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Abstract. In this paper, we list in explicit form the factoring relations of the
Kauffman bracket skein module (KBSM for short) of a twist knot exterior. This is
done using curves decorated by characters of irreducible SL(2,C)-representations.
In the process, we exhibit a relation which holds in the KBSM of the knot exterior,
called the minimal relation. In the final section we prove that, when specializing
the variable of the Kauffman bracket at t = −1, the minimal relation becomes the
defining polynomial of the SL(2,C)-character variety of the twist knot.

1. Motivation and background

1.1. Motivation. The Kauffman bracket skein module of a 3-manifold was intro-
duced by J. Przyticki as a natural generalization of the Kauffman bracket to general
3-manifolds. It was later linked to the character variety of SL(2,C)-representations
of the fundamental group of the manifold [B1], [PS]. In this perspective, Kauffman
bracket skein modules were used to give an alternate description of the A-polynomial
of Cooper, Culler, Gillet, Long, and Shalen, and to generalize it to a noncommuta-
tive setting [FGL]. The computation of the noncommutative generalization of the
A-polynomial of a knot relies heavily on the good understanding of the skein module
of the knot complement.

The noncommutative generalization of the A-polynomial was computed for the
unknot in [FGL], trefoil knot in [G1], partially for (2, 2p + 1)-torus knots in [GS1],
and for the figure-eight knot in [GS2]. In those papers, and also in [G2] this knot
invariant was linked to the Jones polynomial. This relation led to new developments
in the study of colored Jones polynomials [GL]. Let us also point out that such
computations yield an alternative way of finding the classical A-polynomial, as it
was discussed in [N].

The computation itself is done in three stages. The first stage consists of the
understanding of the Kauffman bracket skein module of the knot complement. As
knot complements can be obtained by attaching 2-handles to a handlebody, and
such topological operations yield algebraic factorizations at the level of the skein
module, it is necessary to write the factoring relations in explicit form. The second
stage of the computation is concerned with determining the action of the Kauffman
bracket skein algebra of the torus on the skein module of the knot complement, while
the third stage is about finding the annihilator of the empty skein.

The present paper describes the first step in the computation of the noncommu-
tative version of the A-polynomial for twist knots. Our convention is to count twists
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as in Figure 1 (which some authors call half-twists). We will also be concerned
only with the case of positive twists. The Kauffman bracket skein module of the
complement of a twist knot was determined in [BL]. Let us mention that recently
T. Le extended this result to all 2-bridge knots [L]. However, none of the above
mentioned works gives an explicit description of the factoring relations in terms of
the basis of the skein module. This is the purpose of the present paper.

Km =

PSfrag replacements

m 2 1

· · ·

Figure 1. The m-twist knot Km: the twists are ordered from the
right to the left

1.2. The Kauffman bracket skein module of the m-twist knot exterior.
Denote by Km the m-twist knot (m ≥ 0) in S3, by EKm its exterior (i.e. the
complement in S3 of a regular neighborhood). Bullock and Lofaro have proved the
following result.

Theorem 1 (Bullock, Lofaro [BL]). The Kauffman bracket skein module of the
complement of a regular neighborhood of the m-twist knot is the free C[t, t−1]-module
with basis xiyj, i ≥ 0, 0 ≤ j ≤ m, where x and y are the curves described in Figure
2.
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· · ·

x y

z = x

Figure 2. Skeins x, y and z in Kt(EKm)

Let us recall briefly the idea of the proof. Because the tunnel number of Km is
1, the knot exterior EKm can be obtained by attaching a 2-handle to the genus 2
handlebody H2.

The proof relies on the following theorems.

Theorem 2 (Przytycki [P2]). The KBSM of the genus 2 handlebody is the free
C[t, t−1]-module with basis xiyjzk, i, j, k ∈ Z≥0, where x, y and z are the curves
from Figure 3.
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Figure 3. Skeins x, y and z in Kt(H2)

Theorem 3 (Przytycki [P1]).

