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- Understand the Witten-Reshetikhin-Turaev invariants

- Find a more geometric approach to the Jones polynomial

Starting point:

The quantization of the moduli space of flat connections on a surface
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THE PROTOTYPE:

The Weyl quantization of a 1-dimensional particle.

• the Hilbert space

• the Schrödinger representation

• the metaplectic representation
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The 1-dimensional particle.

Phase space R2 has coordinates q: position, p: momentum.
The classical observables are functions f (p,q).

Quantization: Planck’s constant h (~ = h/2π)

phase space 7→ L2(R, dq),

q 7→ Q = Mq,

p 7→ P = −i~ d

dq
.

where Mq is multiplication by q.

Heisenberg’s canonical commutation relations:

PQ−QP = −i~Id
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Weyl quantization

e2πi(pp+qq) 7→ e2πi(pP+qQ)

In general, for a function f (p,q),

f 7→ Op(f ),

where

f̂ (ξ, η) =

∫∫
f (p,q) exp(−2πipξ − 2πiqη)dxdy

and then defining

Op(f ) =

∫∫
f̂ (ξ, η) exp 2πi(ξP + ηQ)dξdη.
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The Schrödinger representation

e(pP + qQ + tId) = e2πi(pP+qQ+tId)

The cannonical commutation relations in exponential form

e(P )e(Q) = eπihe(Q)e(P ).

Heisenberg group H(R) = R× R× U(1),

(p, q, e2πit)(p′, q′, e2πit′) =
(
p + p′, q + q′, e2πi(t+t′+h

2(pq′−qp′)
)

The Schrödinger representation of H(R) on L2(R, dq) is given by

e(pP + qQ + tId)ψ(q) = e2πiqq+πihpq+2πitψ(q + p).
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The metaplectic representation

THEOREM (Stone-von Neumann) The Schrödinger representation is the
unique irreducible unitary representation of H(R) that maps e(tId) to mul-
tiplication by e2πit for all t ∈ R.

COROLLARY Linear (symplectic) changes of coordinates can be quantized.

One obtains a projective representation ρ of

SL(2,R) =

{(
a b
c d

)
| ad− bc = 1

}
on L2(R, dq). This “is” the metaplectic representation.

ρ(h) is a Fourier transform.

It is the standard Fourier transform when the symplectic map h is the 90◦

rotation.
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The exact Egorov identity

As above, ρ is the metaplectic representation, which tells us how (symplec-
tic) changes of coordinates are quantized.

The fundamental symmetry of the Weyl quantization is

Op(f ◦ h−1) = ρ(h)Op(f )ρ(h)−1,

for every observable f ∈ C∞(R2) and h ∈ SL(2,R).

Other quantization models satisfy it only up to an error in Planck’s constant:

Op(f ◦ h−1) = ρ(h)Op(f )ρ(h)−1 + O(~).

For Weyl quantization it is satisfied exactly. This is the exact Egorov iden-
tity.
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The Segal-Bargmann model

The Segal-Bargmann space, HL2(Cn, dµ~), is the space of holomorphic
functions on Cn that are L2-integrable with respect to the measure

dµ~ = (π~)−n/2e−‖ Im z‖2/~dxdy.

Based on Fock’s observation
∂

∂z
(zφ(z))− z ∂

∂z
φ(z) = φ(z).

set

Q + iP = a = Mz + 2~
∂

∂z
Q− iP = a† = Mz.

Then

e(pP + qQ + tId)ψ(q) = eπihq(p+iq)+2πiqz+2πitφ (z + h(p + iq)) .
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The abstract version of the Schrödinger representation

L: Lagrangian subspace of R2 = Rp + Rq, χL(e(l + tI)) = e2πit, l ∈ L.

• The Hilbert space H(L) consists of functions φ(u) on H(R) satisfying

φ(uu′) = χL(u′)−1φ(u) for all u′ ∈ e(L + RI)

and such that u→ |φ(u)| is a square integrable function on the left equiva-
lence classes modulo e(L + RI).

• The Schrödinger representation of the Heisenberg group is given by

u0φ(u) = φ(u−1
0 u).

• The metaplectic representation is defined as

ρ(h) : H(L)→ H(h(L))

(ρ(h)φ)(u) =

∫
e(h(L))/e(L∩h(L))

φ(uu2)χh(L)(u2)du2
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QM in Witten-Reshetikhin-Turaev theory

• G: compact simple Lie group, G: the Lie algebra of G,
• Σg: genus g closed surface,

• Planck’s constant h = 1
2r, r an integer.

