiplication by a constant, the discrete Fourier transform ρ(h).

Proof. The map defined this way intertwines the Schrödinger representations
defined by h1 and h2, so the theorem is a consequence of the Stone-von
Neumann theorem. �

Example: We will exemplify this by showing how the S-map on the torus
acts on the theta series

θΠ
1 (z) =

∑

n∈Z

e
2πiN

h

Π
2 ( 1

N
+n)

2
+z( 1

N
+n)

i

(in this case Π is a just a complex number with positive imaginary part).
This theta series is represented in the solid torus by the curve shown in
Figure 7. The N linearly independent liftings of this curve to the boundary

Figure 7

are shown in Figure 8.
The S-map sends these to those in Figure 9, which, after being pushed

inside the solid torus, become the skeins from Figure 10.
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t, tN−1
...

,, ...

Figure 8

tN−1 ...,, t ... ,

Figure 9

,, t2 2(N−1)t ...... ,

Figure 10

Note that in each skein the arrow points the opposite way as for θ1(z).
Using the identity γN = ∅, we can replace j parallel strands by N − j
parallel strands with opposite orientation. Hence these skeins are t2jθN−j,
j = 1, . . . , N (note also that θ0(z) = θN (z)). Taking the average we obtain

ρ(S)θ1(z) =
1

N

N−1∑

j=0

e
2πij
N θN−j(z) =

1

N

N−1∑

j=0

e−
2πij
N θj(z),

which is, up to a multiplication by a constant, the standard discrete Fourier
transform of θ1(z).

5. The discrete Fourier transform as a skein

As a consequence of Proposition 2.5, ρ(h) can be represented as an el-
ement in C[H(Zg

N )]. Furthermore, Theorem 4.7 implies that ρ(h) can be

represented as left multiplication by a skein F(h) in L̃t(Σg × [0, 1]). The
skein F(h) is unique up to a multiplication by a constant. We wish to find
an explicit formula for it.

Theorem 4.7 implies that the action of the group algebra of the finite
Heisenberg group can be represented as left multiplication by skeins. Using
this fact, the exact Egorov identity (2.5) translates to

h(σ)F(h) = F(h)σ (5.1)

for all skeins σ ∈ L̃t(Σg × [0, 1]).
By the Lickorish twist theorem (Chapter 9 in [23]), every homeomorphism

of the surface Σg is isotopic to a product of Dehn twists along the 3g − 1
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curves depicted in Figure 11. We recall that a Dehn twist is the homem-
orphism obtained by cutting the surface along the curve, applying a full
rotation on one side, then gluing back.

Figure 11

The curves from Figure 11 are nonseparating, and any two can be mapped
into one another by a homeomorphism of the surface. Thus in order to
understand F(h) in general, it suffices to consider the case h = T , the
positive Dehn twist along the curve b1 from Figure 1. The word positive
means that after we cut the surface along b1 we perform a full rotation of
the part on the left in the direction of the arrow. Because T (σ) = σ for
all skeins that do not contain curves that intersect b1, it follows that ρ(T )
commutes with all such skeins. It also commutes with the multiples of b1

(viewed as a skein with the blackboard framing). Hence ρ(T ) commutes
with all operators of the form exp(pP + qQ + kE) with p1, the first entry of
p, equal to 0. This implies that

ρ(T ) =
N−1∑

j=0

cj exp(jQ1).

To determine the coefficients cj , we write the exact Egorov identity (2.5) for
exp(P1). Since T · exp(P1) = exp(P1 + Q1) this identity reads

exp(P1 + Q1)

N−1∑

j=0

cj exp(jQ1) =

N−1∑

j=0

cj exp(jQ1) exp(P1).

We transform this further into

N−1∑

j=0

cje
πi
N

j exp[P1 + (j + 1)Q1] =
N−1∑

j=0

cje
−

πi
N

j exp(P1 + jQ1),

or, taking into account that exp(P1) = exp(P1 + NQ1),

N−1∑

j=0

cj−1e
πi
N

(j−1) exp(P1 + jQ1) =

N−1∑

j=0

cje
−

πi
N

j exp(P1 + jQ1),

where c−1 = cN−1. It follows that cj = e
πi
N

(2j−1)cj−1 for all j. Normalizing

so that ρ(T ) is a unitary map and c0 > 0 we obtain cj = N−1/2e
πi
N

j2

, and
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hence

F(T ) = N−1/2
N−1∑

j=0

e
πi
N

j2

exp(jQ1).

Turning to the language of skein modules, and taking into account that any
Dehn twist is conjugate to the above twist by an element of the mapping
class group, we conclude that if T is a positive Dehn twist along the simple
closed curve γ on Σg, then

F(T ) = N−1/2
N−1∑

j=0

tj
2

γj.

This is the same as the skein

F(T ) = N−1/2
N−1∑

j=0

(γ+)j

where γ+ is obtained by adding one full positive twist to the framing of γ
(the twist is positive in the sense that, as skeins, γ+ = tγ).

