TRANSFORMAÇÕES GEOMÉTRICAS

Răzvan Gelca

(Fortaleza, Brasil)

ISOMETRIAS

Răzvan Gelca

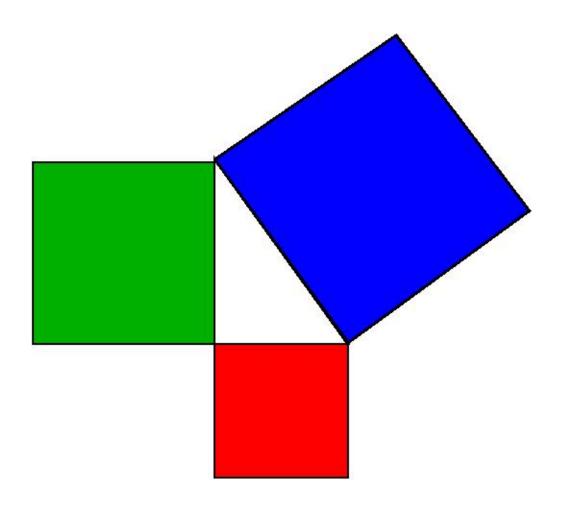
ISOMETRIAS

Răzvan Gelca (USA)

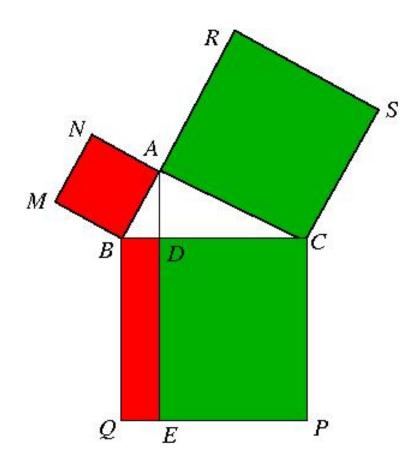
Parte do livro Geometric transformations com Carlos Yuzo-Shine (Brasil) e Ionuț Onișor (Romênia).

Teorema de Pitágoras ($\Pi v \theta \alpha \gamma \delta \rho \alpha \varsigma$) Num triângulo retângulo a suma dos quadrados dos catetos é igual ao quadrado da hipotenusa.

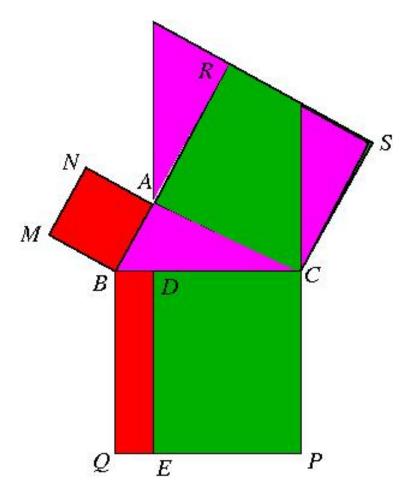
Teorema de Pitágoras ($\Pi v \theta \alpha \gamma \delta \rho \alpha \varsigma$) Num triângulo retângulo a suma dos quadrados dos catetos é igual ao quadrado da hipotenusa.



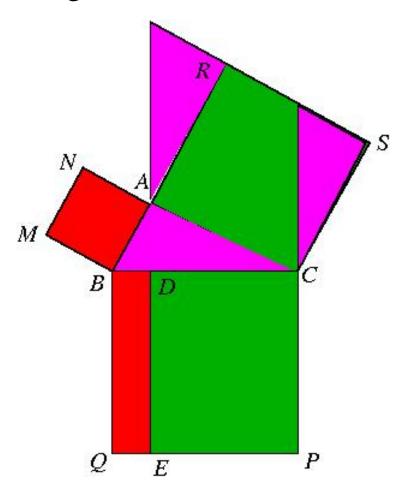
Aqui ha uma demostração con transformaçoes geométricos:



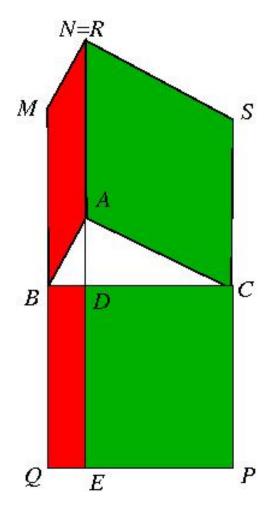
Vamos translatar o triângulo rouxo com ângulo reto $\angle S$ no triângulo rouxo com ângulo reto $\angle R$.



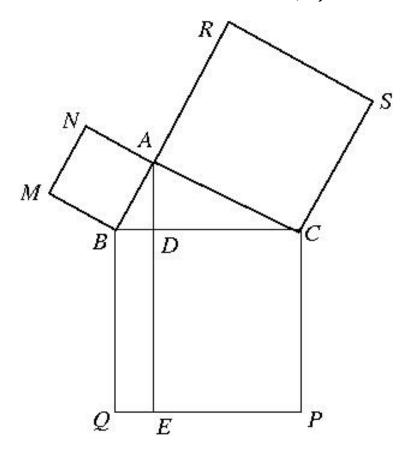
O triângulo rouxo ABC transforma-se nos outros triângulos rouxos por uma rotação de ângulo 90° .



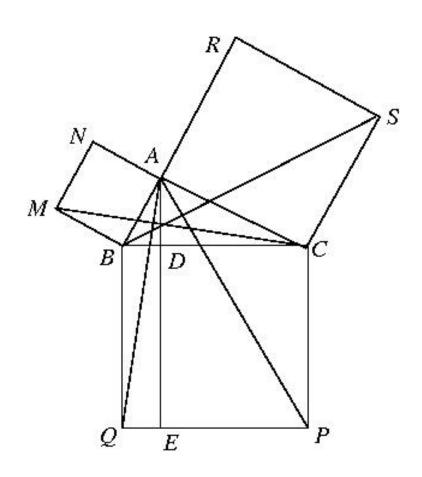
Por isso, os paralelogramas verdes têm a mesma área, e também os paralelogramas vermelhos têm a mesma área.



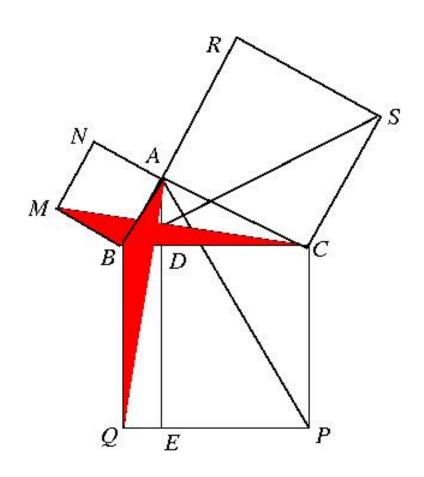
Outro ponto de vista da mesma demostração (que é uma versão da demostração de Euclides - $E v \kappa \lambda \epsilon i \delta \eta \varsigma$):



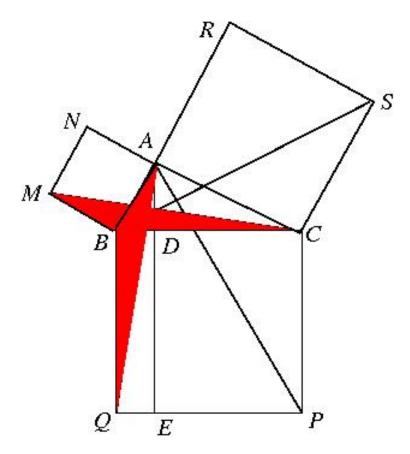
O triângulo MBC gira no triângulo ABQ.



