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We study compact perturbations of Fredholm n-tuples of index zero. We prove that if

the operators in such an n-tuple acting on a Hilbert space satisfy certain functional relations then

the n-tuple cannot be perturbed with compact operators to an invertible one.

The study of commuting n-tuples of operators has been initiated by J. L. Taylor in

[5] and [6]. Since then several properties of a single operator have been generalized to n-tuples. In

[2] R. Curto asked if the fact that a Fredholm operator of index zero acting on a Hilbert space can

be made invertible by adding a compact operator remains true for commuting pairs. In [3] it has

been shown that pairs of the form (T, T ) with T Fredholm and indT 6= 0 cannot be perturbed to

invertible pairs. The aim of this paper is to extend this result to n-tuples.

We shall start by reviewing some important facts about commuting n-tuples. We

consider only operators on a certain infinite dimensional Hilbert space H. Following [5] we attach

to each commuting n-tuple T = (T1, T2, · · · , Tn) a complex of Hilbert spaces (Kp(T,H), δT ), called

the Koszul complex, by defining Kp(T,H) := H
⊗

Λp, and δT : Kp(T,H) → Kp+1(T,H), δT :=

T1 ⊗ E1 + · · · + Tn ⊗ En, where Λp = Λp[e1, e2, · · · , en] are the p-forms on Cn and Eiω = eiω,

ω ∈ Λp, i = 1, 2, · · · , n.

The n-tuple T is called invertible if its Koszul complex is exact. The spectrum of

T , denoted by σ(T ), is the set of all z = (z1, z2, · · · , zn) ∈ Cn such that z − T = (z1 − T1, z2 −
T2, · · · , zn − Tn) is not invertible. In [5] it is proved that the spectrum is a compact nonvoid set.

For any holomorphic map f on an open neighborhood of σ(T ) one can define f(T ) (cf. [6]). The



spectral mapping theorem asserts that f(σ(T ) = σ(f(T )) (cf. [6]). A general overview of the

properties of the spectrum can be found in [1].

LetHp(T ), 0 ≤ p ≤ n, be the cohomology spaces of the Koszul complex. The n-tuple T

is called Fredholm if all these spaces are finite dimensional, in this case we define the index of T to be

indT =
∑n
p=0(−1)pdimHp(T ). It is known that the index is preserved under compact perturbations

(cf. [4]). Given two commuting tuples T = (T1, T2, · · · , Tn) and T ′ = (T1, T2, · · · , Tn, S) one has the

long exact sequence in cohomology

0→ H0(T ′)→ H0(T )
Ŝ0→ H0(T )→ H1(T ′)→ H1(T )→ · · ·

· · · → Hp−1(T )→ Hp(T ′)→ Hp(T )
Ŝp→ Hp(T )→ · · ·

where Ŝp is the operator induced by S ⊗ 1 : Kp(T,H) → Kp(T,H), 0 ≤ p ≤ n. We observe that

the tuple T ′ is invertible if and only if all the operators Ŝp are isomorphisms. As a consequence

of this long exact sequence if T is Fredholm then T ′ is Fredholm of index zero; this is a method

of obtaining Fredholm n-tuples of index zero. Given a subspace H of H we denote by PH the

orthogonal projection on H.

Lemma. Let T be such that for any n, dimkerT n < ∞ and dimkerT n → ∞. If

S commutes with T and the sequence dim(kerS
⋂
kerTn), n ∈ N is bounded then there exists a

sequence of nontrivial orthogonal subspaces Hn in H such that PHnS|Hn is invertible, and for every

m and n, PHnS|Hn is similar to PHmS|Hm.

Proof. Let Kn = kerTn 	 kerTn−1. Since dimkerT n → ∞, the spaces Kn are

nontrivial. Moreover, the operator

PKnT |Kn : Kn → Kn−1

is injective, therefore dimKn ≤ dimKn−1. This shows that the sequence dimKn, n ∈ N is a

decreasing sequence of natural numbers, so it becomes stationary. It follows that there exists a

number n0 such that for n ≥ n0, the operator PKn−1T |Kn is an isomorphism. Since for every n,

kerTn ⊂ kerTn+1 and the sequence dim(kerS
⋂
kerTn), n ∈ N is bounded, there exists a number

n1 > n0 such that for n ≥ n1, the operator PKnS|Kn is injective, hence invertible. Moreover,

the operator PKnT |Kn defines a similarity between PKnS|Kn and PKn+1S|Kn+1 for every n ≥ n1.