This skein has an interpretation in terms of surgery. Consider the curve
γ+ × {1/2} ⊂ Σg × [0, 1] with framing defined by the blackboard framing
of γ+ on Σg. Take a solid torus which is a regular neighborhood of the
curve on whose boundary the framing determines two simple closed curves.
Remove it from Σg × [0, 1], then glue it back in by a homeomorphism that
identifies its meridian (the curve that is null-homologous) to one of the
curves determined by the framing. This operation, called surgery, yields a
manifold that is homeomorphic to Σg × [0, 1], such that the restriction of
the homeomorphism to Σg × {0} is the identity map, and the restriction to
Σg × {1} is the Dehn twist T .

The reduced linking number skein module of the solid torus H1 is, by
Theorem 4.7, an N -dimensional vector space with basis ∅, a1, . . . , a

N−1
1 . Al-

ternately, it is the vector space of 1-dimensional theta functions with basis
θΠ
0 (z), θΠ

1 (z), . . . , θΠ
N−1(z), where Π in this case is a complex number with

positive imaginary part. We introduce the element

Ω = N−1/2
N−1∑

j=0

aj
1 = N−1/2

N−1∑

j=0

θτ
j (z) (5.2)

in L̃t(H1) = ΘΠ
N (Σ1). As a diagram, Ω is the skein depicted in Figure 12

multiplied by N−1/2. If S is the homemorphism on the torus induced by the
90◦ rotation of the plane when viewing the torus as the quotient of the plane
by the integer lattice, then Ω = ρ(S)∅. In other words, Ω is the (standard)
discrete Fourier transform of θΠ

0 (z).
For an arbitrary framed link L, we denote by Ω(L), the skein obtained

by replacing each link component by Ω. In other words, Ω(L) is the sum
of framed links obtained from L by replacing its components, in all possible
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+ + ... + ...

Figure 12

ways, by 0, 1, . . . , N − 1 parallel copies. The skein Ω is called the coloring
of L by Ω.

Here are two properties of Ω that will be used in the sequel.

Proposition 5.1. a) The skein Ω(L) is independent of the orientations of
the components of L.
b) The skein relation from Figure 13 holds, where the n parallel strands point
in the same direction.

0

if 

if 

n=0

Ω
Ω

.

n

0<n<N

Figure 13

Proof. a) The computation in Figure 6 implies that if we switch the ori-
entation on the j parallel curves that represent θΠ

j (z) we obtain θΠ
N−j(z).

Hence by changing the orientation on all curves that make up Ω we obtain
the skein

N−1/2[θΠ
0 (z) + θΠ

N−1(z) + θΠ
N−2(z) + · · · + θΠ

1 (z)],

which is, again, Ω.
b) When n = 0 there is nothing to prove. If n 6= 0, then by resolving

all crossings in the diagram we obtain n vertical parallel strands with the
coefficient

N−1/2
N−1∑

j=0

t±2nj = N−1/2 ·
t2Nj − 1

t2n − 1
.

where the signs in the exponents are either all positive, or all negative.
Since t2 is a primitive Nth root of unity, this is equal to zero. Hence the
conclusion. �

Up to this point we have proved the following result:

Lemma 5.2. For a Dehn twist T , F(T ) is the skein obtained by coloring
the surgery framed curve γ+ of T by Ω.
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Since by the Lickorish twist theorem every element h of the mapping
class group is a product of twists, we obtain the following skein theoretic
description of the discrete Fourier transform induced by the map h.

Proposition 5.3. Let h be an element of the mapping class group of Σg

obtained as a composition of Dehn twists h = T1T2 · · ·Tn. Express each
Dehn twist Tj by surgery on a curve γj as above, and consider the link
Lh = γ1 ∪ γ2 ∪ · · · ∪ γn which expresses h as surgery on the framed link Lh

in Σg × [0, 1]. Then the discrete Fourier transform ρ(h) : L̃t(Hg) → L̃t(Hg)
is given by

ρ(h)β = Ω(Lh)β.

6. The Egorov identity and handle slides

Next, we give the Egorov identity a topological interpretation in terms
of handle slides. For this we look at its skein theoretical version (5.1). We
start again with an example on the torus.

Example: For the positive twist T and the operator represented by the curve
(1, 0) the exact Egorov identity reads

ρ(T )(1, 0) = (1, 1)ρ(T ),

which is described graphically in Figure 14.

ΩΩ

Figure 14

The diagram on the right is the same as the one from Figure 15. As such,

Ω

Figure 15

the curve (1, 1) is obtained by sliding the curve (1, 0) along the surgery
curve of the positive twist. Here is the detailed description of the operation
of sliding a framed knot along another using a Kirby band-sum move.

