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THE A-POLYNOMIAL FROM THE NONCOMMUTATIVE

VIEWPOINT

CHARLES FROHMAN, RĂZVAN GELCA, AND WALTER LOFARO

Abstract. The paper introduces a noncommutative generalization of the A-

polynomial of a knot. This is done using the Kauffman bracket skein module of
the knot complement, and is based on the relationship between skein modules

and character varieties. The construction is possible because the Kauffman
bracket skein algebra of the cylinder over the torus is a subalgebra of the

noncommutative torus. The generalized version of the A-polynomial, called the
noncommutative A-ideal, consists of a finitely generated ideal of polynomials

in the quantum plane. Some properties of the noncommutative A-ideal and its
relationships with the A-polynomial and the Jones polynomial are discussed.

The paper concludes with the description of the examples of the unknot, and
the right- and left-handed trefoil knots.

1. Introduction

This paper places the A-polynomial of a knot into the framework of noncommu-
tative geometry. The A-polynomial was introduced in [CCGLS]. It describes how
the Sl2C-characters of a knot lie inside the Sl2C-characters of its boundary torus,
and can be related to the Alexander polynomial of the knot and to the structure
of essential surfaces in the complement of the knot [CL].

The noncommutative generalization is constructed by replacing the geometric
definition of the A-polynomial by the algebraic definition based on spaces of func-
tions, and then deforming these spaces with respect to a complex parameter t.
As such, Sl2C-characters of surfaces and 3-manifolds are replaced by Kauffman
bracket skein modules of cylinders over surfaces and 3-manifolds. The Kauffman
bracket skein module depends on a parameter t, so that when t is set equal to
−1 the Sl2C-characters are recovered. The A-polynomial can be derived from the
noncommutative invariant at t = −1.

Our construction uses the isomorphism between the Kauffman bracket skein
module of the cylinder over a torus and the subalgebra of the noncommutative
torus generated by noncommutative cosines, which was already explicated in [FG].
The noncommutative torus is a fundamental example in noncommutative geometry
[Co].

The invariant is a left ideal of polynomials in the noncommutative plane. Since
the noncommutative plane is a Noetherian algebra which admits a Gröbner basis
algorithm for the lexical order, this ideal is finitely generated and admits a minimal
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reduced Gröbner basis. The use of Gröbner bases is an important theme in modern
commutative algebra. For instance, algorithms associated with Gröbner bases are
the heart of most symbolic manipulation programs. The use of Gröbner bases to
study the noncommutative plane is foreshadowed by the work of Cohn on skew
polynomial rings [C].

There is a complex valued pairing induced by the tensor product of the skein
module of the knot complement with the skein module of the solid torus over the
skein algebra of the boundary torus. Topologically the pairing is determined by
the gluing of the solid torus to the knot complement. This allows us to compare
the noncommutative invariant with data coming from colored Jones polynomials.
Specifically, the matrix associated to the noncommutative invariant annihilates the
vector whose entries are the colored Jones polynomials. This should lead to a
deeper understanding of the relationship between the Jones polynomial and the
representation theory of the fundamental group of the complement of a knot.

In section 2 the basic definitions associated with the A-polynomial are recalled.
In section 3 we introduce the noncommutative analogues of the spaces and maps
used in section 2. In section 4 we define the noncommutative A-ideal, describe
some of its properties and discuss the examples of the unknot and the left- and
right-handed trefoils. In section 5 we derive the orthogonality relationship between
the noncommutative A-ideal and the Jones polynomial.

2. Characters and Knot Invariants

2.1. Sl2C-Characters. Let G =< ai|rj > be a finitely generated group. A repre-
sentation ρ : G → Sl2C is determined by a choice of matrices Ai in Sl2C so that
when the relations rj are rewritten with the ai replaced with the Ai they are equal
to the identity in Sl2C. In other words, the representations can be identified with
the subset of

∏n
i=1 Sl2C, where n is the number of generators of G, that satis-

fies the equations obtained by requiring the rj to evaluate to the identity. Denote
this subset Rep(G), and call it the representations of G. Since we only deal with
Sl2C-representations, we suppress references to Sl2C.