Kt(EK) = Kt(H2)/J,

where J is the submodule of Kt(H2) generated by

{L− sl(L)|L : any framed link in H2}.
Here sl(L) means the link obtained from L by an (arbitrary) handle slide through
the attached 2-handle.

We see immediately that in K(EKm) the skein z is identified with the skein x as
seen in Figure 2 (via a handle slide relation).

The work of Bullock and Lofaro is concentrated on the elimination of the higher
powers of y using handle-slides. In our paper we will give explicit formulas for these
relations. These formulas are necessary for computing the action of the Kauffman
bracket skein algebra of the boundary torus, and ultimately they should lead to
computation of the noncommutative A-ideal of a twist knot.

2. The explicit form of the factoring relations

It is important to observe that, as it was the case with previously studied knots
[G1] [GS1], the characters of irreducible SL(2,C)-representations play a special role.
For this reason we will change the basis of the skein module of the knot exterior.
Recall that Sn(x), n ≥ 0 are the polynomials defined recursively by S0(x) = 1,
S1(x) = x, and Sn+1(x) = xSn(x) − Sn−1(x), definition extended for all integers n.
These are the Chebyshev polynomials of second type.

The basis of the Kauffman bracket skein module of the twist knot exterior that
we prefer is

{Si(x)Sj(y), 0 ≤ i, 0 ≤ j ≤ m}.
Let us remark that for a curve c, Sn(c) is the curve colored by the nth Jones-Wenzl
idempotent.

2.1. The “minimal relation” in the KBSM of the twist knot exterior. There
is a special curve in the handlebody which can be used to obtain all the necessary
factorization relations. Sliding this curve through the 2-handle yields a relation
which we call the minimal relation.

Figure 4 describes the attaching curve. In this figure the handlebody is obtained
by drilling through a ball two “tunnels” that twist around each other. A handle
slide consists of a band sum with the attaching curve.

We now make an important convention. There is a handle-slide that identifies the
curves x and z. We impose this condition in the skein module of the handlebody,
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i.e. we factor the skein module by the relation x = z. Everything below is done in
this hypothesis.

.....PSfrag replacements
m 2 1

Figure 4. Attaching slope of H2 ∪ (2-handle): Thick lines represent
holes through a ball. The thin curve is the attaching slope; it lies on
the boundary of H2.

Consider the skeins Xi in Kt(H2) defined as follows:

Xi := ..... .....

.....

.....

PSfrag replacements
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.

X0 := (−t2 − t−2)φ,

where φ denote the empty link. The skein Xm+1 is the one that gives the minimal
relation.

Lemma 1 (Recursive relation of Xi). The skein Xi, (m+1 ≥ i ≥ 0), as an element
in Kt(EKm) satisfies the following recursive relation:

Xi+2 − t2yXi+1 + t4Xi + 2t2x2 = 0, X1 = −t2x2 − t4y, X0 = −t2 − t−2.

Proof. All of the operations below are done in the handlebody H2. First, transform
Xi+1 as follows:

(−t−3) ..... .....

.....

.....

PSfrag replacements
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.

Then slide the kink to the right side as below:

(−t−3) ..... .....

.....

.....

PSfrag replacements

m i i− 1 1

.



SKEIN MODULE OF THE TWIST KNOT EXTERIOR 5

Here resolve the crossing by using the skein relation. For example,

= t + t−1 ,

= (−t3)2 ,

= (−t3) .

Substituting z = x (which is allowed according to our convention), we can get the
recursive relation stated in Lemma 1. �
Lemma 2 (General term). The skeins Xi, (0 ≤ i ≤ m+ 1) can be written in terms
of the basis of the skein module as

Xi = −t2(i+1)Si(y)− t2iSi−1(y)x2 + t2(i−1)Si−2(y)− 2t2(i−1)x2

i−2∑

n=0

t2nSn(y)

= −t2(i+1)Si(y)− t2iSi−1(y)x2 + t2(i−1)Si−2(y)− 2x2 t
2(i−1)Si−1(y)− t2iSi−2(y)− 1

y − t2 − t−2
,

There is no actual fraction in the second expression, as a polynomial in y, the
numerator is divisible by the denominator. It is a matter of convenience to write it
this way.

