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Abstract: We prove that, for the moduli space of flat SU(2)-connections on
the 2-dimensional torus, the Weyl quantization and the quantization performed
using the quantum group of SL(2,C) are the same. This is done by comparing
the matrices of the operators associated through the two quantizations to cosine
functions. We also discuss the ∗-product of the Weyl quantization and show
that it satisfies the product-to-sum formula for noncommutative cosines on the
noncommutative torus.

1. Introduction

Quantization is a procedure for replacing functions on the phase space of a
physical system (classical observables) by linear operators. While understood
in many general situations, this procedure is far from being algorithmic. Some
more exotic spaces whose quantizations are of interest to mathematicians are
the moduli spaces of flat connections on a surface. Among them the case of
the moduli space of flat SU(2)-connections on a torus is a particularly simple
example of an algebraic variety that fails to be a manifold, yet is very close to
being one.

In this paper we compare two methods of quantizing the moduli space of flat
SU(2)-connections on the torus. The first uses the quantum group of SL(2,C).
This quantization scheme arose when Reshetikhin and Turaev constructed a
topological quantum field theory associated to the Jones polynomial of a knot.
It describes both the quantum observables and the Hilbert spaces in terms of
knots and links colored by representations of the quantum group of SL(2,C).
Heuristically, the operators of the quantization were defined by Witten using
path integrals for the Chern-Simons action.
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On the other hand, the moduli space of flat SU(2)-connections on the torus
is the same as the character variety of SU(2)-representations of its fundamental
group, so it admits a covering by the plane. Therefore one can apply a classi-
cal quantization procedure of the plane, in an equivariant manner, to obtain a
quantization of the moduli space. The first such procedure was introduced by
Hermann Weyl. It consists of a simple rule for assigning differential operators
to exponential functions, then this is extended to all smooth functions via the
inverse Fourier transform.

Our main result is the following
Theorem.The Weyl quantization and the quantum group quantization of the
moduli space of flat SU(2)-connections on the torus are unitary equivalent.

The paper is structured as follows. In Section 2 we describe the geometric re-
alization and the Kähler structure of the moduli space of flat SU(2)-connections
on the torus. In Section 3 we review Witten’s description of the quantization
for the particular case of the torus with a path integral of the Chern-Simons
action, then explain the rigorous construction of Reshetikhin and Turaev using
quantum groups. We also describe the matrices of the operators associated to
cosine functions in the basis of the Hilbert space consisting of the colorings of
the core of the solid torus by irreducible representations.

We then explain the Weyl quantization of the moduli space (Section 4). This
is done in the holomorphic setting, which can be related to the classical, real
setting through the Bargmann transform. A distinguished basis of the Hilbert
space is introduced in terms of odd theta functions. Section 5 contains the main
result of the paper (Theorem 5.3). It shows that the two quantizations are unitary
equivalent. The unitary equivalence maps the distinguished basis consisting of
odd theta functions to the basis consisting of the colored cores of the solid torus.
In Section 6 we discuss the ∗-product that arises from this quantization. We
conclude with some final remarks about the quantization scheme based on the
Kauffman bracket skein module, for which the result does not hold due to a sign
obstruction.

2. The phase space we are quantizing

Throughout the paper T2 will denote the 2-dimensional torus. The moduli space
of flat SU(2)-connections on a surface is the same as the character variety of
SU(2)-representations of the fundamental group of the surface [2], i.e. the set
of the morphisms of the fundamental group of the surface into SU(2) modulo
conjugation. This is a complex algebraic variety. In the case of the torus, mor-
phisms from π1(T2) = Z⊕ Z to SU(2) are parameterized by the images of the
two generators of Z ⊕ Z, i.e. by two commuting matrices. The two matrices
can be simultaneously diagonalized. Moreover conjugation can permute simul-
taneously the entries in the two diagonal matrices. So the moduli space of flat
SU(2)-connections on the torus can be described geometrically as

M = {(s, t) | |s| = |t| = 1}/(s, t) ∼ (s̄, t̄).

This set is called the “pillow case”. It has a 2-1 covering by the torus, with
branching points (1, 1), (1,−1), (−1, 1), (−1,−1). We will think of the moduli
space as the quotient of the complex plane by the group Λ generated by the
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translations z → z + 1 and z → z + i, and by the symmetry with respect to the
origin σ(z) = −z.

