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Răzvan Gelca



THETA FUNCTIONS AND KNOTS
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B. Riemann: Theorie der Abel’schen Funktionen



Riemann’s work on elliptic integrals (based on insights of Abel and

Jacobi):

Study integrals

u(x) =

∫
R(x, y)dt

where y(x) is defined by a polynomial equation P (x, y) = 0 (elliptic

for P cubic or cuartic).



Riemann’s work on elliptic integrals (based on insights of Abel and

Jacobi):

Switch to complex coordinates.



Riemann’s work on elliptic integrals (based on insights of Abel and

Jacobi):

Switch to complex coordinates.

Study line integrals

u(x) =

∫ x

a
R(z(t), w(t))dt

where w(z) is defined by a polynomial equation F (z, w) = 0.



Riemann’s work on elliptic integrals (based on insights of Abel and

Jacobi):

Switch to complex coordinates.

Study line integrals

u(x) =

∫ x

a
R(z(t), w(t))dt

where w(z) is defined by a polynomial equation F (z, w) = 0.

Because w lives naturally on a Riemann surface.



Example: For the Weierstrass curve

w2 = z(z − 1)(z − λ)

the Riemann surface is a torus:
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Abel, Jacobi: It is more interesting to study the inverse functions

of elliptic integrals.

These are called elliptic functions.

Elliptic functions are doubly periodic meromorphic functions; they

live on tori.

The building blocks of elliptic functions are theta functions.



• Riemann surface

ζ1, ζ2, . . . , ζg basis for Hol1(Σg), such that
∫
aj
ζk = δjk, and Π

is the matrix with entries
∫
bj
ζk.

• Jacobian variety

J (Σg) = Cg/span of columns of (Ig,Π).

• Riemann’s theta series:

θ(z) =
∑
n∈Zg

e2πi[12n·Πn+n·z].

(where x · y = xTy = x1y1 + x2y2 + · · · + xnyn.)



• Riemann surface

ζ1, ζ2, . . . , ζg basis for Hol1(Σg), such that
∫
aj
ζk = δjk, and Π

is the matrix with entries
∫
bj
ζk.

• Jacobian variety

J (Σg) = Cg/span of columns of (Ig,Π).

• Riemann’s theta series:

θµ(z) =
∑
n∈Zg

e2πi[12( µN+n)·Π( µN+n)+( µN+n)·z], µ ∈ ZgN .

(where x · y = xTy = x1y1 + x2y2 + · · · + xnyn.)



Classical theta functions
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There are two group actions on the space of theta functions

• one that arises from the symmetries of the Riemann surface

Carl G.J. Jacobi

• and one that arises from the group law on the Jacobian torus

André Weil
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• the second group action arises from the quantization of expo-

nentials on the Jacobian variety

• the first group action arises from the quantization of changes of

coordinates.

This is similar to the quantization of several free particles (the

Schrödinger representation and the metaplectic representation). It

arises from quantizing g one-dimensional particles with periodic po-
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There is a quantum mechanical model (see e.g. Y. Manin) in

which

• theta functions are states

• the second group action arises from the quantization of expo-

nentials on the Jacobian variety

• the first group action arises from the quantization of changes of

coordinates.

Planck’s constant is 1
N , N even integer. The classical phase space

is the Jacobian variety associated to a genus g surface (which is a

2g-dimensional torus).



States: linear combinations of

θµ(z) =
∑
n∈Zg

e2πiN [12( µN+n)Π( µN+n)+( µN+n)z], µ ∈ ZgN .

Operators: quantized exponentials

Op
(
e2πi(px+qy)

)
θµ = e

πi
N pq−

2πi
N µqθµ+p.



States - obtained via geometric quantization:

θµ(z) =
∑
n∈Zg

e2πiN [12( µN+n)Π( µN+n)+( µN+n)z], µ ∈ ZgN .

Operators - obtained via Weyl quantization:

Op
(
e2πi(px+qy)

)
θµ = e

πi
N pq−

2πi
N µqθµ+p.



States:

θµ(z) =
∑
n∈Zg

e2πiN [12( µN+n)Π( µN+n)+( µN+n)z], µ ∈ ZgN .

Operators:

Op
(
e2πi(px+qy)

)
θµ = e

πi
N pq−

2πi
N µqθµ+p.

Op
(
e2πi(px+qy)+πi

N k
)
θµ = e

πi
N pq−

2πi
N µq+πi

N kθµ+p.

This is the action of a finite Heisenberg group.
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(p, q, k)(p′, q′, k′) = (p + p′, q + q′, k + k′ + pq′ − qp′)

Theorem (“Stone-von Neumann”) The representation of H(ZgN )

on theta functions is the unique unitary irreducible representation

of this group in which (0, 0, k) acts as multiplication by e
πi
N k.

Corollary Each homeomorphism of the Riemann surface induces a

unitary map on theta functions. This gives rise to the action of the

modular group on theta functions.



Theorem (“Stone-von Neumann”) The representation of H(ZgN )

on theta functions is the unique unitary irreducible representation

of this group in which (0, 0, k) acts as multiplication by e
πi
N k.