Proof. According to Lemma 1 the Xi’s satisfy a second order nonhomogeneous re-
cursive relation with constant coefficients. Set ai = t−2iXi, so that the homogeneous
part of the recursive relation looks like ai+1 − yai + ai−1 = 0, which is that of the
Chebyshev polynomials. The general term is of the form αSi(y) + βSi−1(y), since
Si(y) and Si−1(y) form a basis for the (2-dimensional) space of sequences satisfying
this recursive relation.

On the other hand, the nonhomogeneous term is constant, so we can use the
method of undetermined coefficients to find a particular solution, which is −2x2/(y−
t2 − t−2) (just formally). The coefficients α and β are determined from the initial
condition. Initially they appear as fractions, but a routine computation with Cheby-
shev polynomials produce the formulas from the statement. �
Lemma 3 (Handle-slide relation). The handle-slide of Xm yields the following re-
lation

Xm+1 + t−4Xm + t−2x2 = 0.
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Proof. All of the operations below are done in the handlebody H2 (modulo x = z).
First, consider the following band sum of Xm+1 and the attaching slope along a
band b:

.....� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

PSfrag replacements

m 2 1b

attaching slope

Xm+1.

Let slb(Xm+1) be the resulting knot after the band sum. Then a relation slb(Xm+1)−
Xm+1 = 0 holds in Kt(EKm). Resolving slb(Xm+1) and substituting z = x, we get,

slb(Xm+1) = −t−4Xm − t−2x2.

This completes the proof. �

Lemmas 2 and 3 give us the following theorem.

Theorem 4 (Minimal relation). Let

Rm(t) :=Sm+1(y) + (t−6 − t−2x2)Sm(y) + ((2t4 + t−8)x2 − t−4)Sm−1(y)− t−10Sm−2(y)

+ 2x2(t−2m−2 + t−2m−6)
m−2∑

i=0

t2iSi(y)− t−2m−6x2.

Then in the complement of the m-twist knot Rm(t) = 0.

The equation Rm(t) = 0 is called the minimal relation.

2.2. The other factorization relations (The action of Sk(y) on Xi). We now
describe the relations that reduce Sm+k(y), k ≥ 2 in terms of polynomials of lower
degree.

We concentrate on the skeins Xi ∗ Sk(y), k ≥ 0, 0 ≤ i ≤ m+ 1, defined as

Xi ∗ Sk(y) := ..... .....

.....

.....

PSfrag replacements

m i i− 1 1

Sk(y)
,

X0 ∗ Sk(y) := Sk(y)X0.

Lemma 4. For k ≥ 0 and i = 1, 2, . . . ,m+1, as an element of Kt(EKm), Xi ∗Sk(y)
satisfies the following relation:

Xi∗Sk(y) = t4y(Xi∗Sk−1(y))+(−t6+t−2)(Xi−1∗Sk−1(y))−Xi∗Sk−2(y)+2(−t4+1)x2Sk−1(y).
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Proof. First, consider the following configuration of Xi ∗ (ySk−1(y)).

.....

.....

.....

PSfrag replacements

i
i− 1

1

Sk−1(y)
.

Calculate Xi ∗ (ySk−1(y)) as (Xi ∗ y) ∗ Sk−1(y). Resolving Xi ∗ y we can reduce
(Xi ∗ y) ∗ Sk−1(y) to

{t4yXi + (−t6 + t−2)Xi−1 + 2(−t4 + 1)x2} ∗ Sk−1(y).

Indeed,

Xi ∗ Sk(y) = .....

.....

.....

PSfrag replacements

i
i− 1

1

Sk−1(y)
(1)

= −t−1 .....

.....

.....