Off the four singularitiesM is a Kähler manifold, with Kähler form ω induced
by −πdz ∧ dz̄ = 2πidx ∧ dy on C. Note that

πdz ∧ dz̄ = ∂∂̄ lnh0(z, z̄),

where the Kähler potential h0(z, z̄) = e−π|z|
2

is nothing but the weight of the
Bargmann measure on the plane. Also, note that the Kähler form ω is the genus
one case of Goldman’s symplectic form defined in [11].

The classical observables are the C∞ functions on this variety. Using the
covering map we identify the algebra of observables on the character variety
with the algebra of functions on C = R ⊕ R generated by cos 2π(px + qy),
p, q ∈ Z.

Another family of important functions onM are sin 2πn(px+qy)/ sin 2π(px+
qy) where p and q are coprime. As functions of connections , these associate to
a connection the trace in the n-dimensional irreducible representation of SU(2)
of the holonomy of the connection around the curve of slope p/q on the torus.

To quantize M means to replace classical observables f by linear operators
op(f) on some Hilbert space, satisfying Dirac’s conditions:

1. op(1) = Id,
2. op({f, g}) = 1

ih̄ [op(f), op(g)] +O(h̄).

Here {f, g} is the Poisson bracket induced on M by the form ω, which is

{f, g} =
1

2πi

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
.

Also [A,B] is the commutator of operators, and h̄ is Planck’s constant.
Since in our case the phase space is an orbifold covered by the plane, and this

orbifold is Kähler off singularities, it is natural to perform equivariant quantiza-
tion of the plane. We do this using Weyl’s method and then compare the result
with the quantization from [17] which was done using the quantum group of
SL(2,C).

3. Review of the quantum group approach

The quantization of the moduli space of flat SU(2)-connections on a surface
performed using the quantum group of SL(2,C) at roots of unity is an offspring
of Reshetikhin and Turaev’s construction of quantum invariants for 3-manifolds
[17]. Their work was inspired by Witten’s heuristic explanation of the Jones
polynomial using Chern-Simons topological quantum field theory. We present
below Witten’s idea for the particular case of the torus, and then show how the
Reshetikhin-Turaev construction yields a quantization of M.

3.1. Path integrals. In [22], Witten outlined a way of quantizing the moduli
space of flat connections on a trivial principal bundle with gauge group a sim-
ply connected compact Lie group. This space is identified with the symplectic
quotient of the total space of connections under the action of the group of gauge
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transformations [2]. Let us recall how this is done when the group is SU(2) and
the principal bundle lies over the cylinder over the torus M = T2 × [0, 1].

For A an SU(2)-connection on M define the Chern-Simons Lagrangian to be

L =
1

4π

∫

M

tr(A ∧ dA+
2

3
A ∧A ∧A)

where tr is the trace on the 2-dimensional irreducible representation of su(2).
The Lagrangian is invariant under gauge transformations up to the addition of
an integer.

Now, using Witten’s idea we associate operators to the observables of the form
2 cos 2π(px+ qy) and sin 2πn(px+ qy)/ sin 2π(px+ qy) on the torus p, q, n ∈ Z.

Let N be some fixed integer called the level of the quantization. As such,
Planck’s constant is h̄ = 1

N . Assume that p and q are arbitrary integers, and let
n be their greatest common divisor. Denote p′ = p/n, q′ = q/n. Consider the
cylinder over the torus T2 × [0, 1] and let C be the curve of slope p′/q′ in T2 ×
{ 1

2}. The operator associated by the quantization to the function sin 2πn(p′x+
q′y)/ sin 2π(p′x + q′y) and denoted shortly by S(p, q) (S from sine) is integral
with kernel defined by the following path integral

< A1|S(p, q)|A2 >=

∫

MA1,A2

eiNL(A)trV n(holC(A))DA

where A1, A2 are conjugacy classes of connections on T2, A is a conjugacy
class of connections under the action of the gauge group on T2 × [0, 1] such
that A|T2×{0} = A1 and A|T2×{1} = A2, and trV n(holC(A)), known as the
Wilson line, is the trace of the n-dimensional irreducible representation of SU(2)
evaluated on the holonomy of A around C of slope p′/q′. Here the “average” is
taken over all conjugacy classes of connections modulo the gauge group.