Taking Hn = Kn+n1 , n ≥ 0, we obtain a sequence of spaces with the desired property.



Theorem. Let (T1, T2, · · · , Tn) be a commuting n-tuple with T1 Fredholm and indT1

different from zero. If there exists for each k, 2 ≤ k ≤ n an analytic function of two variables fk

such that

1. fk(0, w) = 0 implies w = 0,

2. fk(T1, Tk) = Lk, Lk compact,

then the n-tuple (T1, T2, · · · , Tn) cannot be perturbed with compact operators to an invertible n-tuple.

Proof. Suppose that such compacts K1,K2, · · · ,Kn exist. Denote Si = Ti + Ki.

Then S1 is Fredholm of nonzero index, we may assume indS1 > 0. We remark that for every k,

2 ≤ k ≤ n the operator Nk = fk(S1, Sk) is compact. Consider the analytic function f : Cn → Cn,

f(z1, z2, · · · , zn) = (z1, f2(z1, z2), · · · , fn(z1, zn)). Then f−1(0) = 0, and since (S1, S2, · · ·Sn) is

invertible, from the spectral mapping theorem it follows that (S1, N2, · · · , Nn) is also invertible.

Let us show that this is not possible.

Let us consider k to be the smallest integer with the property that the sequence

dim(kerSm1
⋂
kerN2

⋂ · · ·⋂ kerNk), m ∈ N, is bounded. Such a k exists, for by the spectral

mapping theorem (Sm1 , N2, · · · , Nn) is invertible for every m, hence kerSm1
⋂
kerN2

⋂ · · ·⋂ kerNn

= 0. Consider the subspace H0 = kerN2
⋂ · · ·⋂Nk−1 (in case k = 2 take H0 = H). Since

the operators S1, N2, · · · , Nk commute, H0 is invariant for S1 and Nk. Moreover, because of the

minimality of k, the operators S1|H0 and N = Nk|H0 satisfy the hypothesis of the previous lemma.

Let Hm be the spaces obtained by applying the lemma. Since PH1N |H1 is invertible

its spectral radius r is nonzero, so because of the similarity we have ‖PHmN |Hm‖ ≥ r > 0 for every

m, which contradicts the fact that N is compact. This proves the theorem.

We remark that from the proof it follows that there is an obstruction to making the

n-tuple either left or right invertible. As a consequence of the theorem, if T is Fredholm of nonzero

index and k1, k2, · · · , kn are positive integers then the n-tuple (T k1 , T k2 , · · · , T kn) has the index

equal to zero, but cannot be perturbed with compact operators to an invertible n-tuple. The next

example will show that the obstruction to making tuples invertible can be provided by the index

of a subtuple. We still don’t know if this works in general.

Let H2(D2) be the Hardy space on the bidisk, and Tz1 and Tz2 the two shifts defined

by Tz1f(z1, z2) = z1f(z1, z2), Tz2f(z1, z2) = z2f(z1, z2) for f ∈ H2(D2). It is well known that the

pair (Tz1 , Tz2) is Fredholm of index 1. Therefore the triple (Tz1 , Tz2 , 0) is Fredholm of index zero.

Let us show that it cannot be perturbed with compact operators to a commuting invertible triple.



Suppose that there exist compact operators K1, K2 and K3 such that the triple

(Tz1 + K1, Tz2 + K2,K3) is invertible. Let S1 = Tz1 + K1 and S2 = Tz2 + K2. By theorem 3.8 in

[4] ind(Sn1 , S2) = n · ind(S1, S2) = n, which shows that dimH0(Sn1 , S2) + dimH2(Sn1 , S2) → ∞ for

n → ∞. So there is a sequence of positive integers {nk}k such that either dimH0(Snk1 , S2) → ∞
or dimH2(Snk1 , S2) → ∞. Without loss of generality we may assume that dimH0(Snk1 , S2) → ∞.

Since H0(Sn1 , S2) = kerSn1 ∩ kerS2 and kerSn1 ⊂ kerSn+1
1 we get that dim(kerSn1 ∩ kerS2) → ∞

for n → ∞. From the spectral mapping theorem it follows that (Sn1 , S2,K3) is invertible for any

positive integer n hence kerSn1 ∩ kerS2 ∩ kerK3 = 0. Therefore we can apply the lemma to the

space kerS2, and to the operators S1|kerS2 and K3|kerS2. Using the same idea as in the proof of

the theorem we contradict the compactness of K3, which proves the claim.
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