Observation (G.-Uribe): This theorem implies that all the informa-

tion about the action of the quantized exponentials and the action

of the mapping class group of the surface is contained in H(ZgN ).
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Op
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πi
NOp

(
e2πi(x+y)

)
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Multiplication in the Heisenberg group

Op
(
e2πix

)
Op
(
e2πiy

)
= e

πi
NOp

(
e2πi(x+y)

)
.

So the Heisenberg group is a group of curves!
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Extend the character

χ : {(0, 0, k) | k ∈ Z2N} → C, χ((0, 0, k)) = e
πi
N k

to a maximal abelian subgroup of H(Zg2N ).

Example: the subgroup with elements of the form (0, q, k).



The representation of the Heisenberg group H(Zg2N ) on theta

functions arises as an induced representation.

Extend the character

χ : {(0, 0, k) | k ∈ Z2N} → C, χ((0, 0, k)) = e
πi
N k

to a maximal abelian subgroup of H(Zg2N ).

The representation induced by χ is the left regular action of the

Heisenberg group on a quotient of its group algebra by relations

of the form uu′ − χ(u′)−1u = 0, for u′ in the maximal abelian

subgroup.



The representation of the Heisenberg group H(Zg2N ) on theta

functions arises as an induced representation.
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space of theta functions as a quotient of C[H(Zg2N )] obtained by

filling the inside of the surface.



The representation of the Heisenberg group H(Zg2N ) on theta

functions arises as an induced representation.

H(Zg2N ): group of curves → C[H(Zg2N )]: algebra of curves →
space of theta functions as a quotient of C[H(Zg2N )] obtained by

filling the inside of the surface.

We need to add framing to the curves!
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group of curves→ algebra of curves→ fill the inside of the surface

The theta functions θΠ
µ (z) are

The space of theta functions is a skein module of the handlebody.

The notion of a skein module was introduced by J. Przytycki: Factor

the space of framed links by skein relations.



The representation of the Heisenberg group on theta functions

arises as an induced representation.

group of curves→ algebra of curves→ fill the inside of the surface

The theta functions θΠ
µ (z) are

The space of theta functions is a skein module of the handle-

body. Factor the vector space with basis the framed links inside the

handlebody by the skein relations:



The action of the mapping class group

If h is a homeomorphism of the surface, then h acts linearly on

the first homology group, and so it acts on exponentials. Because of

the “Stone-von Neumann” theorem there exists an automorphism

on the space of theta functions, F(h), such that

Op(h · f ) = F(h)−1Op(f )F(h).
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the first homology group, and so it acts on exponentials. Because of

the “Stone-von Neumann” theorem there exists an automorphism

on the space of theta functions, F(h), such that

Op(h · f ) = F(h)−1Op(f )F(h).

The map F(h) is a discrete Fourier transform. The above equa-

tion is known in the theory of pseudo-differential operators as an

exact Egorov identity.



The action of the mapping class group

If h is a homeomorphism of the surface, then h acts linearly on

the first homology group, and so it acts on exponentials. Because of

the “Stone-von Neumann” theorem there exists an automorphism

on the space of theta functions, F(h), such that

Op(h · f ) = F(h)−1Op(f )F(h).

This can be translated into topological language, and interpreted

in terms of “handle slides” in dimension 4.
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Handleslides ↔ Kirby calculus



Every 3-dimensional manifold can be obtained as the boundary of

a 4-dimensional handlebody obtained by attaching 2-handles to a

4-dimensional ball.

Handleslides ↔ Kirby calculus

This yields the 3-manifold invariants and the topological quantum

field theory of abelian Chern-Simons theory.

Theorem. (G.-Hamilton) There is a UNIQUE topological quan-

tum field theory that unifies, for Riemann surfaces of all genera,

the spaces of theta functions, and the actions of finite Heisenberg

groups and modular groups.
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Finite Heisenberg group → 2D

Theta functions → 3D

Discrete Fourier transforms → 4D

With Hamilton and Uribe we were able to recover the main con-

structs of Edward Witten’s abelian Chern-Simons theory.
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So there is a quantum group that models the space of theta func-

tions, the action of the finite Heisenberg group, and of the modular

group. This quantum group is associated to U(1).
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The quantum group associated to theta functions is the Hopf

algebra C[Z2N ] = C[K]/K2N = 1, with comultiplication, counit

and antipode defined by

∆(Kj) = Kj ⊗Kj, ε(Kj) = 1, S(Kj) = K2N−j.

This quantum group was first introduced by Murakami, Ohtsuki,

Okada to model their 3-manifold invariant.

The irreducible representations of this quantum group are V j, j =

0, 1, . . . , 2N − 1,

K · v = e
πi
N v.

This quantum group is NOT a modular Hopf algebra!
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Theta functions are knots and links inside the handlebody colored

by representations of this quantum group.

The Heisenberg group is represented by curves on the boundary

colored by irreducible representations.

The discrete Fourier transforms of the action of the modular group

are represented by certain curves on the boundary colored by ele-

ments of the representation ring of the quantum group.