The slide of a framed knot K0 along the framed knot K, denoted by
K0#K, is obtained as follows. Let K1 be a copy of K obtained by pushing
K in the direction of its framing. Take an embedded [0, 1]3 that is disjoint
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from K,K0, and K1 except for the opposite faces Fi = [0, 1]2 × {i}, i = 0, 1
and which are embedded in ∂K0 respectively ∂K1. Fi is embedded in the
annulus Ki such that [0, 1] × {j} × {i} is embedded in ∂Ki. Delete from
K0 ∪K1 the faces Fi and add the faces {j}× [0, 1]× [0, 1]. The framed knot
obtained this way is K0#K. Saying it less rigorously but more intuitively,
we cut the knots K0 and K1 and join together the two open strands by
pulling them along the sides of an embedded rectangle (band) which does
not intersect the knots. Figure 16 shows the slide of a trefoil knot over a
figure-eight knot, both with the blackboard framing. When the knots are
oriented, we perform the slide so that the orientations match. One should
point out that there are many ways in which one can slide one knot along
the other, since the band that connects the two knots is not unique.

Figure 16

For a closed curve α in Σg = Σg × {0}, the curve h(α) is obtained from
α by slides over the components of the surgery link of h. Indeed, if h is
the twist along the curve γ, with surgery curve γ+, and if α and γ intersect
on Σg at only one point, then h(α) = α#γ+. If the algebraic intersecton
number of α and γ is ±k, then h(α) is obtained from α by performing k
consecutive slides along γ+. The general case follows from the fact that h
is a product of twists.

It follows that the exact Egorov identity is a particular case of slides of
framed knots along components of the surgery link. In fact, the exact Egorov
identity covers all cases of slides of one knot along another knot colored by
Ω, and we have

Theorem 6.1. Let M be a 3-dimensional manifold, σ an arbitrary skein

in L̃t(M) and K0 and K two oriented framed knots in M disjoint from σ.

Then, in L̃t(M), one has the equality

σ ∪ K0 ∪ Ω(K) = σ ∪ (K0#K) ∪ Ω(K),

however one does the band sum K0#K.

Remark 6.2. The knots from the statement of the theorem should be un-
derstood as representing elements in L̃t(M).

Proof. Isotope K0 along the embedded [0, 1]3 that defines K0#K to a knot
K ′

0 that intersects K. There is an embedded punctured torus Σ1,1 in M ,
disjoint from σ, which contains K ′

0∪K on its boundary, as shown in Figure 17
a). In fact, by looking at a neighborhood of this torus, we can find an
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embedded Σ1,1 × [0, 1] such that K ′
0 ∪K ⊂ Σ1,1 ×{0}. The boundary of this

cylinder is a genus 2 surface Σ2, and K ′
0 and K1 lie in a punctured torus of

this surface and intersect at exactly one point. By pushing off K ′
0 to a knot

isotopic to K0 (which we identify with K0), we see that we can place K0 and
K in an embedded Σ2 × [0, 1] such that K0 ∈ Σ2×{0} and K ∈ Σ2×{1/2}.

a) b)

Figure 17

By performing a twist in Σ1,1 × [0, 1] we can change the framing of K in
such a way that K0 and K look inside Σ2 × [0, 1] like in Figure 17 b). Then
K0 is mapped to K0#K in Σ2 × {1} by the Dehn twist of Σ2 with surgery
diagram K. Hence the equality

K0 ∪ Ω(K) = (K0#K) ∪ Ω(K)

in Σ2 × [0, 1] is just the exact Egorov identity, which we know is true . By
embedding Σ2 × [0, 1] in Σ1,1 × [0, 1] we conclude that this equality holds in
Σ1,1 × [0, 1]. By applying the inverse of the twist, embedding Σ1,1 × [0, 1] in
M , and adding σ, we conclude that the identity from the statement holds
as well. �

The operation of sliding one knot along another is related to the surgery
description of 3-dimensional manifolds (for more details see [23]). Let us
recall the basic facts.

We use the standard notation Bn for an n-dimensional (unit) ball and
Sn for the n-dimensional sphere. Every 3-dimensional closed manifold is
the boundary of a 4-dimensional manifold obtained by adding 2-handles
B2 × B2 to B4 along the solid tori B2 × S1 [14]. On the boundary S3 of
B4, when adding a handle we remove a solid torus from S3 (the one which
we identify with B2 ×S1) and glue back the solid torus S1 ×B2. The curve
{1}×S1 in the solid torus B2 ×S1 that was removed becomes the meridian
(i.e. null-homologous curve) on the boundary of S1 × B2.

This procedure of constructing 3-dimensional manifold is called Dehn
surgery with integer coefficients. The curve {1} × S1 together with the
core of the solid torus B2 × S1 bound an embedded annulus which defines
a framed link component in S3. As such, the information for Dehn surgery
with integer coefficients can be encoded in a framed link in S3.

