1. What conditions on a and b guarantee that $z^a(1-z)^b$ can be defined as a single-valued function on $\mathbb{C}\setminus[0,1]$? In this case describe the Riemann surface of this function?

2. Show that the set of points $\{(z,w) \in \mathbb{C}^2 \mid w^2 = \sin z\}$ is a Riemann surface.

3. Let $P(z)$ be a polynomial with $2n + 1$ distinct complex roots. Show that $X = \{(z,w) \mid w^2 = P(z)\}$ is a Riemann surface. What is its genus?

4. With the notation from the lecture notes, show that for every ω_1 and ω_2 such that $\text{Im} \frac{\omega_2}{\omega_1} > 0$, there is a τ in the upper half plane such that \mathbb{C}/Λ and \mathbb{C}/L are conformally equivalent.