With the same notations one defines the operator C(p, q) (C from cosine)
representing the quantization of the function 2 cos 2π(px+ qy) by

< A1|C(p, q)|A2 >=

∫

MA1,A2

eiNL(A)(trV n+1 − trV n−1)(holC(A))DA.

This is so because of the formula

2 cosnx =
sin(n+ 1)x

sinx
− sin(n− 1)x

sinx
.

We only discuss briefly the Hilbert space of the quantization assuming the
reader is familiar with [1] and [22]. Next section will make these ideas precise.
The Hilbert space is spanned by the quantum invariants (i.e. partition functions)
of all 3-manifolds with boundary equal to the torus. Since any 3-manifold can be
obtained by performing surgery on a link that lies in the solid torus, it follows
that the Hilbert space of the quantization is spanned by the partition functions
of pairs of the form (S1 ×D2, L), where L is a (colored) link in the solid torus
S1 ×D2.
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3.2. Quantization using the quantum group of SL(2,C). The quantization of
the character variety of the torus using the quantum group of SL(2,C) is a
particular consequence of the topological quantum field theory constructed in
[17]. Let us discuss its essential features.

Fix a level r ≥ 3 of the quantization, and let t = e
πi
2r . Comparing with

previous section, N = 2r. Quantized integers are defined by the formula [n] =
(t2n − t−2n)/(t2 − t−2). The quantum algebra of sl(2,C), denoted by Ut is
a deformation of its universal enveloping algebra and has generators X,Y,K
subject to the relations

KX = t2XK, KY = t−2Y K, XY − Y X =
K2 −K−2

t2 − t−2
,

Xr = Y r = 0, K4r = 1.

This algebra is Hopf, so its representations form a ring under the operations of
direct sum and tensor product. Reducing modulo summands of quantum trace
zero, this ring contains a subring generated by finitely many irreducible represen-
tations V 1, V 2, . . . , V r−1. Here V k has dimension k, basis e−(k−1)/2, e−(k−3)/2 . . . , e(k−1)/2

and the action of Ut is defined by

Xej = [m+ j + 1]ej+1

Y ej = [m− j + 1]ej−1

Kej = t2jej .

The idea originating in [15] and further developed in [17] is to color any link
in a 3-dimensional manifold by such irreducible representations. For a knot K
we denote by V n(K) its coloring by V n. Motivated by the representation theory
of Ut we extend formally the definition of the V n(K) to all integers n by the
rules V r(K) = 0, V n+2r(K) = V n(K) and V r+n(K) = −V r−n(K). Here the
negative sign means that we color the knot by V r−n, then consider the vector
with opposite sign in V (T2).

There is a rule, for which we refer the reader to [15] and [17], for associating
numerical invariants to colored links in the 3-sphere. Briefly, the idea is to use
a link diagram such as the one in Fig. 1, with the local maxima, minima and
crossings separated by horizontal lines, and then define an automorphism of C
by associating to minima maps of the form C→ V n⊗V n, to maxima maps of the
form V n ⊗ V n → C, to crossings the quasitriangular R matrix of the quantum
algebra in the n-dimensional irreducible representation, and to parallel strands
tensor products of representations. The automorphism is then the multiplication
by a constant and the link invariant is equal to that constant. For K a knot in
the 3-sphere, V 2(K) is its Jones polynomial [14] evaluated at the specific root
of unity, and for n ≥ 2, V n(K) is called the colored (or generalized) Jones
polynomial.

We are now able to describe the quantization of the torus. First consider
the vector space freely spanned by all colored links in the solid torus. On this
vector space define the pairing [·, ·] induced by the operation of gluing two solid
tori such that the meridian of the first is identified with the longitude of the
second and vice versa, as to obtain a 3-sphere (Fig. 2). The pairing of two links
[L1, L2] is equal to the quantum invariant of the resulting link in the 3-sphere.
The Hilbert space of the quantization is obtained by factoring the vector space
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Fig. 1. knot diagram

Fig. 2. Heegaard decomposition of the sphere

by all linear combinations of colored links λ such that [λ, λ′] = 0 for all λ′ in the
vector space. This quotient, denoted by V (T2) by quantum topologists, is finite
dimensional. It is the Hilbert space of the quantization.

