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Abstract. In this paper we describe the action of the Kauffman bracket
skein algebra on some vector spaces that arise as relative Kauffman
bracket skein modules of tangles in the punctured torus. We show
how this action determines the Reshetikhin-Turaev representation of
the punctured torus. We rephrase our results to describe the quantum
group quantization of the moduli space of flat SU(2)-connections on the
punctured torus with fixed trace of the holonomy around the boundary.

1. Introduction

Skein modules and skein algebras [16], [19] have been studied intensively,
especially in connection with the Witten-Reshetikhin-Turaev theory [1], [15],
[6] and the Jones polynomial [10]. The skein algebras of surfaces and their
action of skein modules of handlebodies have been studied in [4], [8], and [9]
in relation to the quantization of moduli spaces of connections on surfaces,
which is part of the Witten-Reshetikhin-Turaev theory. Extensive studies
have been performed in the case of the torus.

In this note we go one step further and examine the punctured torus. We
do this because of the fact that the basic data of the modular functor of the
Reshetikhin-Turaev topological quantum field theory is contained entirely
in the punctured torus and in the sphere with four punctures [6].

We describe below the representations of the Kauffman bracket skein
algebra that are relevant to the quantization problem. Then we show how
the Reshetikhin-Turaev representations of the mapping class group of the
punctured torus, which form the basic data on the punctured torus, can be
recovered explicitly from these representations.

2. The Kauffman bracket skein algebra of the punctured

torus

In what follows we will use the notations and results from [12], with t
standing for A. Let Σ1,1 be the punctured torus, namely the torus with
one open disk removed. for a curve that is a smooth embedding of a circle
in Σ1,1 × [0, 1], a framing consists of a smooth vector field along the curve
always orthogonal to it. We are concerned with families of such curves,
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called framed links. The framing can always be made parallel to Σ1,1, the
blackboard framing. As such we will represent framed links by curves, the
framing being self-understood.

It is standard [16] to define the Kauffman bracket skein module Kt(Σ1,1×
[0, 1]) as the quotient of the free C[t, t−1]-module with basis the set of isotopy
classes of framed links in Σ1,1× [0, 1] by the Kauffman bracket skein relation
shown in Figure 1. The links that show up in this figure are supposed to
be equal except in an embedded ball. Also, every trivial link component is
replaced by a factor of −t2 − t−2.

+t t−1

Figure 1

The topological operation of gluing one cylinder over the punctured torus
on top of another induces a multiplication on Kt(Σ1,1× [0, 1]), which turns it
into an algebra. This is the Kauffman bracket skein algebra of the punctured

torus.
Simple closed curves on the punctured torus are defined by pairs (p, q) of

coprime integers with p ≥ 0, with q/p being the slope of the curve, together
with the curve ∂ that is parallel to the boundary. As shown in [2], the
Kauffman bracket skein algebra of the punctured torus is generated by the
curves (1, 0), (0, 1), (1, 1), depicted in Figure 2. Let ∂ denote the boundary

(1,0) (0,1) (1,1)

Figure 2

curve.
As a C[t, t−1]-module, Kt(Σ1,1 × [0, 1]) is free with basis (p, q)T ∂k, p, k ≥

0, q ∈ Z, where ∂ is a curve parallel to the boundary and (p, q)T =
Tn(p/n, q/n), with n = gcd(p, q) and Tn(x) the Chebyshev polynomial of
first kind (Tn+1(x) = xTn(x) − Tn−1(x), T0(x) = 2, T1(x) = x).

That multiplication of curves on the punctured torus is significantly dif-
ferent from that on the torus is illustrated by the second of the following
formulas.

Proposition 2.1. In Kt(Σ1,1 × [0, 1]),

(2, 0)T (0, 1)T = t2(2, 1)T + t−2(2,−1)T

(2, 1)T (0, 1)T = t2(2, 2)T + t−2(2, 0)T + ∂ + t2 + t−2.
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3. The representations

First, fix a positive integer r and let t = exp πi
2r . Let also [n] = sin nπ

r / sin π
r

be the quantized integer. The vector spaces on which we represent the
Kauffman bracket skein algebra of the punctured torus are parametrized by
the integers n with 0 ≤ 2n ≤ r − 2. These are the vector spaces Vr,n which
we will define in what follows.

