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Was constructed in order to give a geometric definition of the

Jones polynomial of knots.
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• G compact Lie group (the gauge group of the theory)

Examples: U(1), SU(2), SU(n), ...

• G its Lie algebra

• M a 3-manifold

• A a G-connection in M ⇥G.

• Chern-Simons Lagrangian (functional)
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G Lie group, M 3-manifold, A G-connection on M ,

L(A) =

1

4⇡

Z

M
tr(A ^ dA +

2

3

A ^ A ^ A).

W�,V (A) = traceV holonomy�(A)

Now we consider the quantum observables, which are “expectation

values” computed using Feynman integrals:
Z

W�,V (A)eihL(A)DA.

Here you average the value of the Wilson line over the infinite-

dimensional space of connections (fields) with oscillatory measure

eihL(A)DA where h is Planck’s constant.
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Unfortunately this is a QUANTUM FIELD THEORY, and math-

ematics has made little progress in this area of physics.

Fortunately Chern-Simons theory is a success story in quantum

field theory, due to its many symmetries!
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be a smooth map, viewed as a change of coordinates.

Then the connection changes by

A 7! g�1Ag + g�1dg.

Both eihL(A) and W�,V (A) are invariant under gauge transfor-

mations.

Paradigm (Witten): Quantization commutes with factorization by

changes of coordinates.

This gives rise to quantum mechanical models.
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2. ISOTOPIES

The quantized Wilson linesZ
W�,V (A)eihL(A)DA

are invariant under isotopies. They are knot invariants.

Of the isotopies, the most important is the third Reidemeister

move:

Paradigm (Reshetikhin): Chern-Simons theory can be modeled

using quantum groups.

This gives rise to rigorous models (Reshetikhin-Turaev theory).
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3. ORIENTATION PRESERVING DIFFEOMORPHISMS OF M

The quantized Wilson lines
Z

W�,V (A)eihL(A)DA

are invariant under orientation preserving di↵eomorphisms of M .

Paradigm (G.-Uribe): Chern-Simons theory is related to Weyl

quantization.

This allows us to identify combinatorial models in Chern-Simons

theory with analytical models.
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It has two coordinates: position q and momentum p. They range

freely in the phase space R2. Position and momentum are functions

on R2:

(p, q) 7! q, (p, q) 7! p.

Every other classical observable is a function of p and q. For

example the total energy of the harmonic oscillator:
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WEYL QUANTIZATION

Was introduced by Hermann Weyl in 1931.

Consider a free particle.

It has two coordinates: position q and momentum p. They range

freely in the phase space R2. Position and momentum are functions

on R2:

(p, q) 7! q, (p, q) 7! p.

The evolution of an observable is defined by Hamilton’s equation
df

dt
=

@f

@q

@H

@p
� @f

@p

@H

@q
,

H: total energy.



WEYL QUANTIZATION

Was introduced by Hermann Weyl in 1931.

Consider a free particle.

It has two coordinates: position q and momentum p. They range

freely in the phase space R2.

According to W. Heisenberg we pass from classical to quantum

mechanics by replacing

• phase space 7! Hilbert space

• functions on the phase space 7! linear operators on the Hilbert

space

Hamilton’s equation turns into Schroedinger’s equation.
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p 7! P = �i~ @
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Weyl quantization:

exp(ixq + iyp) 7! exp(ixQ + iyP )

then extend using the Fourier transform and the inverse Fourier

transform

f 7! op(f ) =

ZZ
ˆf (x, y)eixQ+iyPdxdy.
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Stone-von Neumann:

exp(iQ)f (q) = eiqf (q) and exp(iP ) = e
�i~ @

@q

are the only operators that satisfy the exponential Heisenberg un-

certainty principle:

eiPeiQ
= ei~eiQeiP .

Corollary: If you change coordinates in classical mechanics and

then quantize you get a unitary equivalent model.
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Let h 2 Sp(1). The fact that after changing coordinates you

obtain a unitary equivalent model means that there is a unitary

map ⇢(h) : L2

(R) ! L2

(R) such that

op(f � h) = ⇢(h)op(f )⇢(h)

�1.