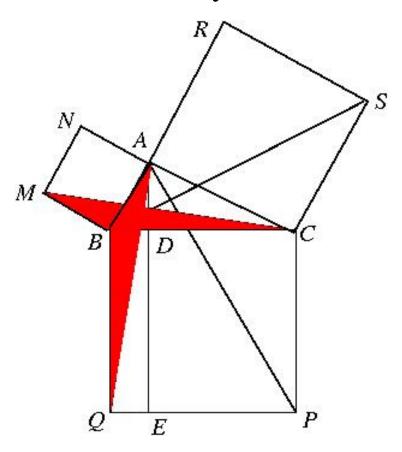
O triângulo MBC gira no triângulo ABQ.



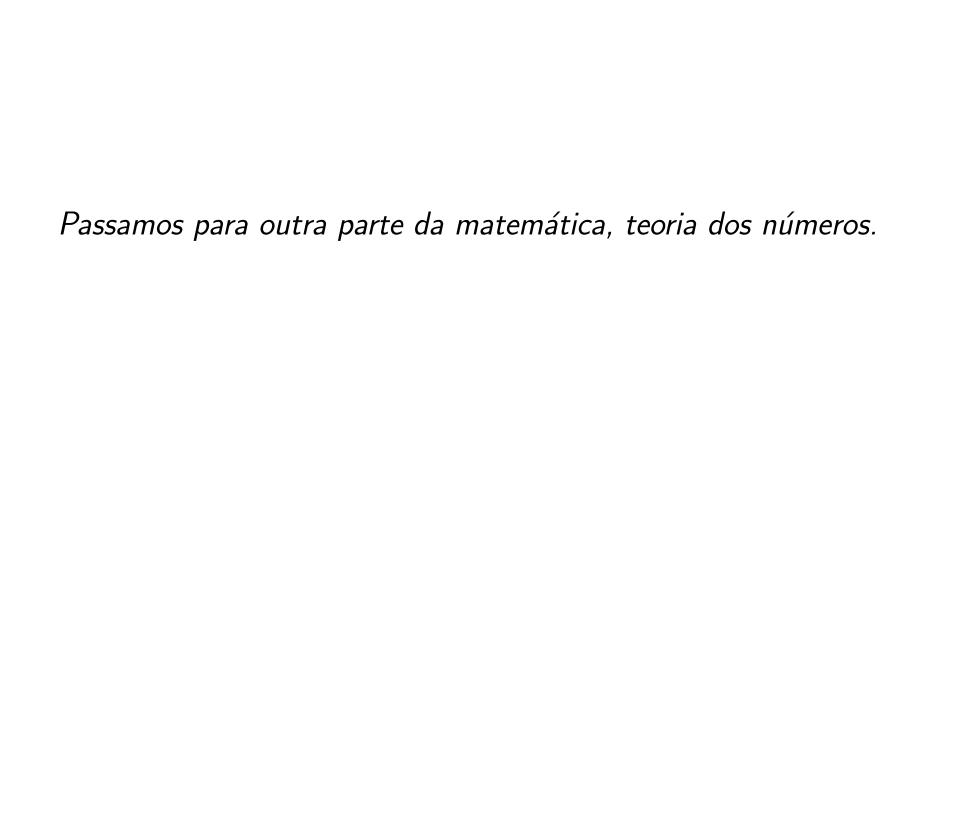
A área do triângulo MBC é igual a metade da área do retângulo ABMN



A área do triângulo MBC é igual a metade da área do retângulo ABMN e também a área de ABQ é a metade da área de BDEQ.



Passamos para outra parte da matemática...



Passamos para outra parte da matemática, teoria dos números.

Teorema de Wilson Seja p um número primo. Então

$$(p-1)! + 1$$

 \acute{e} divisível por p.

Passamos para outra parte da matemática, teoria dos números.

Teorema de Wilson Seja p um número primo. Então

$$(p-1)! + 1$$

 \acute{e} divisível por p.

Exemplos:

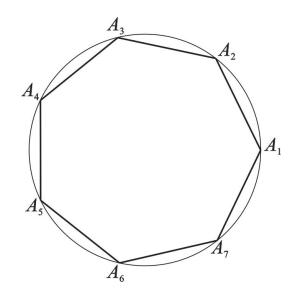
$$(2-1)! + 1 = 2 = 2 \times 1$$

 $(3-1)! + 1 = 3 = 3 \times 1$
 $(5-1)! + 1 = 25 = 5 \times 5$
 $(7-1)! + 1 = 721 = 7 \times 103$
 $(11-1)! + 1 = 3628801 = 11 \times 329891$.

O caso p=2 é claro, por isso fazemos a demostração no caso $p\geq 3$.

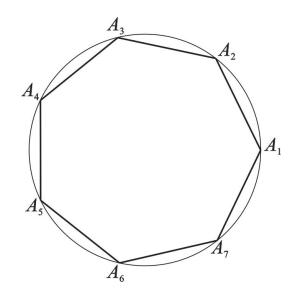
O caso p=2 é claro, por isso fazemos a demostração no caso $p\geq 3$.

Consideremos p pontos que sa \tilde{o} os vértices de um polígono regular.



O caso p=2 é claro, por isso fazemos a demostração no caso $p\geq 3$.

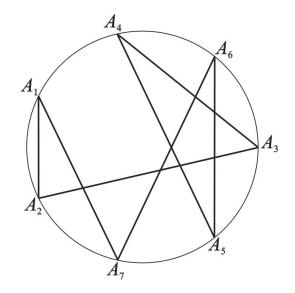
Consideremos p pontos que sa \tilde{o} os vértices de um polígono regular.



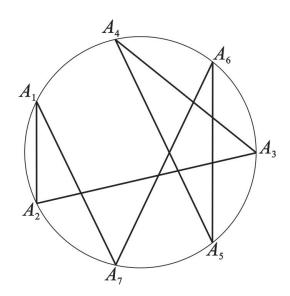
Pergunta: Quantos polígonos existem cujos vértices sejam os p pontos?

Pergunta: Quantos polígonos existem cujos vértices sejam os p pontos?

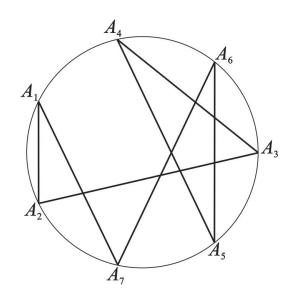
Aqui ha um exemplo:



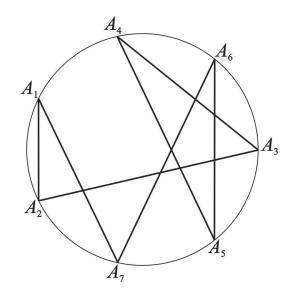
O primeiro vértice pode ser escolhido em p modos,



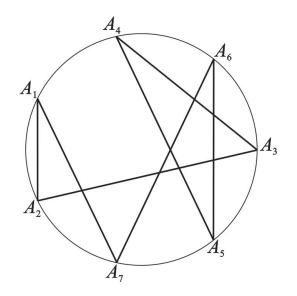
O primeiro vértice pode ser escolhido em p modos, o segundo vértice pode ser escolhido em p-1 modos,



O primeiro vértice pode ser escolhido em p modos, o segundo vértice pode ser escolhido em p-1 modos, o terceiro em p-2 modos, ...