Let ars(i), r, s ∈ {1, 2}, and i ∈ {1, . . . , n} be the function on
∏n
i=1 Sl2C which

yields the entry in the r-th row and s-th column of the i-th matrix of each element
of
∏n
i=1 Sl2C. The coordinate ring C[

∏n
i=1 Sl2C] consists of the polynomials in the

ars(i) modulo the ideal generated by

a11(i)a22(i)− a12(i)a21(i)− 1,

for i ∈ {1, . . . , n}. Each relation rj gives rise to four polynomials corresponding
to the four entries of a matrix, and coming from the condition that the relations
evaluate to the identity. Let I(G) be the ideal in C[

∏n
i=1 Sl2C] generated by the

polynomials coming from the relations. Finally, R(G) = C[
∏n
i=1 Sl2C]/I(G) is

the affine representation ring of G. In more generality, Lubotsky and Magid [LM]
proved that the isomorphism class of R(G) is an invariant of the group. The
word “affine” refers to the fact that R(G) is the unreduced coordinate ring of the
representations. To get the classical representation ring, take the quotient of R(G)

by its nilradical
√

0 = {p|pn = 0 for some n}.
There is a left action of Sl2C on

∏n
i=1 Sl2C by conjugation,

A • (A1, . . . , An) = (AA1A
−1, . . . , AAnA

−1).
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This action induces a right action on C[
∏n
i=1 Sl2C]. It is easy to check that the

action leaves I(G) invariant, hence the action descends to a right action on R(G).
The invariant subring of this action, denoted χ(G) = R(G)Sl2C, is called the affine
characters of G. This ring is an invariant of the group G. Once again, to obtain
what is classically referred to as the characters, take the quotient of χ(G) by its
nilradical.

For the most frequently encountered groups we are being too careful, the affine
representation ring and the affine character ring have trivial nilradical. However,
there are examples of groups where the distinction is real [KM].

The affine characters have recently been the subject of scrutiny in works of
Bullock, Brumfiel-Hilden, Przytycki-Sikora, and Sikora, [B, BH, PS, S1]. Here is

an intrinsic definition due to Sikora. Let Ĝ be the set of conjugacy classes of G. If
W is an element of G we denote the conjugacy class of W by < W >. Let S(Ĝ) be

the symmetric algebra on Ĝ, that is, polynomials where the variables are conjugacy
classes in G and the coefficients are complex numbers. Let J be the ideal generated
by all polynomials , < Id > +2, and < AB > + < A−1B > + < A >< B >
where A and B range over the elements of G. An isomorphism S(G)/J → χ(G) is
induced by sending each < A > into the polynomial corresponding to −tr(A).

There is a space corresponding to the characters. The action of Sl2C on the
ring C[

∏n
i=1 Sl2C] is not good, in the sense that the quotient is not Hausdorff. We

sidestep this by defining an equivalence relation on Rep(G), that yields a Hausdorff
space. Let ρ, η ∈ Rep(G) be equivalent if for every t ∈ χ(G), t(ρ) = t(η). The
resulting quotient space is the character variety of G. An algebraic subset of an
Cn is the solution set of a system of polynomial equations. A set of polynomials S
cuts out an algebraic subset V , if x ∈ V if and only if every function in S is zero
at x. The ideal I(V ) of V is the set of all polynomials that vanish on V . It is a
consequence of the Nullstellensatz that the ideal of V is the radical of the smallest
ideal containing any set of polynomials that cut V out. The coordinate ring of V is
the quotient of the ring of polynomials in n variables by I(V ). Sometimes it is nice
to have a set X(G) corresponding to the characters χ(G). Of course the set only
matters to the extent that its points correspond to maximal ideals in χ(G). To this
end, define a realization of X(G) to be an algebraic subset of some Cn, where the
coordinates on Cn correspond to traces of elements of G, whose coordinate ring is
isomorphic to χ(G)/

√
0. The set X(G) is in one to one correspondence with the

character variety of G [CS].

2.2. Characters of the Torus. Concentrate on the case of the fundamental group
of a torus. Think of it as the free Abelian group on λ and µ. The representations
correspond exactly to pairs of matrices in Sl2C that commute. Let x be the trace
of the image of λ, y be the trace of the image of µ and let z be the trace of the
image of their product. The affine character ring, χ(π1(T 2)), is generated by x, y,
z with relation

x2 + y2 + z2 − xyz − 4 = 0.