If K0 is a knot inside a 3-dimensional manifold M obtained by surgery
on S3 and if the framed knot K is a component of the surgery link, then
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K0#K is the slide of K0 over the 2-handle corresponding to K. Indeed,
when we slide K0 along the handle we push one arc close to K, then move
it to the other side of the handle by pushing it through the meridinal disk
of the surgery solid torus. The meridian of this solid torus is parallel to the
knot K (when viewed in S3), so by sliding K0 across the handle we obtain
K0#K. In particular, the operation of sliding one 2-handle over another
corresponds to sliding one link component of the surgery link along another.

In conclusion, we can say that the Egorov identity allows handle-slides
along surgery link components colored by Ω. We will make use of this fact
in the next section.

7. The topological quantum field theory associated to theta

functions

Theorem 6.1 has two direct consequences:

• the definition of a topological invariant for closed 3-dimensional man-
ifolds,

• the existence of an isomorphism between the reduced linking num-
ber skein modules of 3-dimensional manifolds with homeomorphic
boundaries.

We have seen in the previous section that handle-slides correspond to
changing the presentation of a 3-dimensional manifold as surgery on a framed
link. Kirby’s theorem [12] states that two framed link diagrams represent the
same 3-dimensional manifold if they can be transformed into one another by
a sequence of isotopies, handle slides and additions/deletions of the trivial
link components U+ and U− described in Figure 18. A trivial link component
corresponds to adding a 2-handle to B4 in a trivial way, and on the boundary,
to taking the connected sum of the original 3-dimensional manifold and S3.

Figure 18

Theorem 6.1 implies that, given a framed link L in S3, the element
Ω(L) ∈ Lt(S

3) = C is an invariant of the 3-dimensional manifold obtained
by performing surgery on L, modulo addition and subtraction of trivial 2-
handles. This ambiguity can be removed by using the linking matrix of L
as follows.

Recall that the linking matrix of an oriented framed link L has the (i, j)
entry equal to the linking number of the ith and jth components for i 6= j
and the (i, i) entry equal to the writhe of the ith component, namely to the
linking number of the ith component with a push-out of this component in
the direction of the framing. The signature sign(L) of the linking matrix
does not depend on the orientations of the components of L, and is equal to
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the signature sign(W ) of the 4-dimensional manifold W obtained by adding
2-handles to B4 as specified by L. We remind the reader that the signature
of sign(W ) is the signature of the intersection form in H2(W, R).

When adding a trivial handle via U+ respectively U−, the signature of
the linking matrix, and hence of the 4-dimensional manifold, changes by +1
respectively −1.

Proposition 7.1. In any 3-dimensional manifold, the following equalities
hold

Ω(U+) = e
πi
4 ∅, Ω(U−) = e−

πi
4 ∅.

Consequently Ω(U+) ∪ Ω(U−) = ∅.

Proof. We have

Ω(U+) = N−1/2
N−1∑

j=0

tj
2

∅.

Because N is even,

N−1∑

j=0

tj
2

=

N−1∑

j=0

e
πi
N

j2

=

N−1∑

j=0

e
πi
N

(N+j)2 =

2N−1∑

j=N

tj
2

.

Hence
N−1∑

j=0

tj
2

=
1

2

2N−1∑

j=0

e
2πi
2N

j2

.

The last expression is a Gauss sum, which is equal to e
πi
4 N1/2 (see [13] page

87). This proves the first formula.
On the other hand,

Ω(U−) = N−1/2
N−1∑

j=0

e−
πi
N

j2

∅

which is the complex conjugate of Ω(U+). Hence, the second formula. �

Theorem 7.2. Given a closed, oriented, 3-dimensional manifold M ob-
tained as surgery on the framed link L in S3, the number

Z(M) = e−
πi
4
sign(L)Ω(L)

is a topological invariant of the manifold M .

Proof. Using Proposition 7.1 we can rewrite

Z(M) = Ω(U+)−b+Ω(U−)−b−Ω(L)

where b+ and b− are the number of positive, respectively negative eigenval-
ues of the linking matrix. This quantity is invariant under the addition of
trivial handles, and also under handleslide because of Theorem 6.1, so it is
a topological invariant of M . �
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Remark 7.3. This is the Murakami-Ohtsuki-Okada invariant [19]! Here we
were able to derive its existence from quantum mechanical considerations.

The second application of the exact Egorov identity is the construction
of a Sikora isomorphism, which identifies the reduced linking number skein
modules of two manifolds with homeomorphic boundaries. Let us point out
that such an isomorphism was constructed for reduced Kauffman bracket
skein modules in [25].

Theorem 7.4. Let M1 and M2 be two 3-dimensional manifold with home-
omorphic boundaries. Then

L̃t(M1) ∼= L̃t(M2).

Proof. Because the manifolds M1 and M2 have homeomorphic boundaries,
there is a framed link L1 ⊂ M1 such that M2 is obtained by performing
surgery on L1 in M1. Let N1 be a regular neighborhood of L1 in M , which
is the union of several solid tori, and let N2 be the union of the surgery tori in
M2. The cores of these tori form a framed link L2 ⊂ M2, and M1 is obtained
by performing surgery on L2 in M2. Every skein in M1, respectively M2 can
be isotoped to one that misses N1, respectively N2. The homeomorphism
M1\N1

∼= M2\N2 yields an isomorphism

φ : L̃t(M1\N1) → L̃t(M1\N1).