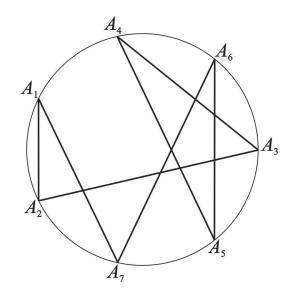


O primeiro vértice pode ser escolhido em p modos, o segundo vértice pode ser escolhido em p-1 modos, o terceiro em p-2 modos, ...



O número total é: $p(p-1)(p-2)\cdots 1=p!$.

O primeiro vértice pode ser escolhido em p modos, o segundo vértice pode ser escolhido em p-1 modos, o terçeiro em p-2 modos, ...



O número total é: $p(p-1)(p-2)\cdots 1=p!$. Porém...

E também, podemos andar na outra direção, deste modo contamos cada polígono duas vezes.

E também, podemos andar na outra direção, deste modo contamos cada polígono duas vezes.

Concluímos que o número total de polígonos é:

$$\frac{p!}{2p} = \frac{(p-1)!}{2}.$$

E também, podemos andar na outra direção, deste modo contamos cada polígono duas vezes.

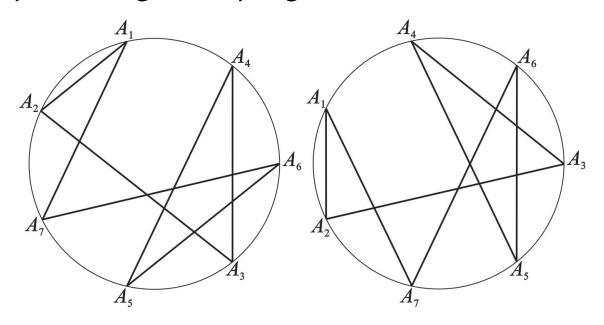
Concluímos que o número total de polígonos é:

$$\frac{p!}{2p} = \frac{(p-1)!}{2}.$$

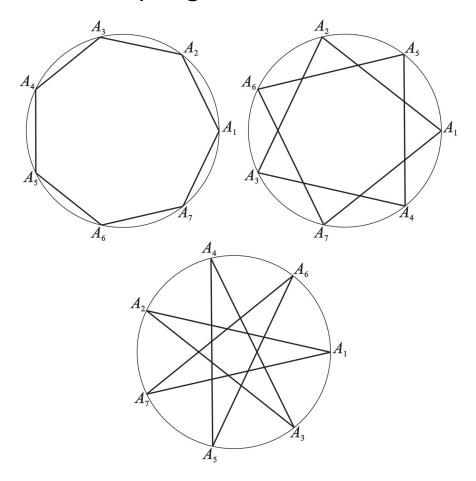
E agora pedimos algo mais dificil:

Contar o número de polígonos, se identificamos polígonos por rotações.

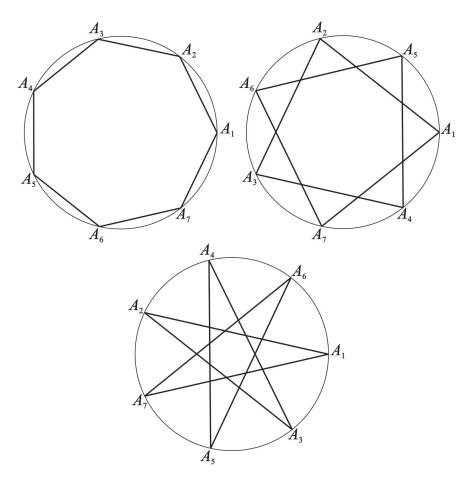
Por exemplo, os seguintes polígonos são idênticos:



Porque p é um número primo, os unicos polígonos que são invariaveis por rotações são os polígonos estrelados:



Contamos os polígonos estrelados usando a lado que começa em A_1 , porque o polígono é determinado por este lado. Temos p-1 posibilidades.



Contamos os polígonos estrelados usando a lado que começa em A_1 , porque o polígono é determinado por este lado. Temos p-1 posibilidades. Mas neste caso contamos cada polígono duas vezes, e por isso existem

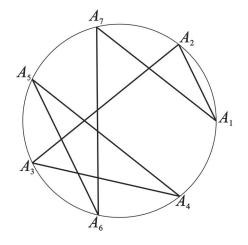
 $\frac{p-1}{2}$

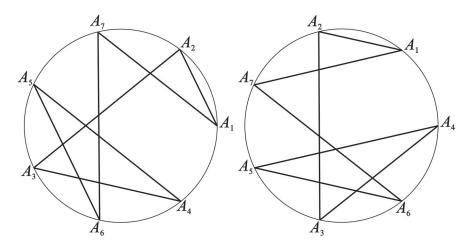
polígonos estrelados.

Obtemos que existem

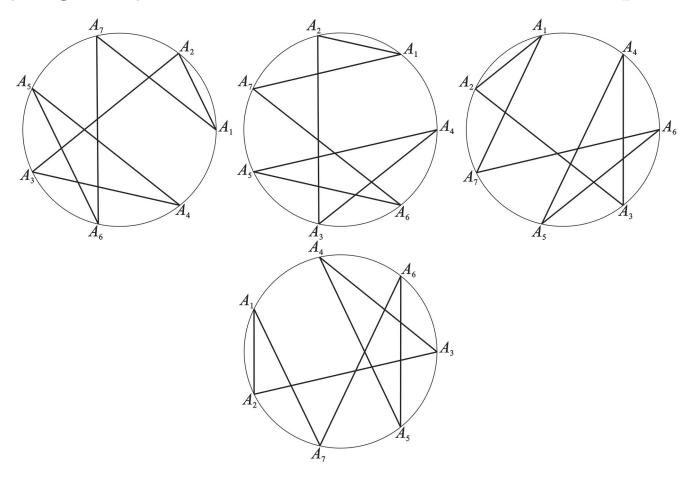
$$\frac{(p-1)!}{2} - \frac{p-1}{2} = \frac{(p-1)! + 1}{2} - \frac{p}{2}$$

polígonos que não são estrelados.