The ring has trivial nilradical. The space X(T 2) = X(π1(T 2)) is realized as the set
of points in C3 satisfying the equation above. There is a two-fold branched cover
of X(T 2) that is used in the definition of knot invariants. Consider C∗×C∗, where
C∗ denotes the nonzero complex numbers, give it coordinates l and m. In order to
see that its coordinate ring is C[l, l−1,m,m−1], it is helpful to think of C∗ ×C∗ as
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ordered pairs of diagonal matrices in Sl2C.((
l 0
0 l−1

)
,

(
m 0
0 m−1

))

There is a map p : C∗ ×C∗ → X(T 2) given by sending each pair of points to its
equivalence class. The map p is a two-fold branched cover whose singular points

are the four ordered pairs chosen from

(
±1 0
0 ±1

)
. In terms of our realization of

X(T 2), the map sends ((
l 0
0 l−1

)
,

(
m 0
0 m−1

))

to the triple (l + l−1,m+m−1, lm+ l−1m−1). Being a two-fold branched cover, p
has a deck transformation,

θ : C∗ × C∗ → C∗ × C∗,
θ(l,m) = (l−1,m−1).

Dual to p, and θ are maps, that we denote p̂ and θ̂,

p̂ : C[X(T 2)]→ C[l, l−1,m,m−1],

and
θ̂ : C[l, l−1,m,m−1]→ C[l, l−1,m,m−1].

One can show that the image of p̂ is the fixed subalgebra of θ̂.

Proposition 1. Suppose that V ⊂ X(T 2) is algebraic and S is a set of func-
tions that cuts out V . The ideal of p−1(V ) is the radical of the smallest ideal of
C[l, l−1,m,m−1] containing p̂(S).

Proof. The set p̂(S) cuts out p−1(V ), the rest is a standard characterization of the
ideal of an algebraic set. �

The coordinate ring C[l, l−1,m,m−1] can be seen as the ring of fractions of
C[l,m] with respect to the set of monomials in l and m.

Proposition 2. If I ⊂ C[l, l−1,m,m−1] is an ideal then its contraction J to C[l,m]
is I ∩C[l,m]. The extension of J is just the ideal of C[l, l−1,m,m−1] generated by
J . Furthermore, the extension of J is I.

2.3. The A-polynomial. The A-polynomial is defined in [CCGLS]. Here is a
brief overview of that definition. Let K be a knot in S3, or more generally in an
oriented homology 3-sphere. Let M be the complement of a regular neighborhood
of K. The space M is a compact manifold with boundary homeomorphic to T 2.
To choose the meridian and the longitude of the knot, orient the knot and choose
the meridian to bound a disk in the regular neighborhood and to have the linking
number with the knot equal to +1. The longitude bounds a Seifert surface and has
intersection number with the meridian +1, thus we choose the positive orientation
on the boundary torus. This determines the longitude and the meridian up to sign.
The inclusion map T 2 = ∂M ⊂ M induces a map r : X(M) → X(T 2). Consider
the closure of the 1-dimensional part of the peripheral characters r(X(M)). Its
pull-back through the map p : C∗ × C∗ → X(T 2)) is still 1-dimensional since p is
surjective and is 2− 1 except at four points. Viewed as a curve in C×C, this set is
the zero set of a two-variable polynomial B(l,m), which is unique if we require that
all of its factors are simple and that it is monic. This polynomial always factors as
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B(l,m) = (l − 1)A(l,m), where the factor l − 1 stands for the curve of characters
of reducible representations. The factor A(l,m) is by definition the A-polynomial
of K.

3. Skein modules and the noncommutative torus

3.1. The Noncommutative Torus. The noncommutative torus was first intro-
duced by Rieffel [Ri1] as an example in the study of noncommutative C∗-algebras,
its physical significance and geometric properties were only later discovered [Co],
[Ri2], [Ri3], [We]. The noncommutative torus is a “virtual” geometric space whose
algebra of continuous functions is the (irrational) rotation algebra Aθ. It is cus-
tomary to call the algebra of functions itself the noncommutative torus.

The algebra Aθ is usually defined for a real angle of rotation θ, however we con-
sider θ to be any complex number, and let t = eπiθ. This algebra can be introduced
abstractly by exponentiating the Heisenberg noncommutation relation. That is, Aθ
is the closure in a certain C∗-norm of the algebra spanned by l,m, l−1,m−1, subject
to the relation lm = t2ml.