However, this does not induce a well defined map between L̃t(M1) and

L̃t(M2) because a skein can be pushed through the Ni’s. To make this
map well defined, the skein should not change when pushed through these
regular neighborhoods. To this end we use we use Theorem 6.1 and define

F1 : L̃t(M1) → L̃t(M1) by

F1(σ) = φ(σ) ∪ Ω(L1)

and F1 : L̃t(M2) → L̃t(M1) by

F2(σ) = φ−1(σ) ∪ Ω(L2).

By Proposition 5.1 b) we have

Ω(L1) ∪ Ω(φ−1(L2)) = ∅ ∈ L̃t(M1),

since each of the components of φ−1(L2) is a meridian in the surgery torus,
hence it surrounds exactly once the corresponding component in L1. This
implies that F2 ◦ F1 = Id. A similar argument shows that F1 ◦F2 = Id. �

One should note that the Sikora isomorphism depends on the surgery
diagram. Now it is easy to describe the reduced linking number skein module
of any manifold.
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Proposition 7.5. For every oriented 3-dimensional manifold M having the
boundary components Σgi, i = 1, 2, . . . , n, one has

L̃t(M) ∼=

n⊗

i=1

C
Ngi .

Proof. If M has no boundary component then L̃t(M) = L̃t(S
3) = C, and if

M is bounded by a sphere, then L̃t(M) = L̃t(B
3) = C, where B3 denotes

the 3-dimensional ball. If M has one genus g boundary component with

g ≥ 1, then L̃t(M) = L̃t(Hg) = C
Ng by Theorem 4.7.

To tackle the case of more boundary components we need the following
result:

Lemma 7.6. Given two oriented 3-dimensional manifolds M1 and M2, and
let M1#M2 be their connected sum. The map

L̃t(M1) ⊗ L̃t(M2) → L̃t(M1#M2)

defined by (σ, σ′) 7→ σ ∪ σ′ is an isomorphism.

Proof. In M1#M2, the manifolds M1 and M2 are separated by a 2-dimensional
sphere S2

sep. Every skein in M1#M2 can be written as
∑N−1

j=0 σj , where each

σj intersects S2
sep in j strands pointing in the same direction. A trivial skein

colored by Ω is equal to the empty link. But when we slide it over S2
sep

it turns
∑N−1

j=0 σj into σ0. This shows that the map from the statement is
onto.

On the other hand, the reduced linking number skein module of a regular
neighborhood of S2

sep is C since every skein can be resolved to the empty
link. This means that, in M1#M2, if a skein that lies entirely in M1 can
be isotoped to a skein that lies entirely in M2, then this skein is a scalar

multiple of the empty skein. So if σ1 ∪σ′
1 = σ2 ∪σ′

2, then σ1 = σ2 in L̃t(M1)

and σ′
1 = σ′

2 in L̃t(M2). Hence the map is one-to-one, and we are done. �

Returning to the theorem, an oriented 3-dimensional manifold with n
boundary components can be obtained as surgery on a connected sum of
n handlebodies. The conclusion of the proposition follows by applying the
lemma. �

If M is a 3-dimensional manifold without boundary, then Theorem 7.4
shows that

L̃t(M) ∼= L̃t(S
3) = C.

If we describe M as surgery on a framed link L with signature zero, which
is always possible by adding trivial link components with framing ±1, then
the Sikora isomorphism maps the empty link in M to the vector

Z(M) = Ω(L) ∈ L̃t(S
3) = C.
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More generally, M can be endowed with a framing defined by the signature
of the 4-dimensional manifold W that it bounds constructed as explained
before. If L is the surgery link that gives rise to M and W , then to the
framed manifold (M, sign(W )) = (M,m) we can associate the invariant

Z(M,m) = Ω(L) ∈ L̃t(S
3).

The Sikora isomorphism associated to L identifies this invariant with the
empty link in M .

All these can be generalized to manifolds with boundary. A 3-dimensional
manifold M with boundary can be obtained by performing surgery on a
framed link L in the complement N of n handlebodies embedded in S3,
n ≥ 1. We can again endow M with a framing by filling in the missing
handlebodies in S3 and constructing the 4-dimensional manifold M with
the surgery instructions from L. To the manifold (M, sign(W )) = (M,m)

we can associate the skein ∅ ∈ L̃t(M). A Sikora isomorphism allows us

to identify this vector with Ω(L) ∈ L̃t(N). Another Sikora isomorphism

allows us to identify L̃t(N) with the reduced linking number skein module
of the connected sum of handlebodies, namely with ⊗n

i=1C
Ngi , where gi,

i = 1, 2, . . . , n are the generra of the boundary components of M . Via
Proposition 7.5, Ω(L) can be identified with a vector

Z(M,m) ∈
n⊗

i=1

C
Ngi .

