1. Let \(n \geq 2 \) and \(x_1, x_2, \ldots, x_k \) be points in \(\mathbb{R}^n \). Show that \(\mathbb{R}^n \setminus \{x_1, x_2, \ldots, x_n\} \) is path connected.

2. Show that \(\mathbb{R}^2 \setminus \mathbb{Q}^2 \) is path connected.

3. (a) Is a product of path-connected spaces necessarily path connected?
 (b) If \(A \subset X \) and \(A \) is path connected, is \(\overline{A} \) necessarily path connected?
 (c) If \(f : X \to Y \) is continuous and onto, and if \(X \) is path connected, does it necessarily follow that \(Y \) is path connected?
 (d) If \(\{A_\alpha\} \) is a collection of path connected spaces such that \(\cap A_\alpha \neq \emptyset \), is \(\cup A_\alpha \) necessarily path connected?

4. Show that if \(U \) is an open connected subspace of \(\mathbb{R}^n \), then \(U \) is path connected.

5. What are the connected components and the path components of \(\mathbb{R}^N \) in the product topology?

6. Show that a finite union of compact subspaces of a topological space \(X \) is compact.

7. Let \(A \) and \(B \) be compact subspaces of \(X \times Y \), and let \(N \) be an open set in \(X \times Y \) containing \(A \times B \). If \(A \) and \(B \) are compact, then there exist open sets \(U \) and \(V \) in \(X \), respectively \(Y \), such that

\[
A \times B \subset U \times V \subset N.
\]

8. Show that every compact subspace of a metric space is bounded and closed. Is the converse true?