One can also define Aθ by its multiplication rule. Consider the elements ep,q =
t−pqlpmq, p, q ∈ Z. They span over C a dense subalgebra. Defines the multiplication
via the formula

ep,q ∗ er,s = t|
pq
rs |ep+r,q+s

which, from our approach, is just a consequence of the defining relation. The
irrational rotation algebra is the closure of the algebra spanned by the ep,q’s in
the norm determined by the left regular representation (with this new product) on
L2(T 2).

For the purpose of this paper we are interested only in the subalgebra of the
noncommutative torus consisting of Laurent polynomials in l and m, which we
denote by Ct[l, l−1,m,m−1]. There is an automorphism

Θ : Ct[l, l−1,m,m−1]→ Ct[l, l−1,m,m−1], Θ(ep,q) = e−p,−q

Let Ct be its invariant part. The notation is motivated by the fact that this subal-
gebra is spanned by the noncommutative cosines 1

2 (ep,q + e−p,−q), p, q ∈ Z.

In addition, let Ct[l,m] be the subalgebra of Ct[l, l−1,m,m−1] spanned by ep,q,
with p, q ≥ 0. This is nothing but the ring of noncommuting polynomials in two
variables l and m satisfying the noncommutation relation lm = t2ml. This ring is
frequently referred to as the quantum plane.

Proposition 3. ([K], Proposition IV.1.1) The ring Ct[l,m] is both left and right
Noetherian and has no zero divisors.

We now need to broach the subject of Gröbner bases in Ct[l,m]. As Ct[l,m] is
so close to being commutative, the concepts translate over very easily from the case
of two variable polynomials.

We lexicographically order the lpmq. Hence lpmq < lrms if either p < r or
p = r and q < s. Given f ∈ Ct[l,m] we can write f =

∑
αp,qep,q where the sum

is finite. The leading term lt(f) of f is the αp,ql
pmq where the lpmq is largest in

the lexicographical ordering among those terms with αp,q 6= 0. The leading power
product is lpmq and the leading coefficient is αp,q.

Suppose that u, v, w ∈ Ct[l,m] and u = vw, then we say w divides u on the
right and we let u

w = v. A Gröbner basis for a left (respectively right) ideal I is a
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collection fi of elements of the ideal I so that the ideal generated by the leading
terms of the fi is equal to the ideal generated by the leading terms of elements of
I. We say the Gröbner basis is minimal if no two fi have the same leading power
product. We say the Gröbner basis is reduced if no power product in each fi is
divisible by the leading power product of any other fi.

Proposition 4. For a left (or right) ideal of polynomials in Ct[l,m] there exists a
unique minimal, reduced Gröbner basis, consisting of monic polynomials.

Proof. By changing any statements in [AL] about ideals to statements about left
(or right) ideals, the proof there goes through verbatim. �

3.2. The Kauffman Bracket Skein Module. LetM be an orientable 3-manifold.
A framed link in M is an embedding of a disjoint union of annuli into M . In di-
agrams we will draw only the core of an annulus lying parallel to the plane of the
paper (i.e. with blackboard framing).

Two framed links in M are equivalent if there is an isotopy of M taking one
to the other. Let L denote the set of equivalence classes of framed links in M ,
including the empty link. Fix a complex number t. Consider the vector space,
CL with basis L. Define S(M) to be the smallest subspace of CL containing all

expressions of the form − t − t−1 and©+ t2 + t−2, where the framed

links in each expression are identical outside balls, in which they look like pictured
in the diagrams. The Kauffman bracket skein module Kt(M) is the quotient

CL/S(M).

In the case of the cylinder over the torus, T 2 × I, Kt(T
2 × I) has the structure

of an algebra with multiplication given by laying one link over the other. More
precisely, to multiply skeins corresponding to links α and β, isotope them so that α
lies in T 2× [ 1

2 , 1] and β in T 2× [0, 1
2 ]. Then α ·β is the element of the skein module

represented by the class of the union of these two links in T 2 × [0, 1]. Extend this
to a distributive product.

Oriented simple closed curves on the torus up to isotopy are indexed by pairs of
relatively prime integers (p, q). Corresponding to (p, q) is a framed link in T 2 × I.
Take an annulus in T 2× I whose core projects to a (p, q) curve, so that the annulus
runs parallel to the boundary of T 2 × I. As the framed links are unoriented, (p, q)
and (−p,−q) give rise to the same link, which we also denote by (p, q). A standard
argument based on the proof that the Kauffman bracket in S3 is well defined shows
that as a vector space, Kt(T

2× I) has as basis all links consisting of parallel copies
of the (p, q).