Let α be the core S1×{0} of the solid torus S1×D, D = {z, |z| ≤ 1}. A basis
of V (T2) is given by V k(α), k = 1, 2, . . . , r−1. The inner product is determined
by requiring that this basis is orthonormal. The pairing [·, ·] is not the inner
product.

These basis elements play an important role in the construction of the Reshetikhin-
Turaev invariants of closed 3-manifolds. As suggested in [22] and rigorously done
in [17], the quantum invariant of a 3-manifold obtained by performing surgery
on a link is calculated by gluing to the complement of the link solid tori with
cori colored by irreducible representations, computing the colored link invariants
and then summing over all possible colorings.

The choice of the inner product is not accidental. The orthonormal basis
V k(α), k = 1, 2, . . . , r − 1 arises, by applying Walker’s axioms for a topo-
logical quantum field theory with corners [20], from the basis βkk of the vec-
tor space of the annulus with boundary labeled by k, with the inner product
< βkk , β

k
k >=

√∑
m[m]/[k]. This inner product on the annulus is defined using

the trace pairing for representations of Ut [8].
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Consider now two integers p and q, let n be their greatest common divisor,
and let also p′ = p/n, q′ = q/n. The operator S(p, q) associated to the classical
observable sin 2πn(p′x+q′y)/ sin 2π(p′x+q′y) is obtained by coloring the curve of
slope p′/q′ in the cylinder over the torus by the representation V n. As explained
in the previous section, the operator that quantizes 2 cos 2π(px+ qy) is

C(p, q) = C(np′, nq′) = S((n+ 1)p′, (n+ 1)nq′)− S((n− 1)p′, (n− 1)q′).

Their action on the Hilbert space of the solid torus is defined by gluing the
cylinder over the torus to the solid torus. The operator associated to an arbitrary
function in C∞(M) is defined by approximating the function with trigonometric
polynomials in cosines, quantizing those, then passing to the limit.

3.3. The matrices of observables for the quantum group quantization. In this
section we compute the matrices of the quantum group quantization of the ob-
servables cos 2π(px+ qy), p, q ∈ Z.

Theorem 1. In any level r and for any integers p, q and k the following formula
holds

C(p, q)V k(α) = t−pq
(
t2qkV k−p(α) + t−2qkV k+p(α)

)
.

Proof. The proof uses topological quantum field theory with corners. This is a
concept introduced by K. Walker which refines Atiyah’s axioms of a TQFT [1]
to allow gluings with corners. Details about this can be found in [20], [10]. The
idea of the proof is to reduce the problem to the computation of the quantum
invariant of a link complement, then construct the link complement from simple
manifolds and use Walker’s axioms to compute its invariant.

In Walker’s theory a key role is played by decompositions of the boundaries of
manifolds into disks, annuli and pairs of pants together with some curves (seams)
that keep track of twistings. These structures on the boundary are called DAP-
decompostions. At the level of the vector space they correspond to choices of
a basis. Gluings along subsurfaces (i.e. along a subset of the disks, annuli and
pairs of pants of the decomposition) yield contractions of the Hilbert space of
the quantization.

Here are some facts needed below. Let X =
√∑r−1

j=1 [j]2 (not to be confused

with the generator of Ut). The vector space of an annulus has basis βjj , j =
1, 2, . . . , r − 1, with pairing given by

< βjj , β
k
k >= δj,kX/[j].

Gluing the boundaries of an annulus we obtain a torus, with the same basis for
the vector space. The pairing on the torus will make βjj an orthonormal basis,
but we don’t need this now. The moves S and T on the torus are described in
Figure 3. The (m,n)-entry of the matrix of S is [mn]. The move T is diagonal

and its jth entry is tj
2−1.