There is another way to see this identification of the linking number skein
module with ⊗n

i=1C
Ngi , done in the spirit of [24]. In this alternative formal-

ism, Ω(L) acts as a linear functional on

Ω(L) :

n⊗

i=1

L̃t(Hgi) → C,

by gluing handlebodies to N as to obtain S3. In this setting, the formalism
developed in [28] Chapter IV applies to show that the vector

Z(M,m) ∈
(
⊕N

i=1C
Ngi

)∗
= ⊕n

i=1C
Ngi

is well defined once the framing m is fixed.
This construction fits Atiyah’s formalism of a topological quantum field

theory (TQFT) [3] with anomaly [28]. In this formalism

• to each surface Σ = Σg1
∪ Σg2

∪ · · · ∪ Σgn we associate the vector
space

V (Σ) =

n⊗

i=1

C
Ngi

which is isomorphic to the reduced linking number skein module of
any 3-dimensional manifold that Σ bounds.
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• to each framed 3-dimensional manifold (M,m) we associate the empty

link in L̃t(M). As a vector in V (∂M), this is Z(M,m).

Atiyah’s axioms are easy to check. Functoriality is obvious. The fact
that Z is involutory namely that Z(Σ∗) = Z(Σ)∗ where Σ∗ denotes Σ with
opposite orientation follows by gluing a manifold M bounded by Σ to a
manifold M∗ bounded by Σ∗ and using the standard pairing

L̃t(M) × L̃t(M
∗) → L̃t(M ∪ M∗) = C.

Let us check the multiplicativity of Z for disjoint union. If Σ and Σ′ are two
surfaces, we can consider disjoint 3-dimensional manifolds M and M ′ such
that ∂M = Σ and ∂M ′ = Σ′. Then

Z(Σ ∪ Σ′) = L̃t(M ∪ M ′) = L̃t(M) ⊗ L̃t(M
′) = Z(Σ) ⊗ Z(Σ′).

Also ∅ ∈ L̃t(M ∪ M ′) equals ∅ ⊗ ∅ ∈ L̃t(M) ⊗ L̃t(M
′). If we now endow M

and M ′ with framings m, respectively m′, then

Z(M ∪ M ′,m + m′) = Z(M,m) ⊗ Z(M ′,m′),

since the Sikora isomorphism acts separately on the skein modules of M and
M ′.

What about multiplicativity for manifolds glued along a surface? Let M1

and M2 be 3-dimensional manifolds with ∂M1 = Σ∪Σ′ and M2 = Σ∗ ∪Σ′′,
and assume that M1 is glued to M2 along Σ. Then the empty link in M∪M ′

is obtained as the union of the empty link in M with the empty link in M ′.
It follows that

Z(M1 ∪ M2,m1 + m2) = e−
iπ
4

τ 〈Z(M1,m1), Z(M2,m2)〉 ,

where 〈, 〉 is the contraction

V (Σ′) ⊗ V (Σ) ⊗ V (Σ)∗ ⊗ V (Σ′′) → V (Σ′) ⊗ V (Σ′′),

and τ expresses the anomaly of the TQFT and depends on how the signature
of the surgery link changes under gluing (or equivalently, on how the sig-
natures of the 4-dimensional manifolds bounded by the given 3-dimensional
manifolds change under the gluing, see Section 8).

Finally, Z(∅) = C, because the only link in the void manifold is the empty
link. Also, if M = Σ×[0, 1], then the empty link in M is the surgery diagram
of the identity homeomorphism of Σ and hence Z(M, 0) can be viewed as
the identity map in End(V (Σ)).

This TQFT is hermitian. Indeed, V (∂M), being a space of theta func-
tions, has the inner product introduced in Section 2. On the other hand,
if M is a 3-dimensional manifold and M∗ is the same manifold but with
reversed orientation, then the surgery link L∗ of M∗ is the mirror image of
the surgery link L of M . The invariant of M is computed by smoothing
the crossings in L while the invariant of M∗ is computed by smoothing the
crossings in L∗, whatever was a positive crossing in L becomes a negative
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crossing in L∗ and vice-versa. Hence sign(L∗) = −sign(L). Also, because

for t = e
iπ
N one has t−1 = t̄, and hence Ω(L∗) = Ω(L). It follows that

Z(M∗,−m) = Z(M,m)

as desired.

8. The Hermite-Jacobi action and the non-additivity of the

signature of 4-dimensional manifolds

An interesting coincidence in mathematics is the fact that the Segal-Shale-
Weil cocycle of the metaplectic representation [15] and the non-additivity
of the signature of 4-dimensional manifolds under gluings [30] are both de-
scribed in terms of the Maslov index. We will explain this coincidence by
showing how to resolve the projectivity of the Hermite-Jacobi action using 4-
dimensional manifolds. Note that the theory of theta functions explains the
coincidence of the cocycle of the metaplectic representation and the cocycle
of the Hermite-Jacobi action.