Let x be (0, 1) , y = (1, 0) and z = (1, 1). It is a theorem of Bullock and Przy-
tycki [BP] that Kt(T

2 × I) is isomorphic to polynomials in three noncommutative
variables, x, y and z modulo the ideal generated by

t2x2 + t−2y2 + t2z2 − txyz − 2(t2 + t−2),

txy − t−1yx− (t2 − t−2)z,

tzx− t−1xz − (t2 − t−2)y,

and

tyz − t−1zy − (t2 − t−2)x.
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When t = −1 the Kauffman bracket skein module of an arbitrary three-manifold
can be made into an algebra. The point is that at t = −1 the skein relation allows
us to change crossings. To multiply two links, perturb them so that they miss one
another and take their union. As crossings don’t count, the answer is independent
of the perturbation. This extends to make K−1(M) into an algebra for any M . It is

a theorem of Bullock [B] that K−1(M)/
√

0 is naturally isomorphic to χ(π1(M))/
√

0
. You can see this isomorphism from the description of χ(π1(M)) due to Sikora
given above. The correspondence at t = −1 is slightly tricky as the x, y and z given
here correspond to −x, −y and −z in the relation we gave for the SL2C-characters
of the torus.

In [FG] the following theorem is proved.

Theorem 1. There exists an isomorphism of algebras

p̂ : Kt(T
2 × I)→ Ct

determined by

p̂((p, q)) = ep,q + e−p,−q, p, q ∈ Z.

4. The noncommutative A-ideal

4.1. Definition. In this section we introduce a noncommutative generalization
of the A-polynomial, depending on the complex parameter t, from which the A-
polynomial can be recovered by letting t = −1. To define this new knot invariant,
we replace the geometric definition of the A-polynomial, based on the character
variety, by a definition based on the space of regular functions on the character va-
riety, then deform this space of functions with respect to a parameter. Through this
procedure, the algebra of functions on the character variety of the torus deforms to
a noncommutative algebra, while the algebra of functions on the knot complement
deforms to a right module over the algebra of the torus.

Denote by I(K) the kernel of

r̂ : χ(π1(T 2)))→ χ(π1(S3 −K)).

Notice that I(K) cuts out an algebraic subset V of X(T 2).

Proposition 5. Let J be the ideal generated by p̂(I(K)) in C[l, l−1,m,m−1], and
Jc its contraction to C[l,m]. Then the product of the generators of the principal
minimal prime ideals associated to J c is equal to B(l,m) (modulo multiplication by
a unit). That is, the ideal I(K) determines the A-polynomial.

Proof. The ideal J cuts out the preimage in C∗ × C∗ through the map p, of the
variety of peripheral characters, and consequently J c cuts out this variety as viewed
in C×C. By restricting ourselves to the 1-dimensional part, the conclusion follows.

�
You can think of the extension of the ideal I(K) as the holomorphic sections of

a line bundle over C∗ × C∗. Specifically, the sections of the line bundle associated
to the divisor of 1

B(l,m) .

There is a map r̂ : Kt(T
2×I)→ Kt(S

3−K) obtained by gluing the cylinder over
a torus into the complement of the knot at the T 2 × {0} end so that the meridian
goes to the meridian and the longitude goes to the longitude. Let It(K) be the
kernel of r̂. This ideal is called the peripheral ideal of the knot. Recall that for
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any 3-manifold K−1(M)/
√

0 is isomorphic to χ(π1(M))/
√

0. For a cylinder over a
torus the radical of both rings is trivial, hence

K−1(T 2 × I) = χ(π1(T 2)) = C(X(T 2)).

Under this identification I−1(K) = I(K). If we extend the ideal I−1(K) to
K−1(C∗×C∗) = C−1[l, l−1,m,m−1] and then contract it toK−1(C×C) = C−1[l,m],
we get an ideal of polynomials in two variables. From the above proposition it fol-
lows that the principal minimal primes associated to this ideal are generated by
polynomials whose product is B(−l,−m) (eventually multiplied by a unit). The
negatives are due to the fact that the skein relation corresponds to the identity
satisfied by the negative of the trace.