PSfrag replacements

i
i− 1

1

Sk−1(y)
(2)

+
.....

PSfrag replacements
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1

Sk−1(y)

(3)

+
.....
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i− 1

1

Sk−1(y)

(4)

+ t−2 .....

.....

.....

PSfrag replacements
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Sk−1(y)
.(5)
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Note that we can calculate (Xi ∗ y) ∗ Sk−1(y) separately as above, because there is
no interaction between Xi ∗ y and Sk−1(y). The term (2) can be calculated via the
resolutions performed in the proof of Lemma 1 and is

t4yXi ∗ Sk−1(y)− t6Xi−1 ∗ Sk−1(y)− 2t4x2Sk−1(y).

Using the relation ySk−1(y) = Sk(y) + Sk−2(y), we obtain the desired recursive
relation. �

As a consequence, we have

Lemma 5 (General term).

t−2iXi ∗ Sk(y) =(y − t2 − t−2)−1 × [−t4k+2Sn+k+1(y) + t−4k−2Sn−k−3(y)

+ t4k(t4 − S2(x))Sn+k(y) + t−4k(−t−4 + S2(x))Sn−k−2(y)

+ t4k−2(−t−4 + (t4 − 1)S2(x))Sn+k−1(y)

+ t−4k+2(t4 − (t−4 − 1)S2(x))Sn−k(y)

+ 2x2t−2nSk(y) +
k−1∑

i=−k+1

t4iϕi−k(x)Sn+i(y)],

where

ϕj(x) =

{
(t4 − t−4)S2(x), if j is odd
t6 − t−6 + (t2 − t−2)S2(x), if j is even

Lemma 6 (Handle-slide relation).

Xm+1 ∗ Sk(y) + t−4Xm ∗ Sk(y) + t−2x2Sk(y) = 0.

Proof. The relation is obtained by noting that there is no interaction between the
knots slb(Xm+1), defined in the proof of Lemma 3 and the skein Sk(y) �

Combining the general term in Lemma 5 and the handle slide relation in Lemma
6, we obtain all the relations reducing Sk(y), where k ≥ m+ 1, to a skein with lower
degree.

Theorem 5. For k ≥ 0,

−t4k+4Sm+k+2(y)− t4k+2(t−4 − t4 + S2(x))Sm+k+1(y)

−t4k(t−4 − 1 + (t−4 + 1− t4)S2(x))Sm+k(y)

−t4k−2(t−8 + (2t−4 − 1− t4)S2(x))Sm+k−1(y)

+t−4k(t8 + (2t4 − 1− t−4)S2(x))Sm−k(y)

+t−4k−2(t4 − 1 + (t4 + 1− t−4)S2(x))Sm−k−1(y)

+t−4k−4(t4 − t−4 + S2(x))Sm−k−2(y) + t−4k−6Sm−k−3(y)

+t−2m−2x2Sk+1(y) + t−2m−2(t2 − t−2)x2Sk(y) + t−2m−2x2Sk−1(y)

+t2
k−2∑

i=−k+1

ψi−k(x)t4iSn+i(y) = 0,

where

ψj(x) =

{
t4 − t−8 + (−2t−4 + t+ t4)S2(x), if j is odd
t6 − t−6 + (2t2 − t−2 − t−6)S2(x), if j is even.
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3. Application to the character variety of the m-twist knot

Recall the following theorem.

Theorem 6 (Bullock [B1], Przytycki-Sikora [PS]). For any compact orientable 3-
manifold M , there exists a surjective homomorphism Φ as algebra

Φ : K−1(M)→ χ(π1(M)),

defined by Φ(K) := −t[K], Φ(K1t· · ·tKi) :=
∏i

j=1 Φ(Ki), where [K] is an element

of π1(M) represented by the knot K with an unspecified orientation. Moreover the
kernel of Φ is the nilradical

√
0.

According to the above theorem, Rm(−1) has information of the defining polyno-
mial of the character variety X(π1(EKm)), that is.