Each element h of the mapping class group of Σg can be represented by
surgery on a link Lh ∈ Σg × [0, 1]. This means that mapping cylinder of h
is obtained as the surgery on Σg × [0, 1] along Lh; it is homeomorphic to
Σg × [0, 1], where the homeomorphism is the identity map on Σg × {0} and
h on Σg × {1}. The link Lh is not necessarily obtained from writing h as a
composition of Dehn twists, as in Proposition 5.3.

Theorem 8.1. Let h be an element of the mapping class group of Σg ob-
tained by surgery on the framed link Lh in Σg × [0, 1]. Then the discrete

Fourier transform ρ(h) : L̃t(Hg) → L̃t(Hg) is given by

ρ(h)β = Ω(Lh)β.

Proof. Write h = T1T2 · · ·Tn, where Tj are Dehn twists obtained a surg-
eries along the curves γj , j = 1, 2, . . . , n. If we glue two handlebodies so as

to obtain a sphere, the gluing defines a nondegenerate pairing [·, ·]L̃t(Hg)×

L̃t(Hg) → C. If we consider basis elements ej , ek in L̃t(Hg), then [Ω(Lh)ej , ek]
completely determines the operator defined by Ω(Lh). Because of the invari-
ance under handle slides, we can transform Ω(Lh) into Ω(γ1)Ω(γ2) · · ·Ω(γn)
such that

[Ω(Lh)ej , ek] = [Ω(γ1)Ω(γ2) · · ·Ω(γn)ej , ek].

Hence the operators defined by Ω(Lh) and Ω(γ1)Ω(γ2) · · ·Ω(γn) are equal.
The conclusion now follows by applying Proposition 5.3. �

Fix a Lagrangian subspace L of H1(Σg, R) and consider the closed 3-
dimensional manifold M obtained by gluing to the surgery of Σg×[0, 1] along
L the handlebodies H0

g and H1
g such that ∂H0

g = Σg ×{0}, ∂H1
g = Σg ×{1},

and L respectively h∗(L) are the kernels of the inclusion of Σg into H0
g

respectively H1
g . M is the boundary of a 4-dimensional manifold W obtained

by adding 2-handles to the 4-dimensional ball as prescribed by L.
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The discrete Fourier transform ρ(h) is a skein in L̃t(Σg × [0, 1]) which
is uniquely determined once we fix the signature of W . Hence to the pair
(h, n) where h is an element of the mapping class group and n is an integer,
we can associate uniquely a skein F(h, n), its discrete Fourier transform.
We identify the pair (h, n) with (h, sign(W )) where W is a 4-dimensional
manifold defined as above. Note that by adding trivial 2-handles we can
enforce sign(W ) to be any integer.

Let us consider the Z-extension of the mapping class group defined by the
multiplication rule

(h′, sign(W ′)) ◦ (h, sign(W )) = (h′ ◦ h, sign(W ′ ∪ W ))

where W ′ and W are glued in such a way that H0
g ∈ W ′ is identified with H1

g

in W . If L′ is the Lagrangian subspace of H1(Σg, R) used for defining W ′,
then necessarily L′ = h∗(L). Recall Wall’s formula for the non-additivity of
the signature of 4-dimensional manifolds

sign(W ′ ∪ W ) = sign(W ′) + sign(W ) − τ(L, h∗(L), h′
∗ ◦ h∗(L)),

where τ is the Maslov index. By using this formula we obtain

F(h′ ◦ h, sign(W ′ ∪ W ))

= F(h′ ◦ h, sign(W ′) + sign(W ) − τ(L, h∗(L), h′
∗ ◦ h∗(L))

= e−
iπ
4

τ(L,h∗(L),h′

∗
◦h∗(L))F(h′ ◦ h, sign(W ′) + sign(W ))

= e−
iπ
4

τ(L,h∗(L),h′

∗
◦h∗(L))F(h′, sign(W ′))F(h, sign(W )),

where for the second step we changed the signature of the 4-dimensional
manifold associated to h ◦ h′ by adding trivial handles and used Proposi-
tion 7.1.

Or equivalently, if we let ρ(h, sign(W )) be discrete the Fourier transform
associated to h, normalized by the (signature of) the manifold W , then

ρ(h′ ◦ h, sign(W ′ ∪ W )) = e−
iπ
4

τ(L,h∗(L),h′

∗
◦h∗(L))ρ(h′, sign(W ′))ρ(h, sign(W )).

This formula is standard in the theory of the Fourier-Mukai transform; in it
we recognize the cocycle of the Segal-Shale-Weil representation

c(h, h′) = e−
iπ
4

τ(L,h∗(L),h′

∗
◦h∗(L))

used for resolving the projective ambiguity of the Hermite-Jacobi action, as
well as for resolving the projective ambiguity of the metaplectic representa-
tion.