This motivates the following

Definition 1. The noncommutative A-ideal At(K) of a knot K is the left ideal
obtained by extending It(K) to Ct[l, l−1,m,m−1] and then contracting it to Ct[l,m].

4.2. Properties.

Proposition 6. The noncommutative A-ideal at t = −1 determines the A-polynomial.

Proof. This follows immediately from Proposition 5. �

Lemma 1. The left ideal obtained by extending a left ideal I ∈ Kt(T
2 × I) to the

algebra Ct[l, l−1,m,m−1] and then contracting it back to Kt(T
2× I) coincides with

I.

Proof. The algebra Kt(T
2 × I) consists of those Laurent polynomials in l and m

that are invariant under the transformation Θ defined by l → l−1 and m → m−1.
If r(l,m) is an element in the ideal obtained through the extension followed by the
contraction, then r(l,m) is invariant under Θ and

r(l,m) =
∑

j

pj(l,m)qj(l,m)

where qj ∈ I for all j. If we symmetrize this equality with respect to the transfor-
mation Θ, then we get

r(l,m) =
∑

j

1

2

(
pj(l,m) + pj(l

−1,m−1)
)
qj(l,m).

The polynomials in the brackets are now invariant under Θ, which shows that
r(l,m) ∈ I, and we are done. �

Proposition 7. The peripheral ideals of two knots are the same if and only if their
noncommutative A-ideals are the same.

Proof. From the definition of the noncommutative A-ideal it follows that It(K)
determines At(K). The converse follows from the above lemma and the fact that
the operations of extension and contraction between the ideals of Ct[l,m] and those
of Ct[l, l−1,m,m−1] are one the inverse of the other. �

Proposition 8. The noncommutative A-ideal is nontrivial.
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Proof. We saw in the proof of the previous proposition that the peripheral ideal
It(K) can be recovered by extending At(K) to Ct[l, l−1,m,m−1] and then contract-
ing it to the Kauffman bracket skein algebra of the torus. Hence the noncommuta-
tive A-ideal is nontrivial if and only if the peripheral ideal is nontrivial. To prove
that the peripheral ideal is nontrivial consider the map r : Kt(T

2×I)→ Kt(S
3\K).

As a submodule, It(K) is the kernel of this map. If It(K) = (0) then r is an iso-
morphism onto the image.

If we add a 2-handle to the knot complement along the meridian of the knot
then the skein module of the knot complement, and hence the image of r becomes
C. If we add a 2-handle to the cylinder over the torus along the meridian, the skein
module becomes C[α], where α is the longitude, and this is an infinite dimensional
space. But Hoste and Przytycki [HP] have shown that adding a 2-handle induces
a set of local algebraic relations at the level of the skein module, and assuming r
to be an isomorphism, the same relations are introduced in Kt(T2 × I) and in its
image through r. Since adding the same relations produces different modules, r is
not an isomorphism, therefore it has a kernel. �

Proposition 9. The noncommutative A-ideal is generated by finitely many poly-
nomials with coefficients in Z[t, t−1].

Proof. The computation of generators for the peripheral ideal reduces to the re-
peated use of the Kauffman bracket skein relation in the knot complement. Hence
the peripheral ideal and thus the noncommutative A-ideal is generated by polyno-
mials with coefficients in Z[t, t−1]. The Noetherianity of the quantum plane implies
that the noncommutative A-ideal is generated by finitely many such polynomi-
als. �

Note that by using the Gauss lemma in the case t = −1 we recover the well
known fact that the A-polynomial has integer coefficients.

The theory of Kauffman bracket skein modules has been developed assuming t
to be a variable rather than a complex number. To avoid confusion we use the
notation τ instead of t for the variable (the established notation is A, which is
inappropriate here). All the consideration in the paper apply mutatis mutandins to
define a knot invariant Aτ (K) which is a finitely generated ideal in C[τ, τ−1][l,m].

Proposition 10. The ideal At(K) includes the ideal obtained from Aτ (K) by spe-
cializing τ = t. If t is transcendental this inclusion is an equality.

Proof. The skein algebra Kt(T
2 × I) is obtained from Kτ (T 2 × I) by specializing

τ = t. The image of an element from the peripheral ideal Iτ (K) through the
inclusion of the boundary torus into the knot complement becomes zero after finitely
many applications of the Kauffman bracket skein relation. Applying the same skein
relations after specializing τ = t shows that this element gives rise to an element
in It(K). This proves the inclusion.

