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WE WILL SHOW THAT THE CONSTRUCTS OF THE THEORY OF
CLASSICAL THETA FUNCTIONS IN THE REPRESENTATION THEORETIC
POINT OF VIEW OF ANDRÉ WEIL HAVE ANALOGUES FOR THE NON-
ABELIAN THETA FUNCTIONS OF THE WITTEN-RESHETIKHIN-TURAEV
THEORY
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THE PROTOTYPE:

• the Schrödinger representation

• the metaplectic representation

They arise when quantizing a free 1-dimensional particle (~ = 1).

Phase space has coordinates q: position, p: momentum.

Quantization: phase space 7→ L2(R),

q 7→ Q = multiplication by q,

p 7→ P =
1

i

d

dq
.

Add to this the operator E = Id.
Heisenberg uncertainty principle:

QP − PQ = i~E
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Weyl quantization:

f̂ (ξ, η) =

∫∫
f (x, y) exp(−2πixξ − 2πiyη)dxdy

and then defining

Op(f ) =

∫∫
f̂ (ξ, η) exp 2πi(ξQ + ηP )dξdη.

Notation:

exp(xP + yQ + tE) = e2πi(xP+yQ+tE).

EXAMPLE:

exp(x0P )φ(x) = φ(x + x0),

exp(y0Q)φ(x) = e2πixy0φ(x).

3



The elements exp(xP + yQ + tE), x, y, t ∈ R form the Heisenberg group
with real entries H(R):

exp(xP + yQ + tE) exp(x′P + y′Q + t′E)

= exp[(x + x′)P + (y + y′)Q + (t + t′ +
1

2
(xy′ − yx′))E]

The action of H(R) on L2(R) is called the Schrödinger representation.

THEOREM (Stone-von Neumann) The Schrödinger representation is the
unique irreducible unitary representation of H(R) that maps exp(tE) to mul-
tiplication by e2πit for all t ∈ R.

COROLLARY Linear (symplectic) changes of coordinates can be quantized.
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Recall that the linear maps that preserve the classical mechanics are

SL(2, R) =

{(
a b
c d

)
, ad− bc = 1

}
.

If h ∈ SL(2, R), and h(x, y) = (x′, y′) then

exp(xP + yQ + tE) ◦ φ = exp(x′P + y′Q + tE)φ

is another representation, which by the Stone-von Neumann theorem is unitary
equivalent to the Schrödinger representation.

Hence there is a unitary map ρ(h) : L2(R) → L2(R) such that the exact
Egorov identity is satisfied:

exp(x′P + y′Q + tE) = ρ(h) exp(xP + yQ + tE)ρ(h)−1.

The map h → ρ(h) is a projective representation of SL(2, R) on L2(R).
One can make this into a true representation by passing to a double cover
M(2, R) of SL(2, R). This is the metaplectic representation.
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EXAMPLE: If

S =

(
0 1

−1 0

)
, T =

(
1 a
0 1

)
then

ρ(S)φ(x) =

∫
R

φ(y)e−2πixydy

ρ(T )φ(x) = e2πix2aφ(x).

The metaplectic representation can be interpreted as a general Fourier trans-
form. It is a Fourier-Mukai transform.

In general, a Heisenberg group is a U(1) (or cyclic) extension of a locally
compact abelian group. It has an associated Schrödinger representation and
Fourier-Mukai transform. The two are related by the exact Egorov identity.
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A. Weil’s representation theoretic point of view:

Weyl quantization of a particle with periodic position and momentum (~ =
1/N , N an even integer) .

Quantization: phase space 7→ space of theta functions which has an or-
thonormal basis consisting of the theta series

θj(z) =
∑
n∈Z

e
2πiN

[
i
2

(
j
N +n

)2
+z

(
j
N +n

)]
, j = 0, 1, 2, . . . , N − 1.

The quantizations of the exponential functions on the torus generate a finite
Heisenberg group H(ZN ) which is a Z2N -extension of ZN × ZN :

exp(pP + qQ + kE)θj = e−
πi
N pq−2πi

N jq+πi
N kθj+p, p, q, k ∈ Z.
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THEOREM (Stone-von Neumann) The Schrödinger representation of H(ZN )
is the unique irreducible unitary representation of this group with the property

that exp(kE) acts as e
πi
N kId for all k ∈ Z.

The linear maps on the torus that preserve classical mechanics are

SL(2, Z) =

{(
a b
c d

)
, a, b, c, d ∈ Z, ad− bc = 1

}
,

i.e. the mapping class group of the torus.

COROLLARY There is a projective representation ρ of the mapping class
group of the torus on the space of theta functions that satisfies the exact
Egorov identity

exp(p′P + q′Q + kE) = ρ(h) exp(pP + qQ + kE)ρ(h)−1

where (p′, q′) = h(p, q). Moreover, for every h, ρ(h) is unique up to multi-
plication by a constant.