The quantum invariant of the cylinder over a surface is the identity matrix. So

the quantum invariant of the cylinder over an annulus is
∑r−1
n=1

[n]
X βnn⊗βnn⊗βnn⊗

βnn (when taking the cylinder over the annulus the boundary of the solid torus
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1
2

12
2

1 1
2TS

Fig. 3. S and T maps

will be canonically decomposed into four annuli). If the DAP-decomposition of a
3-manifold involves two disjoint annuli, its invariant can be written in the form

r−1∑

k,j=1

βkk ⊗ βjj ⊗ vk,j .

Gluing the two annuli produces a 3-manifold that in the newly obtained DAP-
decomposition has the invariant equal to

∑r−1
k=1

X
[k]vk,k.

In the proof of the theorem we use the following formula, which can be checked
using the fact that the sum of the roots of unity is zero.

Lemma 1. Let a, b, c, d and e be integers. Then

r−1∑

x,y=1

[ax]tbx
2

[cy]([x(y + d)]t2ey + [x(y − d)]t−2ey) =

X2tbc
2+be2−2de([a(c+ e)]t2(be−d)c + [a(c− e)]t−2(be−d)c).

It suffices to check that the two sides of the equality yield the same results
when paired with all V m(α). Recalling the pairing [·, ·] on the solid torus, we
must show that

[C(p, q)V k(α), V m(α)] =
t−pq

t2 − t−2

×
(
t2(qk−pm+km) − t2(qk+pm−km) + t2(−qk+pm+km) − t2(−qk−pm−km)

)

Let d to be the greatest common divisor of p and q, p′ = p/d and q′ = q/d
We concentrate first on the computation of

[S((d+ 1)p′, (d+ 1)q′)V k(α), V m(α)] (1)

and

[S((d− 1)p′, (d− 1)q′)V k(α), V m(α)] (2)

Here is the place where we use the topological quantum field theory with corners
from [10].

The expression in (1) is the invariant of the link that has one component equal
to the (p′, q′)-curve on a torus colored by V d+1, and the other two components
the cores of the two solid tori that lie on one side and the other of the torus
knot (see Figure 4), colored by V k (the one inside) and V m (the one outside).
The expression in (2) is the invariant of the same link but with the (p′, q′)-curve
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Fig. 4. link complement

colored by V d−1. It was shown in [10] that this number is equal to X−1 times

the coordinate of βd+1
d+1d ⊗ βkk ⊗ βmm of the vector that is the quantum invariant

of the link complement.

Let us produce the complement of this link by gluing together two simple
3-manifolds, whose quantum invariants are easy to compute. Consider first the
cylinder over an annulus A and glue its ends to obtain the manifold A×S1. In the
basis of the vector space of V (T2 ×T2) determined by the DAP-decomposition
∂A×{1} the invariant of this manifold is

∑
k β

k
k ⊗βkk . Take another copy of the

same manifold. Change the decomposition curves of the exterior torus of the first
manifold to the p′/q′-curve and of the exterior torus of the second manifold to
the longitude. Of course, to do this on the second manifold we apply the S-move
and so the invariant of the second manifold changes to

1

X

∑

δ,jn+1

[djn+1]βδδ ⊗ βjn+1

jn+1
.

With the first manifold the story is more complicated. Consider the continued
fraction expansion

q′

p′
= − 1

−a1 − 1
−a2−··· 1

−an

.
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The required move on the boundary is then ST−anST−an−1S · · ·ST−a1S. So
the invariant of the first manifold in the new DAP-decomposition is

X−n−1
∑

j1,···,jn+1

[jn+1jn]t−an(j2n−1)[jnjn−1] · · · [j2j1]t−a1(j21−1)[j1k]βkk ⊗ β
jn+1

jn+1
.

Now expand one annulus in the exterior tori of each of the two manifolds.
Then glue just one annulus from the the first manifold to one annulus from the
second. This way we obtain the complement of the link in discussion. One of its
boundary tori is decomposed into two annuli. Contract one of them. Since the
gluing introduced a factor of X/[jn+1], the invariant of the manifold is

X−n−1
∑

j1,···,jn+1,δ

[δjn+1]

[jn+1]
[jn+1jn]t−an(j2n−1)[jnjn−1] · · · [j2j1]t−a1(j21−1)

×[j1k]β
jn+1

jn+1
⊗ βδδ ⊗ βkk .