The moduli space of flat G-connections on Σg:

MG
g = {A |A : G− connection on Σg}/gauge transformations

= {ρ : π1(Σg) −→ G}/conjugation

The observables are the Wilson lines

Wγ,n(A) = trV nholγ(A)
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The quantum group quantization

Associate to the gauge group its quantum group

G 7→ Uh(G).

V j, j ∈ J , finite family of irreducible representations of Uh(G) that gen-
erate a ring of representations.

Quantization:

MG
g 7→ space of non-abelian theta functions.

Non-abelian theta series of Σg can be parametrized by admissible colorings
of the core of a genus g handlebody by irreducible representations of Uh(G).
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The quantization of a Wilson line, Wγ,n(A) = trV nholγ(A) is an operator
Op(Wγ,n) whose matrix has “entries” that are Reshetikhin-Turaev invariants
of diagrams of the form:

The quantization comes with a projective representation ρ of the mapping
class group of Σg, defined by the condition

op(Wh(γ),n) = ρ(h)Op(Wγ,n)ρ(h)−1,

which is an exact Egorov identity.
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Our paradigm: There are the following analogies:

At the level of the vector space

a. L2(R)

b. non-abelian theta functions
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Our paradigm: There are the following analogies:

At the level of the vector space

a. L2(R)

b. non-abelian theta functions

At the level of quantum observables

a. The group algebra of the Heisenberg group H(R)

b. The algebra generated by quantized Wilson lines Op(Wγ,n)
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Our paradigm: There are the following analogies:

At the level of the vector space

a. L2(R)

b. non-abelian theta functions

At the level of quantum observables

a. The group algebra of the Heisenberg group H(R)

b. The algebra generated by quantized Wilson lines Op(Wγ,n)

At the level of quantized changes of coordinates

a. The metaplectic representation (by Fourier transforms)

b. The Reshetikhin-Turaev representation of the mapping class group
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Our paradigm: There are the following analogies:

At the level of the vector space

a. L2(R)

b. non-abelian theta functions

At the level of quantum observables

a. The group algebra of the Heisenberg group H(R)

b. The algebra generated by quantized Wilson lines Op(Wγ,n)

At the level of quantized changes of coordinates

a. The metaplectic representation (by Fourier transforms)

b. The Reshetikhin-Turaev representation of the mapping class group

At the level of the relation between observables and changes of coordinates

a. The exact Egorov identity

b. Handle slides
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Example 1. Classical theta functions

J.E. Andersen (2005), G.-Uribe (2009)
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The Jacobian variety

Σg: closed Riemann surface of genus g, a1, a2, . . . , ag, b1, b2, . . . , bg a canon-
ical basis forH1(Σg,R), ζ1, ζ2, . . . , ζg: holomorphic 1-forms defined by

∫
ak
ζj =

δjk, j, k = 1, 2, . . . , g.

(Π)jk =

∫
bk

ζj, j, k = 1, . . . , g,

The columns of the 2g×g matrix (Ig,Π) span a 2g-dimensional lattice L(Σg)

in Cg = R2g. The complex torus

J (Σg) = Cg/L(Σg) = H1(Σg,R)/H1(Σg,Z)

is the Jacobian variety of Σg.

19



Theta functions and their symmetries

• J (Σg) has an associated holomorphic line bundle, whose sections can be
identified with holomorphic functions on Cg satisfying certain periodicity
conditions. These are the classical theta functions (Jacobi).

• The mapping class group of Σg acts on theta functions (Hermite-Jacobi
action).

• There is an action of a finite Heisenberg group (Weil) on theta functions
which induces the Hermite-Jacobi action via a Stone-von Neumann theo-
rem.

These can be obtained by applying Weyl quantization to J (Σg).
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The Weyl quantization of the Jacobian variety

Planck’s constant h = 1
N (Weil’s integrality condition), N = 2r, r integer.

Replace:

• J (Σg) 7→ space of classical theta functions ΘN (geometric quantization)

• f ∈ C∞(J (Σg)) 7→ linear operator Op(f ) (Weyl quantization)

An orthonormal basis for ΘN consists of the theta series

θµ(z) =
∑
n∈Zg

e2πiN [12( µN+n)TΠ( µN+n)+( µN+n)T z], µ ∈ ZgN .