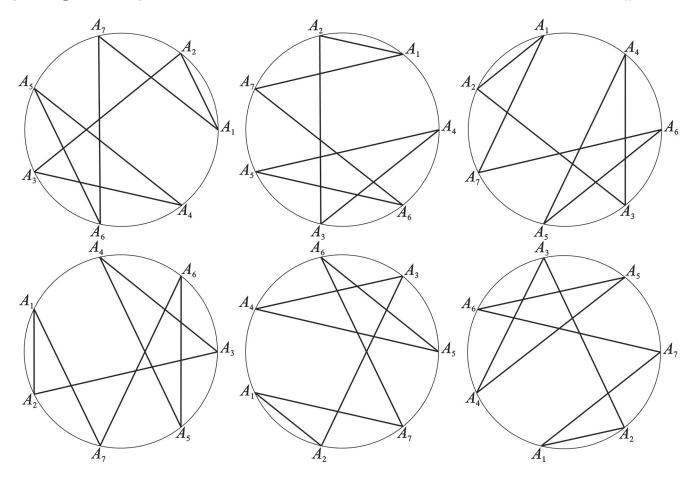


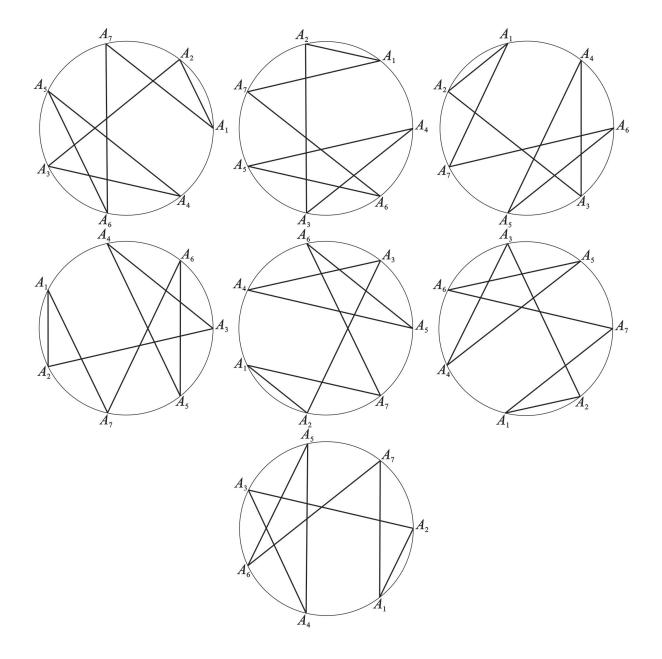












Concluímos que a resposta da pergunta é:

$$\frac{p-1}{2} + \frac{1}{p} \left[\frac{(p-1)! + 1}{2} - \frac{p}{2} \right] = \frac{1}{2} \left[p + \frac{(p-1)! + 1}{p} \right] - 1.$$

Concluímos que a resposta da pergunta é:

$$\frac{1}{2} \left[p + \frac{(p-1)! + 1}{p} \right] - 1.$$

Isso e um número inteiro somente se (p-1)!+1 é divisível por p.

Concluímos que a resposta da pergunta é:

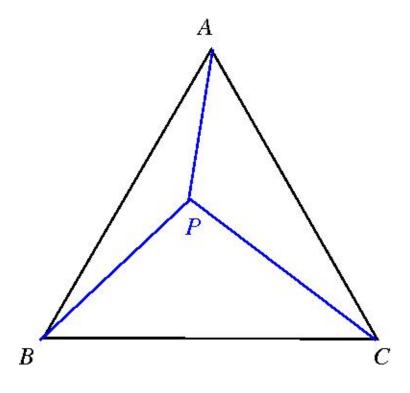
$$\frac{1}{2} \left[p + \frac{(p-1)! + 1}{p} \right] - 1.$$

Isso e um número inteiro somente se (p-1)!+1 é divisível por p. QED.

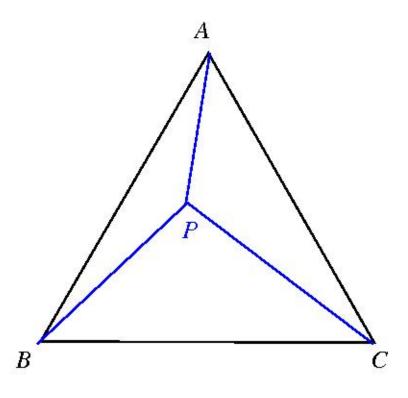
Voltemos a geometria.

Voltemos a geometria.

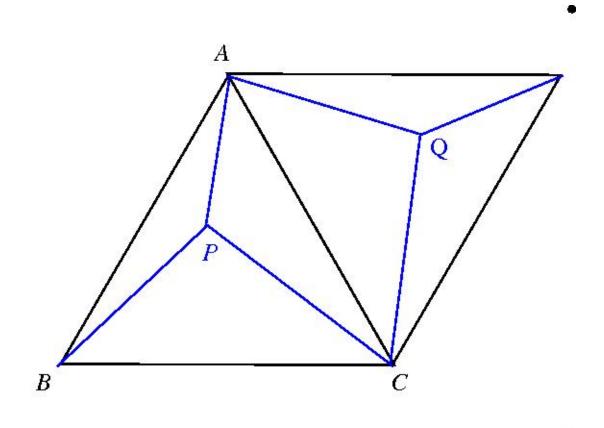
Theorema de Pompeiu Seja ABC um triângulo equilátero, e seja P um ponto no plano. Então existe um triângulo com lados PA, PB, PC.



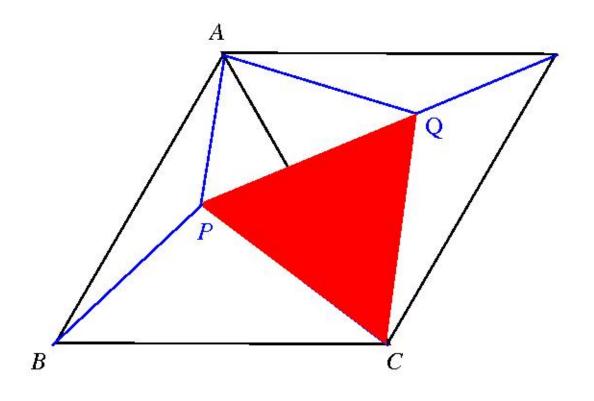
Demonstração:



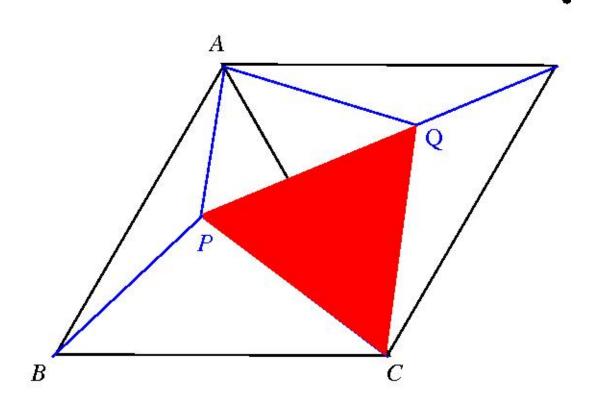
Demonstração: Rodamos o triângulo ABC em torno de C com 60° .



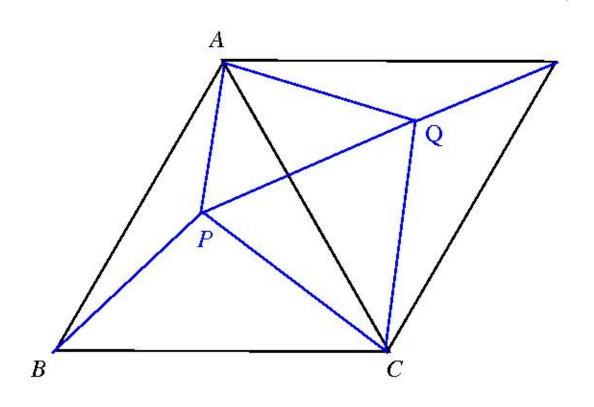
Demonstração: CP = CQ, $\angle CPQ = 60^{\circ}$.