χ(π1(EKm)) = K−1(EKm)/
√

0 = C[x, y]/
√
〈Rm(−1)〉.

Note that taking the radical of a principal ideal corresponds to getting rid of the
multiplicity of each irreducible factor in the irreducible decomposition of the genera-
tor. Hence the generator of

√
〈Rm(−1)〉, which ideal is also principal, has the same

zeros as Rm(−1). In this sense we can consider the polynomial Rm(−1) as the defin-
ing polynomial of X(EKm). Using Maple, we can find the following factorizations
of Rm(−1) over Q:

R0(−1) = y + 2,

R1(−1) = (y + 2)(y + x2 − 1),

R2(−1) = (y + 2)(y2 + x2y − y + x2 − 1),

R3(−1) = (y + 2)(y3 + x2y2 − y2 − 2y + x2y + 1),

R4(−1) = (y + 2)(y4 + x2y3 − y3 − 3y2 + x2y2 − x2y + 2y + 1),

R5(−1) = (y + 2)(y5 + x2y4 − y4 − 4y3 + x2y3 − 2x2y2 + 3y2 + 3y − x2y + x2 − 1).

A more general fact is true.

Lemma 7. For any non-negative integer m, the minimal relation Rm(−1) has the
following decomposition:

(y + 2)

(
Sm(y)− Sm−1(y) + x2

m−1∑

i=0

Si(y)

)
.

Moreover, the factor Sm(y)− Sm−1(y) + x2
∑m−1

i=0 Si(y) is irreducible over Q.

Proof. The first statement can be shown by using the properties of the Chebyshev
polynomial Sm. The second statement can be proved by a result on the trace field
shown by J. Hoste and P. Shanahan [HS]. Let us introduce the notation:

R̃m(x, y) := Sm(y)− Sm−1(y) + x2

m−1∑

i=0

Si(y).

In the case of m = 0, 1, (that is the case of the unknot and the right-handed trefoil
which are non-hyperbolic knots), it was observed above. Next, consider the case
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where m ≥ 2. Then the twist knot Km is hyperbolic. Hence there exists the discrete
faithful representation

ρ0 : π1(EKm)→ SL(2,C)

of π1(EKm). By Theorem 6, we can regard the skeins x and y as the functions −tx
and −ty, respectively. Here x is a meridional skein so we can assume that

x(ρ0) = −tx(ρ0) = ±2, y(ρ0) = −ty(ρ0) = −2 or α,

where α is a solution of R̃m(±2, y) = 0 over C.

Remark 1. The diagram in Figure 1 is alternating and irreducible, so the minimal
crossing number of Km is exactly m+ 2 (see [K, M, T] for details).

Now, by Corollary 1 in [HS] and Remark 1, the extension field Q(tγ(ρ0) : γ ∈
π1(EKm)) over Q, called the trace field of Km, has degree m. Namely,

[Q(tγ(ρ0) : γ ∈ π1(EKm)) : Q] = m.

Here it can be shown that Q(tγ(ρ0) : γ ∈ π1(EKm)) is simple extension, that is,

Q(tγ(ρ0) : γ ∈ π1(EKm)) = Q(α).

(Refer to [CR, NR] for details). If y = −2, then Q(−2) = Q, a contradiction.

Therefore y should be equal to α, which is a solution of R̃m(±2, y) with degy = m.

Hence R̃m(±2, y) must be irreducible over Q. It is not so hard to see that if R̃m(x, y)

is reducible, then so is R̃m(±2, y). These two facts complete the proof. �
It follows from the definition of the character variety that X(M) for any compact

orientable 3-manifold M is defined over Q (in fact over Z). Hence by Lemma 7, we
obtain:

Theorem 7. Consider the character ring χQ(π1(EKm)) and the KBSA KQ−1(EKm)

whose coefficient fields are Q. Then KQ−1(EKm) has trivial nilradical. Therefore the
following holds:

χQ(π1(EKm)) = Q[x, y]/〈Rm(−1)〉.
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