Consider a solid torus with 2n disjoint marked points on the boundary,
which should be numbered by 1, 2, . . . , 2n. For computational purposes, we
can consider these points to lie, in increasing order, on a diameter of the
puncturing disk. Consider the free C[t, t−1]-module with basis the set of
isotopy classes of framed tangles with ends the 2n marked points. Such a
tangle consists of several embedded circles together with n embedded arcs
whose ends are the 2n points. The framing consists of a 1-dimensional
continuous vector field on each of the components of the tangle, with the
convention that the vectors that belong to the endpoints lie on the specified
diameter of the puncturing disk. We will always draw our tangles in the
blackboard framing, namely such that the vector field is parallel to the
plane of the paper. An example for n = 2 is shown in Figure 3 a).

We define the Kauffman bracket skein module of the solid torus with 2n
points on the boundary, Kt(S

2 × D
2, 2n), to be the quotient of this free

module by the Kauffman bracket skein relations.

n+1 n1
n

n+1[ ]

[ ]

n 1

1n

b)a)

Figure 3

The topological operation of gluing the cylinder over the punctured torus
Σ1,1 × [0, 1] to the complement of the puncturing disk in the boundary of
the solid torus gives rise to an action of Kt(Σ1,1 × [0, 1]) on Kt(S

1 ×D
2, 2n).

For k < n, we will define a family of inclusions of Kt(S
1 × D

2, 2k) into
Kt(S

1 × D
2, 2n). To this end, let δ be the data consisting of a function

f : {1, 2, . . . , 2k} → {1, 2, . . . , 2n} such that f(i) − f(i − 1) is odd for i =
2, 3, . . . , 2k and a pairing of the 2n − 2k numbers in the complement of
Imf such that if (p, q) is a pair then p and q belong to the same interval
(f(i − 1), f(i)) and for every two pairs (p, q) and (r, s), (r − p)(r − q)(s −
p)(s − q) > 0. For each such δ we define the inclusion

iδ : Kt(S
1 × D

2, 2k) → Kt(S
1 × D

2, 2n)
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by identifying the 2k boundary points of Kt(S
1×D

2, 2k) with the boundary
points of Kt(S

2 × D
2, 2n) indexed by f(i), i = 1, 2, . . . , 2k, for each pair

(p, q), connecting these points by an arc isotopic to the segment [p, q].1

Next we factor Kt(S
1 ×D

2, 2n) by the skein relation f r−1 = 0, where fn,
n ≥ 1 are the Jones-Wenzl idempotents defined recursively in Figure 3 b),
with f1 being just one strand. The result of this factorization is a finite-
dimensional space Kt,r(S

1 × D
2, 2n) called the reduced Kauffman bracket

skein module. The inclusions iδ factor to inclusions between reduced Kauff-
man bracket skein modules. The action of Kt(Σ1,1 × [0, 1]) factors to an
action of the same algebra on the reduced Kauffman bracket skein module.

For n ≤ m ≤ r − 2 − n, define the skein v2n,m as shown in Figure 4 a).

2n
ma) 2

m m

nb)

Figure 4

Here there are m respectively 2n parallel strands, as specified, with the
corresponding Jones-Wenzl idempotents placed on them. At the trivalent
vertex there is the Kauffman triad described in Figure 4 b) (see [12]).

Lemma 3.1. The vector space Kt,r(S
1 × D

2, 2n) is finite dimensional with

basis iδ(v2k,m), where 0 ≤ k ≤ n, k ≤ m ≤ r − 2 − k, and δ ranges over all

possible sets of data defined above.

Proof. There is a planar projection of the solid torus onto an annulus such
that the projections of all these elements have no crossings. To see that they
form a basis, note first that any skein in Kt,r(S

1 × D
2, 2n) can be written

as a linear combination of skeins of the form iδ(σ), where σ is a skein in
some Kt,r(S

1 × D
2, 2k) which in a tubular neighborhood of the puncturing

disk is just an 2k-strand decorated by the 2kth Jones-Wenzl idempotent.
Consequently, the set iδ(v2k,m), indexed by 0 ≤ k ≤ m, k ≤ m ≤ r − 2 and
δ, spans Kt,r(S