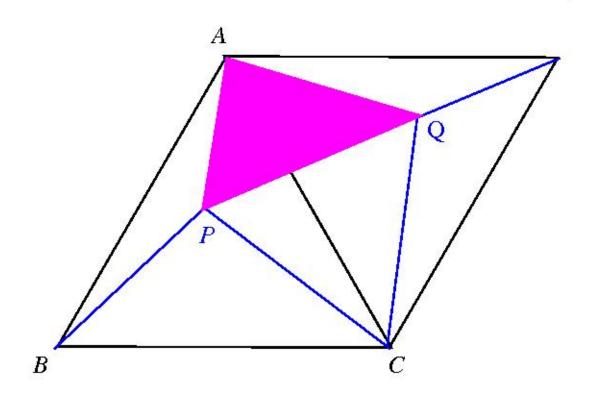
Demonstração: CPQ é equilátero.



Demonstração: Olhe o triângulo APQ!



Demonstração: AP, AQ = BP, PQ = CP.



E agora um problema de combinatória, da Olimpiada de Matemática de Bulgária.

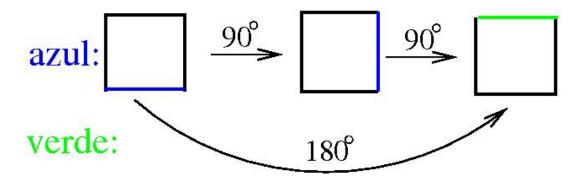
Problema Temos 2000 bolas azuis numa caixa. Temos também suficentes bolas azuis, verdes, e vermelhas, inicialmente fora da caixa. Cada vez podemos substituir duas bolas na caixa do seguinte modo:

- o duas azuis com uma verde,
- o duas vermelhas com uma verde,
- o duas verdes com uma azul e uma vermelha,
- o uma azul e uma verde com uma vermelha,
- o uma verde e uma vermelha com uma azul.
- 1. Depois de repetir as operações, ficamos com 3 bolas. Demonstrar que uma delas é verde.
- 2. É possível fazer estas operações de tal forma que no fim na caixa reste só uma bola?

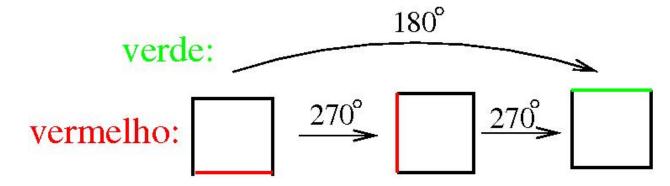
Solução: Associamos rotações ás bolas:

vermelho:
$$\frac{270^{\circ}}{}$$

Substituir duas bolas azuis com uma verde:



Substituir duas bolas vermelhas com uma verde



etc...

Inicialmente temos uma rotação de $2000\times90^{\circ}$, que é um múltiplo de 360° .

Inicialmente temos uma rotação de $2000 \times 90^{\circ}$, que é um múltiplo de 360° .

- 1. Para obter uma rotação o ângulo cujo seja um múltiplo de 360° como uma composição de tres rotações de ângulos 90° , 180° , ou 270° , precisa pelo menos uma rotação de 180° .
- 2. Nenhum dos ângulos de 90° , 180° , ou 270° é um múltiplo de 360° , por isso a resposta é "não".

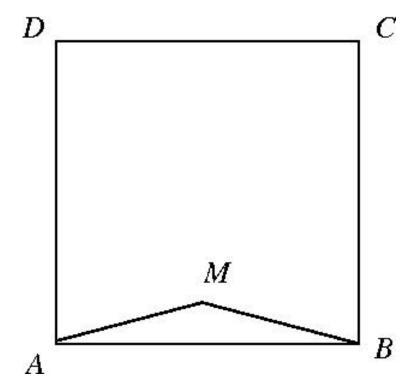
Continuamos com um outro exemplo de geometria.

Continuamos com um outro exemplo de geometria.

Problema Seja ABCD um quadrado e M um ponto no interior do quadrado tal que $\angle MAB = \angle MBA = 15^{\circ}$. Determinar o ângulo $\angle DMC$.

Continuamos com um outro exemplo de geometria.

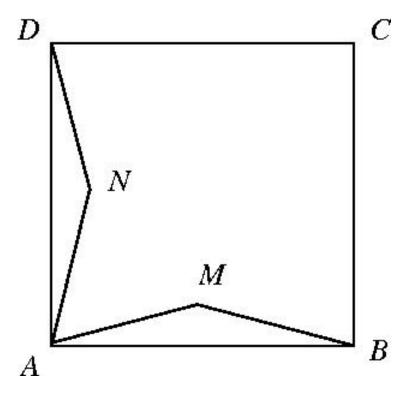
Problema Seja ABCD um quadrado e M um ponto no interior do quadrado tal que $\angle MAB = \angle MBA = 15^{\circ}$. Determinar o ângulo $\angle DMC$.



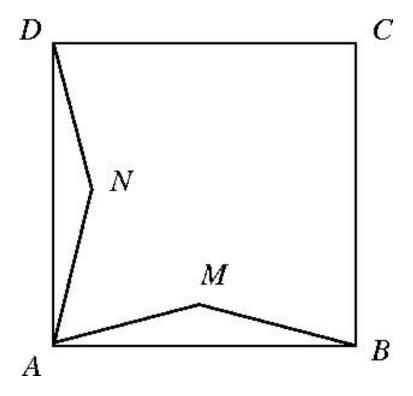
Consideramos a reflexão em torno da reta AC.



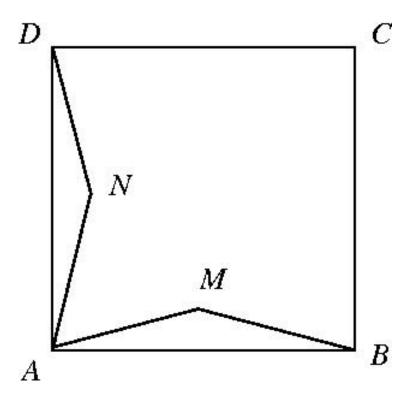
O ponto M transforma-se no ponto N .



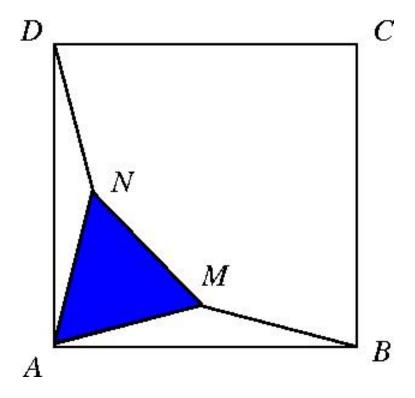
O triângulo AMB transforma-se no triângulo AND.