Since finding generators for It(K) (respectively Iτ (K)) amounts to using the
Kauffman bracket skein relation finitely many times, the computation of these gen-
erators can be done assuming that the ring of coefficients is Q[t, t−1] (respectively
Q[τ, τ−1]) instead of C[t, t−1] (respectively C[t, t−1]). For a particular t assume that
the inclusion is strict. Then there exists an element γ ∈ It(K) that is not obtained
from Iτ (K) by specializing the variable. Then γ arises through the specialization
from an element in Kτ (T 2 × I) of the form γ0 + p(τ)γ1, where γ0 ∈ Iτ (K) and p is
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a Laurent polynomial divisible by τ−t. By multiplying with the appropriate power
of τ we can transform p into a polynomial still divisible by τ − t. It follows that t
is the root of a polynomial with rational coefficients, hence it is algebraic. �

The computation done in the case of the trefoil knot suggests that the above
inclusion is strict only for finitely many values of t.

4.3. Examples. 1. K is the unknot. From [FG] we get that the peripheral ideal
It(K) is generated by (1, 0) + t2 + t−2 and (1, 1) + t3(0, 1). The noncommutative
A-ideal is generated by (l + t2)(l + t−2) and lm2(l + t2) + t2(l + t−2). An easy
application of Buchberger’s Algorithm yields the minimal reduced Gröbner basis
{l2 + (t2 + t−2)l+ 1, lm2− t4l+ t6m2− t2}. (l+ t2)(l+ t−2) For t = −1, the ideal is
generated by (l + 1)2 and (m2 + 1)(l + 1). To get the classical A-polynomial take
the radical and get the ideal generated by B(−l,−m) = l+ 1. Thus B(l,m) = l−1
and A(l,m) = 1 which is what we expected to get. Note that in addition to the A-
polynomial, the A-ideal detects the embedded primes corresponding to the points
(1, i) and (1,−i).

2. K is the right-handed trefoil. It was shown in [Ge] that for t not an eighth
root of unity, the noncommutative A-ideal is generated by the polynomials

[m4(l + t10)− t−4(l + t2)](lm6 − t6),

(l + t24)(l + t10)(l + t2)(lm6 − t6),

(m2 − t−22)(l + t10)(l + t2)(lm6 − t6).

A minimal reduced Gröbner basis for this is

t20 − t32m4 + t18l − t14lm4 − t14lm6 + t18lm10 − t12l2m6 + l2m10,

−t18 − (t16 + t8)l + t12lm6 − t6l2 + (t10 + t2)l2m6 + l3m6

One should note that in this case the peripheral ideal is generated by three elements
while the noncommutative A-ideal is generated by only two.

The value t = −1 the A-ideal is generated by (l2 − 1)(l + 1)(lm6 − 1), and
(m2 − 1)(l + 1)(lm6 − 1). The radical of the one-dimensional part of the ideal
is generated by (l + 1)(lm6 − 1). After changing l to −l and m to −m we get
B(l,m) = (l − 1)(lm6 + 1), that is A(l,m) = (lm6 + 1).

3. K is the left-handed trefoil.
For t not an eighth root of unity, the noncommutative A-ideal is generated by

[m4(l + t10)− t−4(l + t2)](l − t6m6),

(l + t24)(l + t10)(l + t2)(l − t6m6),

(m2 − t−22)(l + t10)(l + t2)(l − t6m6).

A minimal reduced Gröbner basis is

t20m6 − t32m10 − t14l + t18lm4 + t18lm6 − t14lm10 − t12l2 + l2m4,

−t18m6 + t34m8 − t46m12 + t12l − t24lm2 + (t28 − t16 − t8)lm6 +

+t28lm8 − t24lm12 + (t10 + t2)l2 − t18l2m2 + l3

At t = −1 the ideal is generated by (l2 − 1)(l + 1)(l −m6)m2 and (m2 − 1)(l +
1)(l −m6). In this case one gets the classical A-polynomial A(l,m) = l +m6.
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5. Relation with the Jones polynomial

Assume in this section that t is not a root of unity. The definition and normaliza-
tion of the Jones-Wenzl idempotents will be used as in [Li]. Let Sc be the skein in
the solid torus obtained by plugging the c-th Jones-Wenzl idempotent into the core
of the solid torus. The Kauffman bracket skein module of the solid torus has the set
{Sc} as a basis. Let K̂t(S

1×D2) be the vector space of formal sums
∑
c zcSc where

the zc are complex numbers and the c range over the natural numbers starting at
0.