1 × D
2, 2n). Next, we can apply the arguments from [14], to

reduce everything to the case where the trivalent vertex has an admissible
coloring, namely to k ≤ m ≤ r−2−k, and then conclude that these elements
form a basis. �

Because ∂ is in the center of Kt(Σ1,1 × [0, 1]), the eigenspaces of ∂ are
invariant subspaces of the above representation. The eigenvalues of ∂ are
−t4k+2 − t−4k−2, k ≤ n. The eigenspace of the eigenvalue −t4k+2 − t−4k−2

has a basis iδ(v2k,m), for all δ and m, k ≤ m ≤ r − 2 − k. Among these
we distiguish the ones with k = n. These are the spaces of interest to us
since they correspond to quantizations of moduli spaces of flat connections

1If in a diagram a skein σ has not crossings, then iδ(σ) has no crossing either.
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on the punctured torus (see § 4 below). Let therefore Vr,n be the eigenspace
of ∂ corresponding to the eigenvalue −t4n+2 − t−4n−2, n = 0, 1, . . . , r− 2. A
basis of this vector space consists of the vectors v2n,m, n ≤ m ≤ r − 2 − n.

Theorem 3.2. Let n be an integer such that 0 ≤ n ≤ r−2
2 . The representa-

tion of Kt(Σ1,1 × [0, 1]) on Vr,n is given by

(1, 0)v2n,m = v2n,m+1 +
[m − n][m + n + 1]

[m][m + 1]
v2n,m−1

(0, 1)v2n,m = (−t2m+2 − t−2m−2)v2n,m

(1, 1)v2n,m = (−t−2m−3)v2n,m+1 + (−t2m+1)
[m − n][m + n + 1]

[m][m + 1]
v2n,m−1

where n ≤ m ≤ r − 2−n, with the convention that v2n,n−1 = v2n,r−1−n = 0.

Proof. The second relation is standard (see [14]). To compute (1, 0)v2n,m, we
proceed as in Figure 5, with the notation from [12] where ∆n = (−1)n+1[n+
1] and θ(m,n, p) is the quantum invariant of the trivalent graph of the letter
θ with the edges colored by m,n, p. Here for the second equality we use the
Recoupling Theorem (Ch. 7 in [12]) for one of the strands colored by m.

2n
m

= Σ
k

∆
θ (  ,1,  )m k

k 2nm

m1

n21 k

j

m
(  ,1,  )kmθ
∆k=

k
Σ Σ

j
2n

jk1{ }m m

k

Figure 5

Next, by Lemma 7 Ch. 5 in [12], this is nonzero if and only if j = k, and
in this case it is equal to the skein in Figure 6. Also, since the triple (1,m, k)

n2k

Σ
k

∆ k

θ(  ,1,  )m k
{2n

1
m m
k j} θ(  ,1,  )km

∆k

Figure 6

is admissible only if k = m − 1 or k = m + 1, it follows that the sum has
only two terms. Substituting the values of the two quantum 6j-symbols we
obtain the formula from the statement.
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The action of (1, 1) is computed using

(1, 1) =
1

t2 − t−2
[t(1, 0)(0, 1) − t−1(0, 1)(1, 0)].

�

Remark 3.3. In [3] a proof was given based only on the definition of Jones-
Wenzl idempotents and Kauffman triads.

In the case where n = 0, we obtain the representation of the Kauffman
bracket skein algebra of the torus on the reduced skein module of the punc-
tured torus from [4].

Corollary 3.4. The representation of Kt(Σ1,1× [0, 1]) on Vr,n is irreducible.

Proof. Let v =
∑

m cmv2n,m be a vector in Vr,n. Because v2n,m are eigenvec-
tors of (0, 1) with distinct eigenvalues, using linear combinations of elements
of the form (0, 1)nv we can generate any basis vector that appears with
nonzero coefficient in the expansion of v. Applying (1, 0) repeatedly, we can
furhter generate a vector that contains any other basis vector with nonzero
coefficient. It follows that from v we can generated any basis vector. Hence
v is cyclic, and therefore the representation is irreducible. �

4. The action of the mapping class group

In this section we will show how the Reshetikhin-Turaev representation of
the mapping class group of the punctured torus, which appears in Reshetikhin-
Turaev theory [17], can be computed from the representation of the Kauff-
man bracket skein algebra described in Theorem 3.2. The Reshetikhin-
Turaev representation of the punctured torus is part of the basic data of the
modular functor (see [20], [6], [5]). It is known that the representation of
the skein algebra of the punctured torus determines this representation, see
for example [18]; here we show how this with explicit formulas, the way it
was done in [7] for the torus.