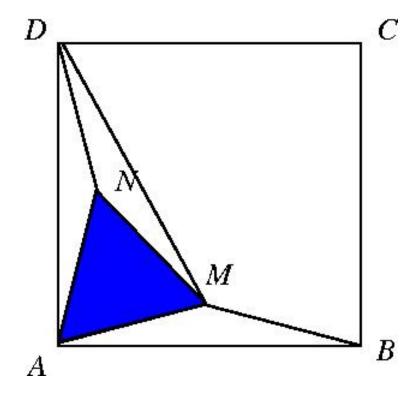
AM = AN, $\angle MAN = 90^{\circ} - 15^{\circ} - 15^{\circ} = 60^{\circ}$.



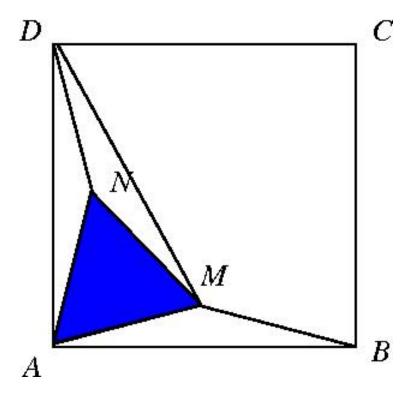
O triângulo AMN é equilátero.



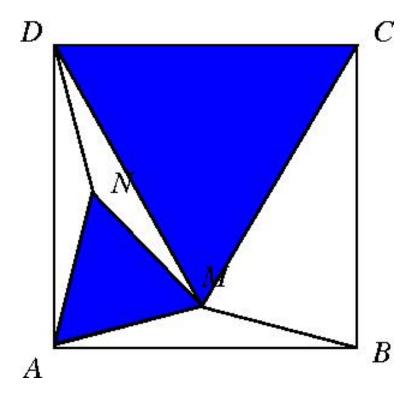
AND transforma-se em MND pela reflexão em torno de DN .



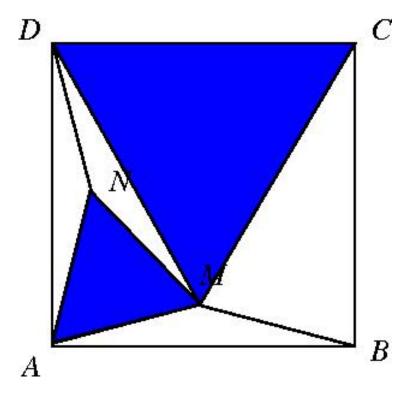
Por isso AD = MD.



O triângulo MDC é equilátero.



Resposta: $\angle CMD = 60^{\circ}$.



E agora de novo, teoría de números.

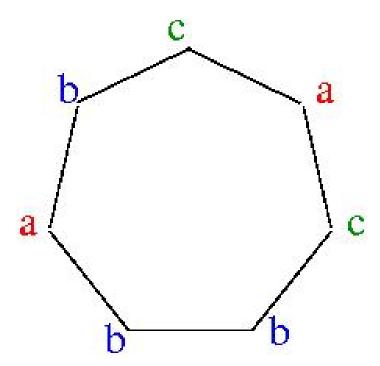
E agora de novo, teoría de números.

Pequeno Teorema de Fermat Seja p um número primo e n um número inteiro. Então

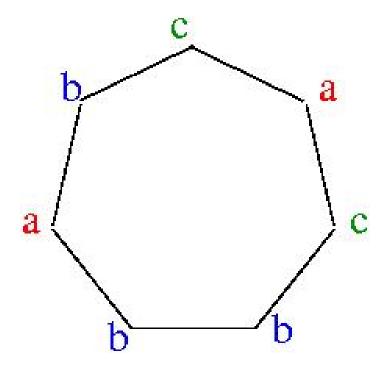
$$n^p - n$$

 \acute{e} divisível por p.

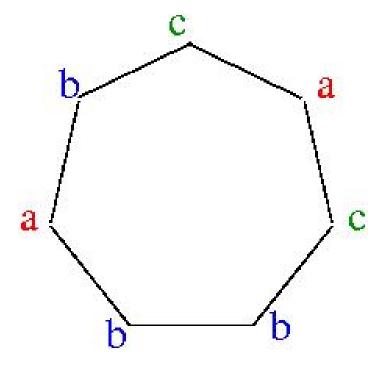
Consideramos um polígono regular com p vértices, e contamos todas as colorações dos vértices com n cores.



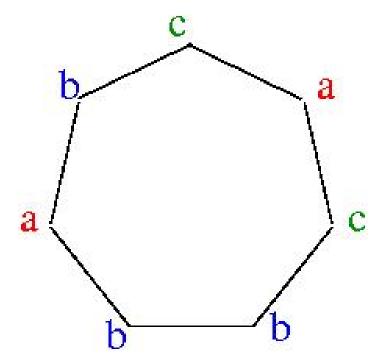
Consideramos um polígono regular com p vértices, e contamos todas as colorações dos vértices com n cores.



Claramente, tem n^p colorações.



Agora imaginamos que os vértices coloridos são as miçangas de um colar. Neste caso, duas colorações que coincidem depois de uma rotação representam o mesmo colar.



Agora imaginamos que os vértices coloridos são as miçangas de um colar. Neste caso, duas colorações que coincidem depois de uma rotação representam o mesmo colar. Vamos contar o número de colares diferentes.

Porque p é um número primo, as únicas colorações que são invariantes a alguma rotação são as colorações com somente uma cor, e temos n delas.

Porque p é um número primo, as únicas colorações que são invariantes a alguma rotação são as colorações com somente uma cor, e temos n delas.

Cada das outras colorações é parte de uma familia de p colorações que correspondem ao mesmo colar.

Porque p é um número primo, as únicas colorações que são invariantes a alguma rotação são as colorações com somente uma cor, e temos n delas.

Cada das outras colorações é parte de uma familia de p colorações que corespondem ao mesmo colar.

Então o número de colares é

$$n + \frac{n^p - n}{p}.$$

Este é um número inteiro, e por isso $n^p - n$ é divisível por p.

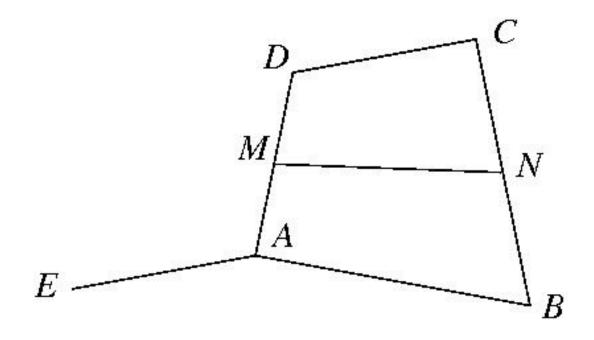
 ${\bf Problema}$ Seja ABCD um quadrilatero e sejam M e N os pontos médios dos lados AD e BC. Demonstrar que

$$MN = \frac{AB + CD}{2}$$

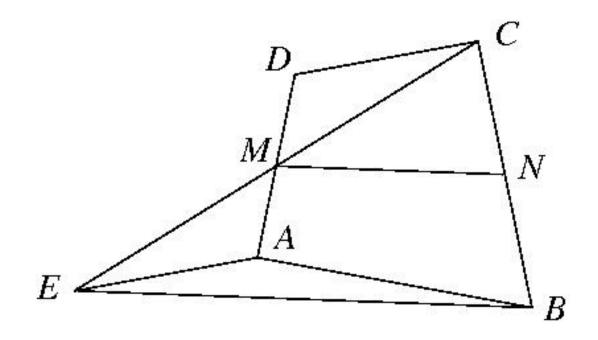
se e só se ABCD é um trapezoidal.