Op
(
e2πi(px+qy)

)
θµ(z) = e−

πi
N p·q−

2πi
N µ·qθµ+p(z), p, q ∈ Zg
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The Schrödinger representation of the finite Heisenberg group

Op
(
e2πi(px+qy+k/2)

)
= e(pP + qQ + kI), p, q ∈ Zg, k ∈ Z

Mod out by the kernel of the representation to obtain a finite Heisenberg

group, H(ZgN ), which is a Z2N -extension of Z2g
N = H1(Σg,ZN ).

The Schrödinger representation

e(pP + qQ + kI)θµ(z) = e−
πi
N p·q−

2πi
N µ·q+2πi

N kθµ+p(z).

Stone - von Neumann theorem. The Schödinger representation is the unique
irreducible unitary representation of the finite Heisenberg group with the prop-

erty that e(kI) acts as multiplication by e
πi
N k.
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The action of the modular group

An element h of the mapping class group Mod(Σg) induces a linear sym-

plectomorphism h̃ on J (Σg)

h̃ =

(
A B
C D

)
h acts on quantum observables

h · Op
(
e2πi(pTx+qTy)

)
= Op

(
e2πi[(Ap+Bq)Tx+(Cp+Dq)Ty]

)
By Stone-von Neumann there is a unique automorphism ρ(h) of the space

of theta functions satisfying the exact Egorov identity

h · Op
(
e2πi(px+qy)

)
= ρ(h)Op

(
e2πi(px+qy)

)
ρ(h)−1.

h → ρ(h): projective representation of the mapping class group (the
Hermite-Jacobi action). It is given by discrete Fourier transforms.
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The abstract version of the Schrödinger representation

Recall that the finite Heisenberg group is defined by the multiplication:

• e(pP + qQ)e(p′P + q′Q) = e
πi
N (pq′−qp′)e((p + p′)P + (q + q′)Q)

• L ⊂ H1(Σg,ZN ) arising from a Lagrangian subspace of H1(Σg,R) wrt.
to the intersection form. Define

χ : e(L + Z2NI)→ U(1), χ(l + kI) = e
ikπ
N .

The Hilbert space of the quantization, H(L), is the quotient of C[H(ZgN )]
by

u ∼ χ(u′)−1uu′, u′ ∈ e(L + Z2NI).

• The Schrödinger representation is the left action of H(ZgN ) on the quotient
H(L) of the group algebra of the Heisenberg group:

u0 · û = û0u
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The topological version of the Schrödinger representation

The multiplication rule for quantized exponentials on the torus:

e(pP + qQ)e(p′P + q′Q) = tpq
′−qp′e((p + p′)P + (q + q′)Q)

where t = e
iπ
N . The determinant is the algebraic intersection number of the

curve (p, q) of slope p/q with the curve (p′, q′) of slope p′/q′.

(1, 0) · (0, 1) = t(1, 1)
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The equivalence relation on C[H(ZgN )]

The case of the torus, with L spanned by the meridian.

u ∼ χL(u′)−1uu′, u′ ∈ e(L + RI)
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Linking number skein modules

Definition (J. Przytycki) The linking number skein module Lt(M) of the 3-
manifold M is the quotient of the free C[t, t−1]-module with basis the framed
oriented links in M by the skein relations

Definition The reduced linking number skein module L̃t(M) is obtained by

setting t = e
iπ
N and deleting any N parallel copies of a curve.
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Skein algebras

If M = Σg × [0, 1], then by gluing two copies of M along Σg we obtain a

multiplication on Lt(M) and L̃t(M).

Lt(Σg × [0, 1]): linking number skein algebra of Σg

If M has boundary, then Lt(M) is a Lt(∂M × [0, 1])-module. The module
structure is defined by gluing ∂M × [0, 1] to M along ∂M , and identifying
the result with ∂M .
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The topological version of the quantization

We have topological descriptions of the group algebra of the finite Heisen-
berg group and the Schrödinger representation:

THEOREM. The group algebra of the finite Heisenberg group C[H(ZgN )] is

isomorphic to the reduced linking number skein algebra L̃t(Σg × [0, 1]).

