A Short Proof of a Result on Polynomials
by Răzvan Gelca

In this note we want to present a short proof of a result that appeared in [1]. For a polynomial
\[f(x) = \prod_{i=1}^{n} (x-x_i), \]
with distinct real roots \(x_1 < x_2 < \cdots < x_n \), we let \(d = \delta(f) = \min_{i} (x_{i+1}-x_{i}) \)
and \(g(x) = f'(x)/f(x) = \sum_{i=1}^{n} 1/(x-x_i) \). If \(k \) is a real number then the roots of the polynomial \(f' - kf \) are also real and distinct.

PROPOSITION. If for some \(j \), \(y_0 \) and \(y_1 \) satisfy \(y_0 < x_j < y_1 \leq y_0 + d \) then \(y_0 \) and \(y_1 \) are not zeros of \(f \) and \(g(y_0) < g(y_1) \).

PROOF: The hypothesis implies that for all \(i \), \(y_1 - y_0 \leq d \leq x_{i+1} - x_i \). Hence for \(1 \leq i \leq j-1 \) we have \(y_0 - x_i \geq y_1 - x_{i+1} > 0 \) and so \(1/(y_0 - x_i) \leq 1/(y_1 - x_{i+1}) \); similarly for \(j \leq i \leq n-1 \) we have \(y_1 - x_{i+1} \leq y_0 - x_i < 0 \) and again \(1/(y_0 - x_i) \leq 1/(y_1 - x_{i+1}) \).

Finally \(y_0 - x_n < 0 < y_1 - x_1 \), so \(1/(y_0 - x_n) < 0 < 1/(y_1 - x_1) \), and the result follows by addition of these inequalities.

COROLLARY. \(\delta(f' - kf) > \delta(f) \).

PROOF: If \(y_0 \) and \(y_1 \) are zeros of \(f' - kf \) with \(y_0 < y_1 \) then they are separated by a zero of \(f \) and satisfy \(g(y_0) = g(y_1) = k \). Hence from the proposition we can not have \(y_1 \leq y_0 + d \), so \(y_1 - y_0 > d \) as required.

Răzvan Gelca

Department of Mathematics
The University of Iowa
Iowa City, Ia 52242 USA
E-mail: rgelca@math.uiowa.edu

Institute of Mathematics
and
of the Romanian Academy
P.O.Box 1–764
70700 Bucharest Romania