The mapping class group of the punctured torus, with fixed boundary, is
generated by the maps S, T , and T1, where S exchanges the curves (1, 0)
and (0, 1), T is the positive Dehn twist along the curve (0, 1) and T1 is the
positive twist of the boundary.

4.1. The S-matrix. For a number λ and a sequence (xl)l≥1 define the
sequence Pn(λ, (xl)l≥1) recursively by

Pn+1(λ, (xl)l≥1) = λPn(λ, (xl)l≥1) − xnPn−1(λ, (xl)l≥1),

P0(λ, (xl)l≥1) = 1, P1(λ, (xl)l≥1) = λ.

Let S = (ajk), 0 ≤ j, k ≤ r − 2n − 2 be the S-matrix. The equations

(1, 0)Sv2n,n+j = S(0, 1)v2n,n+j

(0, 1)Sv2n,n+j = S(1, 0)v2n,n+j
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yield respectively the recursive relations

aj−1,k = (−t2n+2k+2 − t−2n−2k−2)aj,k −
[j + 1][2n + j + 2]

[n + j + 1][n + j + 2]
aj+1,k

aj,k−1 = (−t2n+2j+2 − t−2n−2j−2)aj,k −
[k + 1][2n + k + 2]

[n + k + 1][n + k + 2]
aj+1,k.

Thus akj can be obtained by a backwards double recursion. Normalizing by
setting ar−2n−2,r−2n−2 = 1, we obtain

Proposition 4.1. For 0 ≤ k, j ≤ r − 2n − 2,

ar−2n−2−j,r−2n−2−k = Pj(λr−n, (xl)l≥1) · Pk(λr−n−j , (xl)l≥1),

where

xl =
[r − n − 1 − l][n + r − l]

[r − l − 1][r − l]
, l ≥ 1,

λm = −t2m−2 − t−2m+2, m ≥ 0.

Remark 4.2. This formula should be contrasted with those exhibited in [18]
and [6].

4.2. The T -matrix and the twist on the boundary. Because T (0, 1) =
(0, 1)T and (0, 1) has 1-dimensional eigenspaces, it follows that T is diagonal,
say T = (bj,j)j, 0 ≤ j ≤ r − 2n − 2. The equality

(1, 0)Tv2n,n+j = T (1, 1)v2n,n+j

yields the recursive relation bj,j = −t2n+2j+1bj−1,j−1. As T is only projec-

tively defined, we are free to choose b1,1, and we set it equal to (−1)ntn
2−1.

Then bj,j = (−1)n+jt(n+j)2−1, the well known formula.
The twist T1 on the boundary commutes with all operators in Kt(Σ1,1 ×

[0, 1]). Because the representation of Kt(Σ1,1 × [0, 1]) on Vr,n is irreducible,
it follows that T1 acts as multiplication by a scalar. We may choose this

scalar to be t(2n)2−1.

5. The quantum group quantization of the moduli space of

flat su(2)-connections on the punctured torus

As explained in [8] and [9], we are actually concerned with the quantum
group setting, since it is our paradigm that the quantum group quantization
of the moduli space of flat connections on a surface is an analogue of Weyl
quantization.

The operators are quantizations of Wilson lines. Recall that for a simple
closed curve γ on the punctured torus, the Wilson line Wγ is the function on
the space of su(2)-connections on the punctured torus obtained by taking
the trace of the holonomy of the connections along γ. The vector space has
an orthogonal basis specified by the same diagrams as those for v2n,m, this
time with strands colored by the m + 1- respectively 2n + 1-dimensional
irreducible representations of the quantum group of SU(2).
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The quantum group quantization can also be done with skein modules
(see [13], [9]); the skein associated to a Wilson line Wγ is γ itself. The
formulas for this action are the same except that the minus sign in front of
t is deleted in each of the formulas for (0, 1) and (1, 1).