THEOREM. The Schrödinger representation of C[H(ZgN )] on theta functions

coincides with the action of L̃t(Σg× [0, 1]) on L̃t(Hg), where Hg is the genus
g handlebody.
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The discrete Fourier transform

THEOREM. Let h be an element of Mod(Σg). Then for a skein σ ∈ L̃t(Hg),
ρ(h)(σ) is obtained by lifting σ in all possible nonequivalent ways to the
boundary Σg, mapping those skeins by h taking the average and viewing the
result as a skein in Hg.
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The discrete Fourier transform

THEOREM. Let h be an element of Mod(Σg). Then for a skein σ ∈ L̃t(Hg),
ρ(h)(σ) is obtained by lifting σ in all possible nonequivalent ways to the
boundary Σg, mapping those skeins by h then taking the average and viewing
the result as a skein in Hg.

THEOREM. Let h be an element of Mod(Σg) defined by surgery on a framed
link Lh in Σg × [0, 1]. The discrete Fourier transform

ρ(h) : L̃t(Hg)→ L̃t(Hg)
is given by

ρ(h)β = ΩU(1)(Lh)β

where ΩU(1)(Lh) is obtained from Lh by replacing each link component by
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The exact Egorov identity as a handle-slide

The exact Egorov identity

Op
(
f ◦ h−1

)
= ρ(h)Op (f ) ρ(h)−1

can be rewritten for skeins as ρ(h)σ = h(σ)ρ(h)

The diagram on the right is the same as

which is the slide of the red curve along the blue curve.

⇒ Invariants of 3-manifolds!
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The WRT invariant

Stone-von Neumann ⇒ handle slides

We obtain the well known Witten-Reshetikhin-Turaev invariant for abelian
Chern-Simons theory:

THEOREM Let M be a 3-manifold obtained by surgery on the framed link
L in S3. Then

Z(M) = e−
πi
4 sign(L)Ω(L)

is a topological invariant of M .
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The quantum group for G = U(1)

This fits the Reshetikhin-Turaev picture. The quantum group is

C[Z2N ] = C[K]/K2N = 1

∆(K) = K ⊗K, S(K) = K2N−1, ε(K) = 1.

The irreducible representation of interest are V k, k = 0, 1, . . . , N − 1,
where V k ∼= R and K acts by

K · v = tkv.

Here t = e
πi
N .
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Example 2. Non-abelian theta functions for G = SU(2).

G.-Uribe (2003), G.-Uribe (2009)

In the Reshetikhin-Turaev picture, the quantum group Uh(sl(2,C)) is an
algebra generated by X, Y,K satisfying

KX = t2XK, KY = t−2Y K, XY − Y X = K2 −K−2

t2 − t−2 ,

Xr = Y r = 0, K4r = 1

Irreducible representations: V 1, V 2, . . ., V r−1;
V k has basis ej, j = −k0, . . . , , k0, where k0 = k−1

2 , and the quantum
group acts on it by

Xej = [k0 + j + 1]ej+1, Y ej = [k0 − j + 1]ej−1, Kej = t2jej.
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The pillow case

The moduli space of flat su(2)-connections on the torus
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The quantum group quantization for the torus

The basis of the Hilbert space

The operators
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Weyl quantization again

THEOREM The quantum group quantization and the Weyl quantization of
the moduli space of flat su(2)-connections on the torus are unitary equivalent.

As a corollary we obtain that the Weyl quantization of the pillow case can
be obtained as the left action of the skein algebra of the Jones polynomial of
the torus on the skein module of the solid torus.

THEOREM The representation of the skein algebra of the torus defined by
the Weyl quantization of the moduli space of flat su(2)-connections on the
torus is the unique irreducible representation of this algebra that maps simple

closed curves to self-adjoint operators and t to multiplication by e
πi
2r .

We thus have an exact Egorov identity, hence an element ΩSU(2) and handle
slides.
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The formulas for the Weyl quantization of the pillow case

Complex structure C/Z + τZ

θτj (z) =
∑
n

e
2πiN

[
τ
2

(
j
N+n

)2
+z
(
j
N+n

)]
, j = 0, 1, 2, . . . , N − 1.

ζτj (z) = (θτj (z)− θτ−j(z)), j = 1, 2, . . . , r − 1,

Op(2 cos 2π(px + qy))ζτj (z) = e−
πi
2rpq

(
e
πi
r qjζτj−p(z) + e−

πi
r qjζτj+p(z)

)
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