This action of the mapping class group is called the Hermite-Jacobi action.
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Non-abelian theta functions for the group SU(2)

Arise from the quantization of the moduli space of flat su(2)-connections
on a genus g surface Σ (~ = 1

2N , N = 2r, r an integer).

MSU(2)
g = {A |A : su(2)− connection}/G

= {ρ : π1(Σ) −→ SU(2)}/conjugation

Quantization: MSU(2)
g 7→ space of non-abelian theta functions.

Non-abelian theta series can be parametrized by coloring the core of a genus
g handlebody by irreducible representations of U~(SL(2, C)), the quantum
group of SU(2).

U~(SL(2, C)) has irreducible representations V 1, V 2, . . . , V r−1. They sat-
isfy a Clebsch-Gordan theorem

V m ⊗ V n = ⊕pV
p

where |m− n| + 1 ≤ p ≤ min(m + n− 1, 2r − 2−m− n).
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The theta series are the colorings of the core by V 1, V 2, . . . , V r−1 such that
at each vertex the conditions from the Clebsch-Gordan theorem are satisfied.

The analogues of the exponentials are the Wilson lines

Wγ,n(A) = trV nholγ(A)

where γ is a simple closed curve on the surface.
The operator associated to Wγ,n, denoted by op(Wγ,n), has a matrix whose

“entries” are the Reshetikhin-Turaev invariants of diagrams of the form:
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The Reshetikhin-Turaev theory yields a projective representation ρ of the
mapping class group of the surface on the space of non-abelian theta func-
tions.

This projective representation satisfies the following relation with the quan-
tizations of Wilson lines

op(Wh(γ),n) = ρ(h)Op(Wγ,n)ρ(h)−1

which is an exact Egorov identity.
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Skein modules! There is an easy way to see these using skein modules.

The skein relations are those of the Reshetikhin-Turaev version of the Jones
polynomial:

L = tH + t−1V or L = ε(tH − t−1V )

depending on whether the two crossing strands come from different compo-
nents or not, where ε is the sign of the crossing. Set also the trivial knot
equal to t2 + t−2.

Let RTt(M) be the Reshetikhin-Turaev skein module of the 3-manifold M ,
obtained by factoring the free module with basis the isotopy classes of framed
links in M by these relations.

As a module, RTt(M) is isomorphic to the Kauffman bracket of the mani-
fold, but...
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If M = Σ× [0, 1] then RTt(Σ× [0, 1]) is an algebra:

Σ× [0, 1] ∪ Σ× [0, 1] ≈ Σ× [0, 1].

This algebra is not isomorphic to the Kauffman bracket skein algebra.

If M has a boundary, then RTt(M) is a RTt(∂M × [0, 1])-module:

∂M × [0, 1] ∪M ≈ M.

The reduced RT skein module of M , denoted by R̃T t(M) is obtained by

factoring RTt(M) by t = e
iπ
2r and fr−1 = 0 where fr−1 is the r − 1st

Jones-Wenzl idempotent.
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The space of non-abelian theta functions of a genus g surface Σg is R̃T t(Hg)
where Hg is the genus g handlebody.

The skein theoretic versions of non-abelian theta series are obtained by re-
placing

V k → fk−1.

Algebra generated by quantized Wilson lines is isomorphic to R̃T t(Σg × [0, 1])
with the isomorphism given by

Op(Wγ,2) 7→ γ.

The action of operators on non-abelian theta functions coincides with the
action of R̃T t(Σg × [0, 1]) on R̃T t(Hg).
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Our paradigm: There are the following analogies

At the level of the vector space

a. L2(R)

b. classical theta functions

c. non-abelian theta functions
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Our paradigm: There are the following analogies

At the level of the vector space

a. L2(R)

b. classical theta functions

c. non-abelian theta functions

At the level of quantum observables

a. The group algebra of the Heisenberg group H(R)

b. The group algebra of the finite Heisenberg group H(ZN )

c. The algebra generated by quantized Wilson lines op(Wγ,n)
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Our paradigm: There are the following analogies

At the level of the vector space

a. L2(R)

b. classical theta functions

c. non-abelian theta functions

At the level of quantum observables

a. The group algebra of the Heisenberg group H(R)

b. The group algebra of the finite Heisenberg group H(ZN )

c. The algebra generated by quantized Wilson lines op(Wγ,n)

At the level of quantized changes of coordinates

a. The metaplectic representation (i.e. the Fourier transform)

b. The Hermite-Jacobi action (i.e. the discrete Fourier transform)

c. The Reshetikhin-Turaev representation
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For the exact Egorov identity

a. The exact Egorov identity for the metaplectic representation

exp(x′P + y′Q + tE) = ρ(h) exp(xP + yQ + tE)ρ(h)−1.