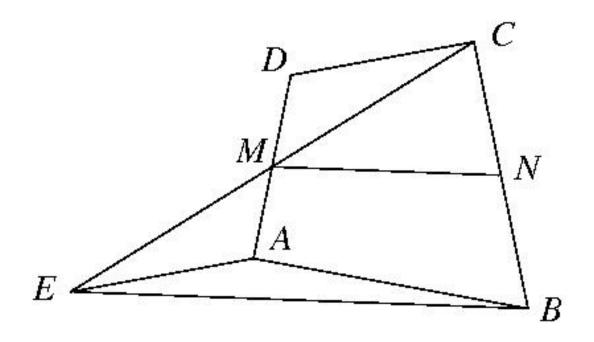
Translatamos CD em AE.



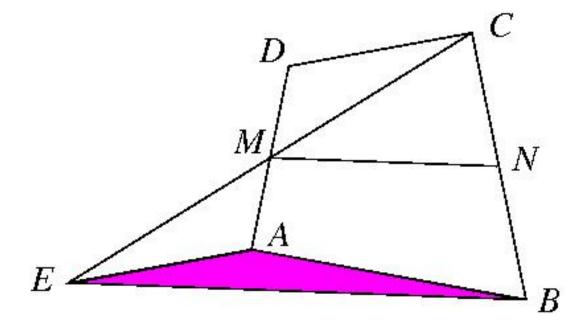
Translatamos CD em AE.



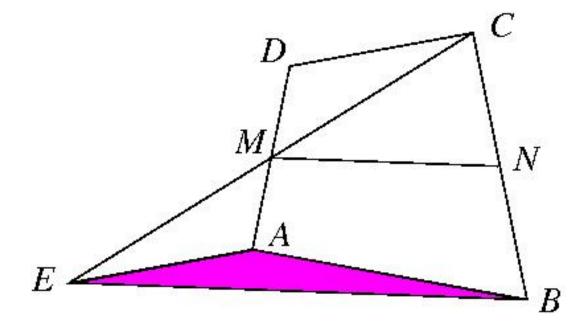
No triângulo CEB, MN=EB/2.



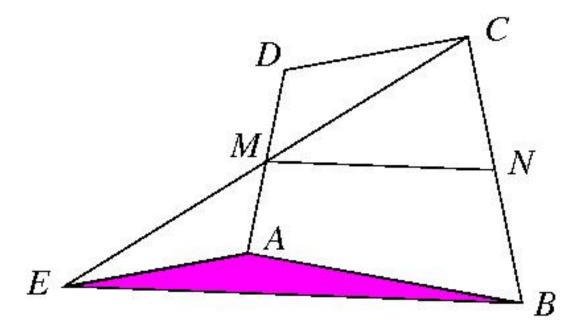
No triângulo AEB, $EB \leq AB + AE$.



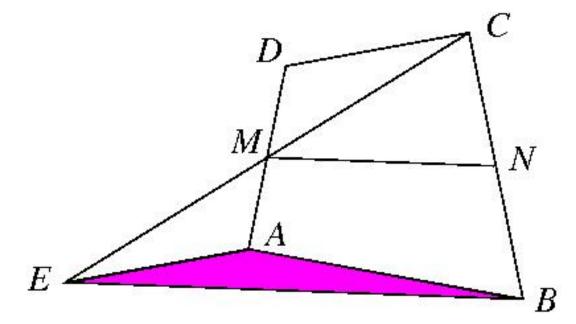
Obtemos $EB \leq AB + CD$.



Por isso, $MN = \frac{1}{2}EB \le \frac{AB + AE}{2} = \frac{AB + CD}{2}$.

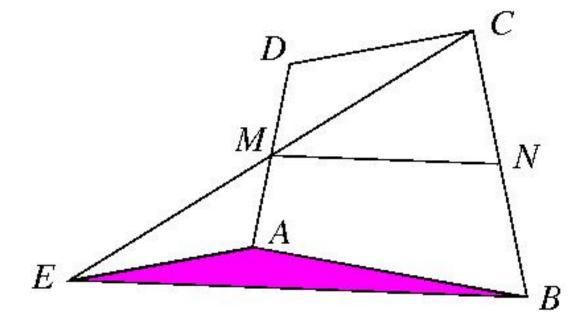


Por isso, $MN = \frac{1}{2}EB \le \frac{AB + AE}{2} = \frac{AB + CD}{2}$.



Tem igualdade se e só se as retas AB e AE coincidem.

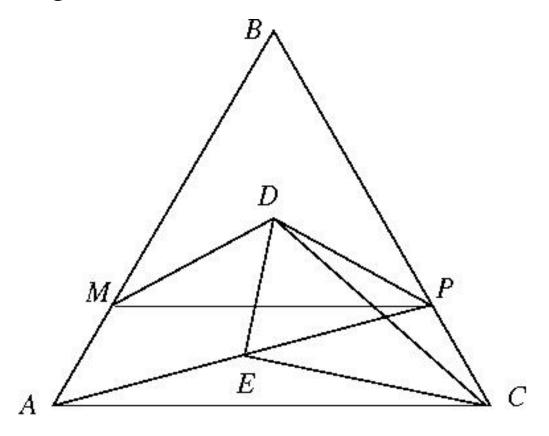
Por isso, $MN = \frac{1}{2}EB \le \frac{AB + AE}{2} = \frac{AB + CD}{2}$.



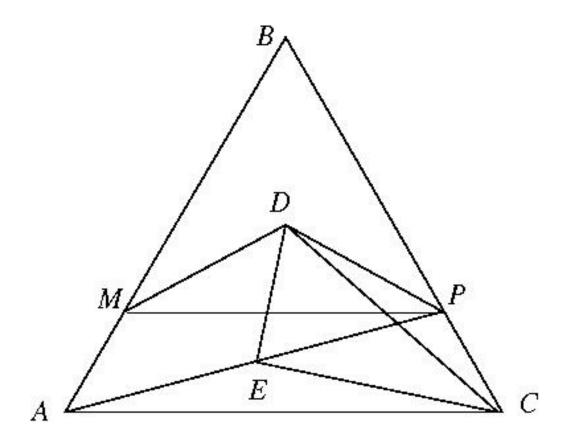
Tem igualdade se e só se AB||CD.

Problema Seja ABC um triângulo equilátero. Uma reta paralela a AC intersecta os lados AB e BC em M e P. Seja D o centro do triângulo BMP e seja E o ponto médio do AP. Calcular os ângulos do triângulo DEC.