At this moment we have the right 3-manifold but with the wrong DAP-decomposition.
We need to fix the DAP-decomposition of the torus that corresponds to the basis

element β
jn+1

jn+1
(the boundary of the regular neighborhood of the (p′, q′)-curve)

such as to transform the decomposition curve into the meridian of the link com-
ponent. For this we apply the move (ST−anST−an1S · · ·ST−a1S)−1. We obtain
the following expression for the invariant of the extended manifold

X−2n−2
∑

j1,...,j2n+2,δ,k,m

[mj2n+2][j2n+2j2n+1]ta1j
2
2n+1 · · · [jn+2jn+1]

[δjn+1]

[jn+1]

×[jn+1jn]t−anj
2
n [jnjn−1] · · · [j2j1]t−a1j

2
1 [j1k]βδδ ⊗ βkk ⊗ βmm

(in this formula we already reduced tak and t−ak , 1 ≤ k ≤ n).
It is important to observe that after performing the described operations the

seams came right, so no further twistings are necessary.
Now fix k and m, let δ = d±1 and focus on the coefficients of βd±1

d±1⊗βkk⊗βmm .
Multiplied by X these are the colored Jones polynomial of the link [10] with
the (p′, q′)-curve colored by the d+1-, respectively d−1-dimensional irreducible
representation of Ut. Since C(p, q) = S((d+1)p′, (d+1)dq′)−S((d−1)p′, (d−1)q′)
and also

[(d+ 1)jn+1]

[jn+1]
− [(d− 1)jn+1]

[jn+1]
= t2jn+1 + t−2jn+1 ,

we deduce that the value of [C(p, q)V k(α), V m(α)] is equal to

X−2n−1
∑

j1,...,j2n+2

[mj2n+2][j2n+2j2n+1]ta1j
2
2n+1 · · · [jn+2jn+1](t2djn+1 + t−2djn+1)

×[jn+1jn]t−anj
2
n [jnjn−1] · · · [j2j1]t−a1j

2
1 [j1k].

We want to compute these iterated Gauss sums. We apply successively Lemma
1 starting with x = jn, y = jn+1, then x = jn−1, y = jn+2 and so on to obtain
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X−2n+1
∑

j1,...,j2n+2

t−and
2

[mj2n+2][j2n+2j2n+1]ta1j
2
2n+1 · · · [jn+3jn+2]

×([jn−1(jn+2 + d)]t−2andjn+2 + [jn−1(jn+2 − d)]t2andjn+2)

×t−an−1j
2
n−1 [jn−1jn−2] · · · [j2j1]t−a1j

2
1 [j1k]

= X−2n+3
∑

j1,...,j2n+2

t−an(anan−1−1)d2

[mj2n+2][j2n+2j2n+1]ta1j
2
2n+1 · · · [jn+4jn+3]

×([jn−2(jn+3 + and)]t−2(anan−1−1)djn+3 + [jn−2(jn+3 − and)]t2(anan−1−1)djn+3)

×t−an−2j
2
n−2 [jn−2jn−3] · · · [j2j1]t−a1j

2
1 [j1k] = · · ·

= X−1
∑

j2n+1,j2n+2

t−p
′q′d2

[mj2n+2][j2n+2j2n+1]

×([kj2n+1 + kdq′]t−2dp′j2n+1 + [kj2n+1 − kdq′]t2dp
′j2n+1)

= X−1t−pq
r−1∑

j2n+1,j2n+2=1

[mj2n+2][j2n+2j2n+1]

×([kj2n+1 + kq]t−2pj2n+1 + [kj2n+1 − kq]t2pj2n+1)

This sum is equal to

t−pq([k(m+ q)]t−2mp + [k(m− q)]t2mp)

and the theorem is proved.

4. The Weyl quantization

The first general quantization scheme was introduced by Weyl in 1931. This
scheme applies to functions on R2n and postulates that the function e2πi(pxj+qyj)

corresponds to the operator e2π(pXj+qDj) where Xj is multiplication by the vari-

able xj and Dj = 1
2πi

∂
∂xj

. In general, the operator associated to a function is

a pseudo-differential operator with symbol equal to the function. Since we are
quantizing a Kähler manifold, we will convert to the complex picture using the
Bargmann transform.