For each γ, Wγ is real valued, so the associated operator Op(Wγ) must be
self-adjoint. This shows that, while the vectors v2n,m are orthogonal, they
are not unit vectors. We normalize them to

w2n+1,m+1 =





m
∏

j=n+1

[j − n][j + n + 1]

[j][j + 1]





−1/2

v2n,m,

which are now unit vectors. The shift in the indices is so that they agree
with the dimensions of the corresponding irreducible representation of the
quantum group. We thus have

Proposition 5.1. The quantization at ~ = 1
2r of the moduli space of flat

su(2)-connections on the punctured torus with the trace of the holonomy on

the boundary equal to 2 cos 4πin
r , for n ∈ {0, 1, . . . , r − 2}, has the Hilbert

space Hr,n with orthonormal basis w2n+1,m, n+1 ≤ m ≤ r−1−n, and with

the algebra of quantum observables acting by

Op(W(1,0))w2n+1,m =

√

[m − n][m + n + 1]

[m][m + 1]
w2n+1,m+1

+

√

[m − 1 − n][m + n]

[m − 1][m]
w2n+1,m−1

Op(W(0,1))w2n+1,m = (t2m + t−2m)w2n+1,m

Op(W(1,1))w2n+1,m = t−2m−1

√

[m − n][m + n + 1]

[m][m + 1]
w2n+1,m+1

+t2m−1

√

[m − 1 − n][m + n]

[m − 1][m]
w2n+1,m−1.
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[5] Ch. Frohman, J. Kania-Bartoszyńska, SO(3) topological quantum field theory, Com-

mun. Anal.Geom. 4(1996), 589–679.
[6] R. Gelca, Topological quantum field theory with corners based on the Kauffman

bracket, Comment. Math. Helv., 72(1997), 216-243.
[7] R. Gelca, On the holomorphic point of view in the theory of quantum knot invariants,

J. Geom. Phys., 56 (2006), 2163–2176.



KAUFFMAN BRACKET SKEIN ALGEBRA OF PUNCTURED TORUS 9

[8] R. Gelca, A. Uribe, The Weyl quantization and the quantum group quantization of

the moduli space of flat SU(2)-connections on the torus are the same, Commun.
Math. Phys., 233(2003), 493–512.

[9] R. Gelca, A. Uribe, Quantum mechanics and non-abelian theta function for the gauge

group SU(2), arXiv:1007.2010.
[10] V.F.R. Jones, Polynomial invariants of knots via von Neumann algebras, Bull. Amer.

Math. Soc., 12(1995), 103–111.
[11] V.F.R. Jones, Index of subfactors, Inventiones Math., 72 (1983), 1–24.
[12] L. Kauffman, S. Lins, Temperley-Lieb Recoupling Theory and Invariants of 3-

Manifolds, Princeton Univ. Press, 1994.
[13] R. Kirby, P. Melvin, The 3-manifold invariants of Witten and Reshetikhin-Turaev

for sl(2, C), Inventiones Math., 105 (1991), 473–545.
[14] W.B.R. Lickorish, Skeins and handlebodies, Pacific J. Math., 149 (1993), 337–349.
[15] W.B.R. Lickorish, The skein method for 3-manifold invariants, J. Knot Theor.

Ramif., 2 (1993), 171-194.
[16] J.H. Przytycki, Skein modules of 3-manifolds, Bull. Pol. Acad. Sci. 39(1-2) (1991)

91–100.
[17] N. Reshetikhin, V. Turaev, Invariants of 3-manifolds via link polynomials and quan-

tum groups, Inventiones Math., 103 (1991), 547–597.
[18] J. D. Roberts, Skeins and mapping class groups, Math. Proc. Cam. Phil. Soc. 115

(1994), 53–77.
[19] V.G. Turaev, Algebras of loops on surfaces, algebras of knots, and quantization, Adv.

Ser. in Math. Phys., 9 (1989), eds. C.N. Yang, M.L. Ge, 59–95.
[20] K. Walker, On Witten’s 3-manifold invariants, preprint, 1991.
[21] H. Wenzl, On sequences of projections C.R. Math. Rep. Acad. Sci. R. Can. IX (1987),

5–9.
[22] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys.,

121 (1989), 351–399.

Department of Mathematics and Statistics, Texas Tech University, Lub-

bock, TX 79409

Department of Mathematics and Statistics, Texas Tech University, Lub-

bock, TX 79409

E-mail address: rgelca@gmail.com