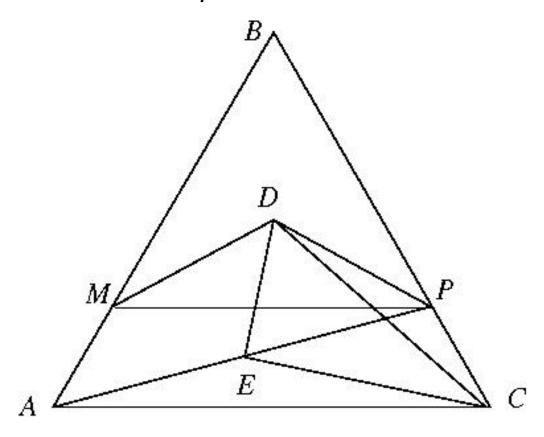
Problema Seja ABC um triângulo equilátero. Uma reta paralela a AC intersecta os lados AB e BC em M e P. Seja D o centro do triângulo BMP e seja E o ponto médio do AP. Calcular os ângulos do triângulo DEC.



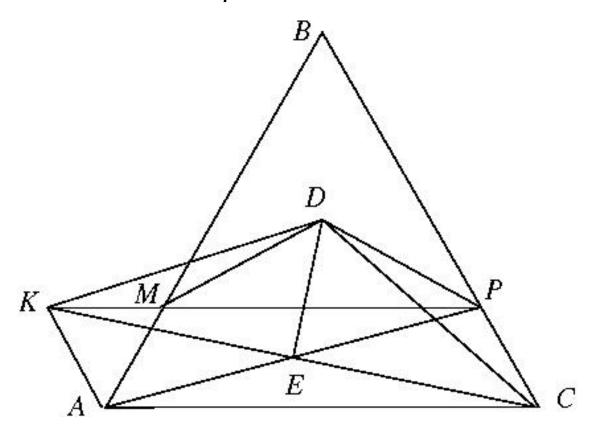
Consideramos a rotação do centro D e ângulo 120° .



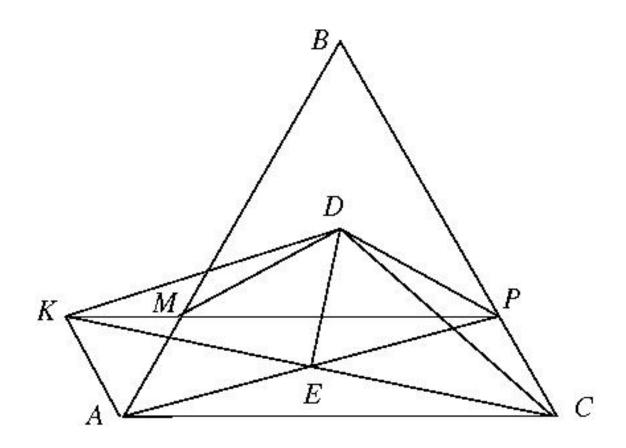
Consideramos a rotação do centro D e ângulo 120° . O seguimento BP transforma-se em PM, e por isso, P transforma-se em M e C transforma-se num ponto K na reta MP.



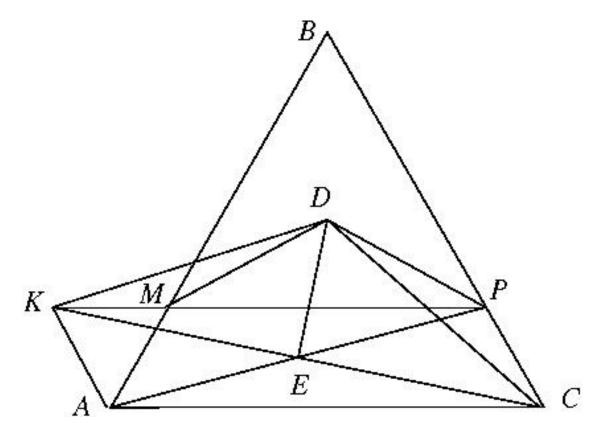
Consideramos a rotação do centro D e ângulo 120° . O seguimento BP transforma-se em PM, e por isso, P transforma-se em M e C transforma-se num ponto K na reta MP.



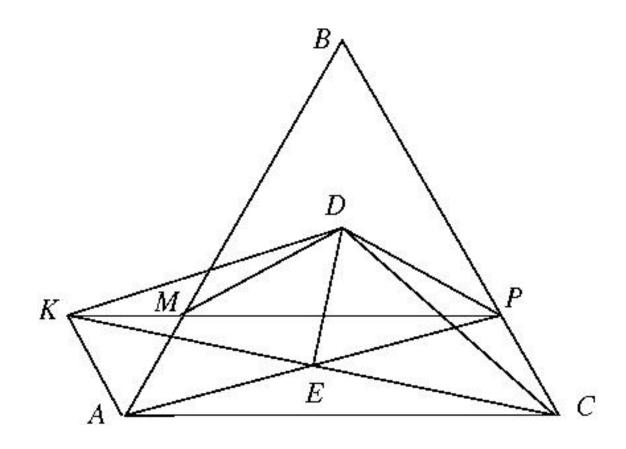
Porque MK=CP=AM e $\angle KMA=60^\circ$, o triângulo AKM é equilátero.



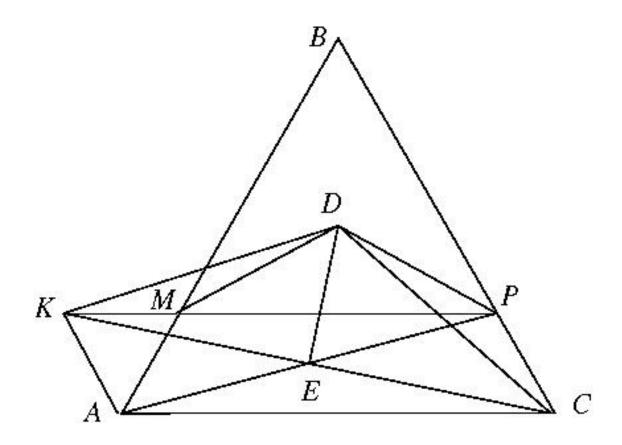
Porque MK = CP = AM e $\angle KMA = 60^{\circ}$, o triângulo AKM é equilátero. Por isso AK||CP. Obtemos que AKPC é um paralelograma com centro E.



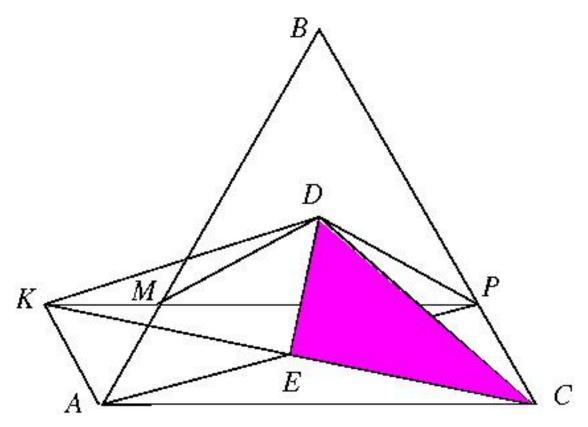
Então E é o ponto médio do seguimento CK ,



Então E é o ponto médio do seguimento CK , e por isso $DE \bot CK$.



Então E é o ponto médio do seguimento CK, e por isso $DE \bot CK$. Concluímos que EDC é um triângulo $90^{\circ}-60^{\circ}-30^{\circ}$.



<u>Problema</u> Demonstrar que se é possível inscrever tres quadrados iguais num triângulo, então o triângulo e equilátero.