where h(x, y) = (x′, y′).

b. The exact Egorov identity for the Hermite-Jacobi action

exp(p′P + q′Q + kE) = ρ(h) exp(pP + qQ + kE)ρ(h)−1

where (p′, q′) = h(p, q).

c. The exact Egorov identity for the Reshetikhin-Turaev representation

op(Wh(γ),n = ρ(h)Op(Wγ,n)ρ(h)−1
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Applications of this point of view:

1. The quantum group quantization of Wilson lines determines the Resheti-
khin-Turaev representation.

2. Andersen, Freedman-Wang: Proof of the asymptotic faithfulness of the
Reshetikhin-Turaev representation.
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3. The case of the torus:

The moduli space is the pillow case:

A basis of the space of non-abelian theta functions is

ζj(z) = (θj(z)− θ−j(z)), j = 1, 2, . . . , r − 1,

where θj are the theta series

θj(z) =
∑
n∈Z

e
2πi2r

[
i
2

(
j
2r+n

)2
+z

(
j
2r+n

)]
, j = 0, 1, 2, . . . , 2r − 1.

The ζj’s can be represented graphically as
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Fact: Just in genus one, the algebra of quantized Wilson lines, which is
the reduced Reshetikhin-Turaev skein algebra, is isomorphic to the reduced

Kauffman bracket skein algebra of the torus at t = e
iπ
2r .

THEOREM (Frohman-G.) The Kauffman bracket skein algebra has the mul-
tiplication rule

(p1, q1)T (p2, q2)T = tp1q2−p2q1(p1 + p2, q1 + q2)T
+t−(p1q2−p2q1)(p1 − p2, q1 − q2)T

where (p, q) is the curve of slope p/q on the torus if gcd(p, q) = 1 and
(p, q) = Tn((p/n, q/n)) if n = gcd(p, q) > 1, Tn being the Chebyshev
polynomial of first kind.
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A Stone-von Neumann theorem can be proved in this case:

THEOREM (G.-Uribe) The representation of the reduced Reshetikhin-Turaev
skein algebra of the torus defined by the Weyl quantization of the moduli space
of flat SU(2)-connections on the torus is the unique irreducible representation
of this algebra that maps simple closed curves to self-adjoint operators and t

to multiplication by e
πi
2r . Moreover, quantized Wilson lines span the algebra

of all linear operators on the Hilbert space of the quantization.

This implies the existence of the Reshetikhin-Turaev representation

h 7→ ρ(h)

of the mapping class group of the torus without apriori knowing it.

Because the skein algebra contains all linear operators, ρ(h) can be repre-
sented as multiplication by a skein. Here is the computation...

22



Let h = T , the twist. Recall that [n] denotes the quantized integer
sin nπ

r / sin r. The exact Egorov identity, in skein form, reads

h(γ) = ρ(h)γρ(h)−1

where γ is a simple closed curve.

From this identity we deduce that

ρ(h) =

r−1∑
j=1

αj(0, 1)j.

Rewrite this as

ρ(h) =

r−1∑
j=1

cjSj−1((0, 1))

where Sn is the nth Chebyshev polynomial of second type.
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Then

(1, 1)ρ(T )ζk = ρ(T )(1, 0)ζk.∑
j

cj
[jk]

k
t−1(t−2kζk+1 + t2kζk−1

=
∑
j

cj

(
[j(k + 1)]

[k + 1]
ζk+1 +

[j(k − 1)]

[k − 1]
ζk−1

)
.

Setting the coefficients of ζk+1 on both sides equal yields the system

r−1∑
j=1

cj[j(k + 1)] =
[k + 1]

[k]
t−2k−1

r−1∑
j=1

cj[jk].

Solving we obtain

ρ(h) =

r−1∑
j=1

[j]tj
2
Sj−1((0, 1)).
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We conclude that ρ(h) is the skein obtained by coloring the surgery curve
of T by

Ω =
∑
j

[j]V j

Using the fact that each element of the mapping class group is a composition
of twists we obtain:

THEOREM Let h be an element of the mapping class group of the torus
defined by surgery on the framed link Lh in T 2 × [0, 1]. Then

ρ(h) : R̃T t(S
1 ×D2) → R̃T t(S

1 ×D2)

is given by

ρ(h)β = Ω(Lh)β

where Ω(Lh) is the skein obtained by coloring all components of L by Ω.
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The exact Egorov identity

h(γ) = ρ(h)γρ(h)−1

gives

The skein on the right is

Exact Egorov identity =⇒ handle slides in the cylinder over the torus.
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In conclusion, by looking at non-abelian theta functions from André Weil’s
point of view we can introduce in a natural way the element Ω, which is the
building block of the Reshetikhin-Turaev topological quantum field theory,
and we arrive at slides along link components colored by Ω, which is the main
principle behind constructing quantum 3-manifold invariants.
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