The double of the solid torus is S1×S2. Any skein α in S1×S2 can be represented
by a linear combination of framed links that miss 1×S2. Hence, any skein in S1×S2

can be represented as a skein in a punctured ball, and it has a Kauffman bracket. It
follows that Kt(S

1×S2) is canonically isomorphic to C. There is a pairing between
skeins in Kt(S

1 ×D2). If α, β ∈ Kt(S
1 ×D2) are represented by a single framed

link each, take the union of two copies of the solid torus, identified along their
boundaries, with the link representing α in one and the link representing β in the
other. As this yields a skein in S1 × S2 we get a complex number by taking the
Kauffman bracket as above. This can be extended bilinearly to give a pairing,

Kt(S
1 ×D2)⊗ K̂t(S

1 ×D2)→ C,

for although the sum is infinite only finitely many terms are nonzero. In this way
we identify K̂t(S

1 ×D2) with Kt(S
1 ×D2)∗.

There is a representation of the Kauffman bracket skein algebra of the cylinder
over the torus into endomorphisms of K̂t(S

1×D2). Glue the cylinder onto S1×D2

along the 0-end of the cylinder so that longitudes and meridians go to longitudes
and meridians. The matrix of a skein in the cylinder over the torus as a matrix
with respect to the basis Sc, is of bounded width. That is, there is an integer n
so that if |i − j| > n the ij-entry of the matrix is zero. This can be seen, as the
matrix induced is the adjoint of the matrix corresponding to the endomorphism of
Kt(S

1×D2) induced by gluing the 1-end of the cylinder to S1×D2. Notice that if

Ẑ ∈ K̂t(S
1 ×D2) then the annihilator of Ẑ in the Kauffman bracket skein module

of the cylinder over the torus is a left ideal.
Let K ⊂ S3 be a framed knot. Let X be the complement of an open regular

neighborhood of the knot. There is a pairing,

Kt(S
1 ×D2)⊗Kt(X)→ C,

obtained by gluing the solid torus into the knot so that the meridian of the solid
torus goes to the meridian of the knot and the blackboard longitude goes to the
framing of the knot. To pair two skeins, take their union and then take the Kauff-
man bracket in S3 of the result. By using the empty skein in X we get a linear
functional,

Z(K) : Kt(S
1 ×D2)→ C.

Let κ(K, c) be the value of Z(K) on Sc. We can then represent Z(K) by

Ẑ(K) =
∑

c

κ(K, c)σc

where {σc} is the basis dual to {Sc}. It is worth noting that the κ(K, c) are the
colored Kauffman brackets of the knot (which are a version of the colored Jones
polynomials of the knot). Indeed, the c-th coefficient of the series expansion is
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computed by plugging Sc along the core of the regular neighborhood of the knot and
evaluating in S3, that is by coloring the knot with the c-th Jones-Wenzl idempotent
and evaluating the result in the skein space of the plane.

Let Ft(K) be the annihilator of Ẑ(K) in Kt(T
2× I). This is a left ideal that we

call the formal ideal of K.

Theorem 2. The ideal It(K) lies in Ft(K).

Proof. Recall that a skein α in T 2×I is in It(K) if when you glue the 0 end of T 2×I
to X, the skein is equivalent to 0 in Kt(X). Let α ∈ It(K) and x ∈ Kt(S

1 ×K2).
Then αZ(K) is a functional on Kt(S

1 × D2) and its value on x is computed by
embedding the skein a in the knot complement by gluing the cylinder over the torus
to the knot complement, and then gluing the solid torus with the skein x in it to
the knot complement. But the skein α can be transformed into the zero skein by
skein moves taking place entirely in the complement of x, hence the value of the
functional is zero. Thus the functional itself is zero. �

If α is a skein in Kt(T
2 × I), then α has a matrix representation coming from

the action on the skein module of the solid torus, with basis {Sc}. The theorem

shows that the rows of this matrix are orthogonal to the vector Ẑ(K)
For transcendental t, is it true that It(K) = Ft(K)?
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