⇢ : Sp(1) ! Lin(L2

(R)) is known as the metaplectic represen-

tation. It is defined by Fourier transforms.

This equality holds for other quantization models up to an error

in Planck’s constant.

op(f � h) = ⇢(h)op(f )⇢(h)

�1

+ O(~).

This is known as the Egorov condition satisfied exactly only for

Weyl quantization. It is this symmetry of Weyl quantization that

we related to the symmetry of Chern-Simons theory that comes

from di↵eomorphisms.
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physics, of exactly solvable models in statistical mechanics. The

term was coined by V. Drinfel’d (see also the work of M. Jimbo).
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A 2-dimensional statistical mechanics model:

can be interpreted as a 1-dimensional quantum system with nodes

being collisons (scattering of particles).
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QUANTUM GROUPS

The Bethe Ansatz is a time symmetry that makes the system

solvable

In statistical mechanics this symmetry is called the Yang-Baxter

equation.
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Quantum groups are a mathematical device that produce solvable

models. Here is the idea:

H = V
1

⌦ V
2

⌦ V
3

⌦ V
4

⌦ V
5

S : V
3

⌦ V
4

! V
4

⌦ V
3

.

The scattering matrix S is a representation homomorphism.
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The Bethe Ansatz implies that quantum groups yield knot invari-

ants (N. Reshetikhin).

This is a 1-dimensional linear map, hence a number.

Reshetikhin’s paradigm: This number isZ
W�,V (A)eihL(A)DA



Remember our goal:

G Lie group, M compact, orientable 3-manifold without bound-

ary, A G-connection on M ,

L(A) =

1

4⇡

Z

M
tr(A ^ dA +

2

3

A ^ A ^ A)

W�,V (A) = traceV holonomy�(A)

Understand:

Z
W�,V (A)eihL(A)DA
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We use Wilson lines to mimic a Hamiltonian quantum physical

model. This means that we have a Hilbert space and linear operators

acting on the Hilbert space.

The Hilbert space consists of the linear combinations of quantized

Wilson lines inside a handlebody

The linear operators are defined by the action of quantized Wilson

lines on the boundary.
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berg, this space is the moduli space of flat G-connections on the

surface that is the boundary of the handlebody.

• A.Yu. Alexeev,V. Schomerus - deformation quantization

• G.-A. Uribe - quantum mechanical model with Hilbert spaces

and linear operators.
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of flat G-connections on a surface.
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These moduli spaces have been studied by many people:

• Narasimhan and Seshadri (complex structure)

• Atiyah and Bott (symplectic form)

• Goldman (symplectic form)

They are quite complicated except when

• G = U(1), the group of rotations of the plane about a point;

• G arbitrary and the surface is a torus.

Examples for the torus:
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In these cases we can define Weyl quantization as well.

Theorem: Weyl quantization coincides with the quantum group

quantization:

• for the torus and G = SU(2) - G.-Uribe

• for any surface and G = U(1) - G.-Hamilton.

One should note that the quantum group quantization model is

well behaved under the symmetries of the surface.

Every di↵eomorphism of the surface induces a symplectomorphism

of the moduli space.

Weyl quantization is well behaved with respect to the symplecto-

morphisms of the moduli space.



The exact Egorov identity is satisfied by Weyl quantization and

the metaplectic representation:

op(f � h) = ⇢(h)op(f )⇢(h)

�1.

A similar identity is satisfied by the quantum group quantization

of the moduli space of flat G-connections on a surface and the

Reshetikhin-Turaev representation of the mapping class group of

the surface.



Paradigm: The quantum group quantization of the moduli space

of flat G-connections on a surface is the Weyl quantization of this

moduli space when Weyl quantization is defined and is a generaliza-

tion of Weyl quantization when Weyl quantization is not defined.



Paradigm: The quantum group quantization of the moduli space

of flat G-connections on a surface is the Weyl quantization of this

moduli space when Weyl quantization is defined and is a generaliza-

tion of Weyl quantization when Weyl quantization is not defined.

Weyl quantization is one of the hardest quantization models to

generalize! It is strange that it shows up in Chern-Simons theory.