9. Theta functions and abelian Chern-Simons theory

By Jacobi’s inversion theorem and Abel’s theorem [6], the Jacobian of a
surface Σg parametrizes the set of divisors of degree zero modulo principal
divisors. This is the moduli space of stable line bundles, which is the same
as the moduli space Mg(U(1)) of flat u(1)-connections on the surface (in
the trivial U(1)-bundle).
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The moduli space Mg(U(1)) has a complex structure defined as follows
(see for example [11]). The tangent space to Mg(U(1)) at an arbitrary point
is H1(Σg, R), which, by Hodge theory, can be identified with the space of
real-valued harmonic 1-forms on Σg. The complex structure is given by

Jα = − ∗ α,

where α is a harmonic form. In local coordinates, if α = udx + vdy, then
J(udx + vdy) = vdx − udy.

If we identify the space of real-valued harmonic 1-forms with the space of
holomorphic 1-forms H(1,0)(Σg) by the map Φ given in local coordinates by
Φ(udx+ vdy) = (u− iv)dz, then the complex structure becomes multiplica-

tion by i in H(1,0)(Σg).
The moduli space is a torus obtained by exponentiation

MU(1) = H1(Σg, R)/Z
2g.

If we choose a basis of the space of real-valued harmonic forms α1, α2, . . . , αg,
β1, . . . , βg such that

∫

aj

αk = δjk,

∫

bj

αk = 0,

∫

aj

βk = 0,

∫

bj

βk = δjk, (9.1)

then the above Z
2g is the period matrix of this basis.

On the other hand, if ζ1, ζ2, . . . , ζg are the holomorphic forms introduced
in Section 2, and if α′

j = Φ−1(ζj) and β′
j = Φ−1(−iζj), j = 1, 2, . . . , g then

one can compute that
∫

aj

α′
k = δjk,

∫

bj

α′
k = Re πjk,

∫

aj

β′
k = 0,

∫

bj

β′
k = Im πjk.

The basis α′
1, . . . , α

′
g, β

′
1, . . . , β

′
g determines coordinates (X ′, Y ′) in the tan-

gent space to MU(1). If we consider the change of coordinates X ′ + iY ′ =
X + ΠY , then the moduli space is the quotient of C

g by the integer lattice
Z

2g. This is exactly what has been done in Section 2 to obtain the jaco-
bian variety. This shows that the complex structure on the Jacobian variety
coincides with the standard complex structure on the moduli space of flat
u(1)-connections on the surface.

The moduli space Mg(Σg) has a symplectic structure defined by the
Atiyah-Bott form [4]. This form is given by

ω(α, β) = −

∫

Σg

α ∧ β,

where α, β are real valued harmonic 1-forms, i.e. vectors in the tangent
space to Mg(Σg). If αj , βj , j = 1, 2, . . . , g are as in (9.1), then ω(αj , αk) =
ω(βj , βj) = 0 and ω(αj , βk) = δjk (which can be seen by identifying the
space of real-valued harmonic 1-forms with H1(Σg, R) and using the topo-
logical definition of the cup product). This shows that the Atiyah-Bott form
coincides with the symplectic form introduced in Section 2.
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For a u(1)-connection A and curve γ on the surface, we denote by holγ(A)
the holonomy of A along γ. The map A 7→ trace(holγ(A)) induces a function
on the Jacobian variety called Wilson line4. If [γ] = (p, q) ∈ H1(Σg, Z), then
the Wilson line associated to γ is the function (x, y) 7→ exp 2πi(pT x + qT y).
These are the functions on the Jacobian variety of interest to us.

The goal is to quantize the moduli space of flat u(1)-connections on the
closed Riemann surface Σg endowed with the Atiyah-Bott symplectic form.
One procedure has been outlined in Section 2; it is Weyl quantization on
the 2g-dimensional torus in the holomorphic polarization.

Another quantization procedure has been introduced by Witten in [33]
using Feynman path integrals. In his approach, states and observables are
defined by path integrals of the form∫

A
e

i
h

L(A)trace(holγ(A))DA,

where L(A) is the Chern-Simons lagrangian

L(A) =
1

4π

∫

Σg×[0,1]
tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
.

According to Witten, states and observables should be representable as
skeins in the skein modules of the linking number discussed in Section 4.

Witten’s quantization model is symmetric with respect to the action of the
mapping class group of the surface, a property shared by Weyl quantization
in the guise of the exact Egorov identity (2.5). As we have seen, the two
quantization models coincide.

It was Andersen [1] who pointed out that the quantization of the Jacobian
that arises in Chern-Simons theory coincides with Weyl quantization. For
non-abelian Chern-Simons theory, this phenomenon was first observed by
the authors in [8].

In the sequel of this paper, [9], we will conclude that, for non-abelian
Chern-Simons, the algebra of quantum group quantizations of Wilson lines
on a surface and the Reshetikhin-Turaev representation of the mapping class
group of the surface are analogues of the group algebra of the finite Heisen-
berg group and of the Hermite-Jacobi action. We will show how the element
Ω corresponding to the group SU(2) can be derived by studying the discrete
sine transform.
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