Here and throughout the paper we choose for Planck’s constant h̄ = 1
N , where

N = 2r is an even integer. This is done so that Weil’s integrality condition is
satisfied, and so that the Reshetikhin-Turaev topological quantum field theory
is well defined. We would like the Hilbert space of the quantization to be the
space of square integrable holomorphic sections of a line bundle with first Chern
class equal to −Nω = −2πiNdx ∧ dy. It is finite dimensional since the phase
space is compact and the Heisenberg uncertainty principle shows that particles
occupy boxes of positive volume. It suffices to find the line bundle L for N = 1,
and then let the bundle for an arbitrary N be L⊗N .
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4.1. The line bundle. Recall that the moduli space M is obtained by factoring
the complex plane by the group Λ generated by z → z + 1, z → z + i and
z → σ(z) = −z. The line bundle on L then lifts to a trivial line bundle on the
complex plane. This shows that the line bundle L is defined by some cocycle

χ : C× Λ→ C\{0}

as the quotient C×C/ ∼ under the equivalence (z, a) ∼ (w, b) if there is λ ∈ Λ
such that (w, b) = (λz, χ(z, λ)a). We use the multiplicative notation since the
group Λ is not commutative. The cocycle condition is

χ(z, λ)χ(λz, µ) = χ(z, µλ).

Now we want the cocycle to be holomorphic off the singular points of the
character variety, as to get a holomorphic line bundle. Also we want it to be
compatible with the hermitian structure. Brian Hall suggested us to work with
a different hermitian structure than the one induced by the Bargmann measure.
This simplifies computations, and makes the relationship with theta functions

more transparent. Thus we consider the Kähler potential h(z) = e−2π|Im z|2

which still has the property that

−iπdz ∧ dz̄ = ∂∂̄ lnh(z).

Requiring the line bundle to have curvature iπdz∧dz̄ yields h(z) = |χ(z, λ)|2h(λ−1z).
To find the cocycle χ we first determine χ(z,m+ in).

Since h(z +m+ in) = exp(−4π(−inz + inz̄ + n2))h(z), it follows that

|χ(z,m+ in)| = exp 2π(−inz + inz̄ + n2).

From the fact that χ is holomorphic, it follows that

χ(z,m+ in) = expπ
(
−2inz + n2

)
· exp(iα(m,n)).

The cocycle condition yields

exp(iα(m,n) + iα(p, q)− iπ(mq − np)) = exp(iα(m+ p, n+ q)).

This shows that exp(α(m,n)−iπmn) is a morphism from Z×Z to S1. We obtain

χ(z,m+ in) = (−1)mn expπ(−2inz + n2) exp(−2πi(µm+ νn))

for some real numbers µ and ν.
Recall that σ denotes the symmetry of the complex plane with respect to

the origin. We have |χ(z, σ)| = h(z)/h(−z) = 1. Since χ is holomorphic in z it
follows that χ(z, σ) = exp(iπβ) for some β. We want to determine β.

Use the model of the torus obtained by identifying opposite sides of a square.
The action of σ maps 1

2 to − 1
2 , and the two correspond to the same point on

the character variety. So

χ

(
1

2
, σ

)
= χ

(
1

2
,−1

)
,
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and hence e2πiµ = eiπβ . This shows that µ = β/2. The same argument with
χ( 1

2 i, σ) and χ( 1
2 i,−i) shows that ν = β/2. Also

χ

(
1

2
+

1

2
i, σ

)
= χ

(
1

2
+

1

2
i,−1− i

)
= eπi[2(µ+ν)−1]

which implies that modulo 2, 2(µ+ ν)− 1 = β. Therefore β = 1.
We conclude that

χ(z, (m+ in)) = (−1)mn exp π(−2inz + n2)

χ(z, σ) = −1.

4.2. The Hilbert space of the quantization. Recall that the line bundle L corre-
sponds to the case where the Planck’s constant is equal to 1. To get the general
case with h̄ = 1/N , we consider the line bundle L⊗N . This bundle has the hermi-
tian metric defined by hN (z) = (h(z))N = exp(Nπ|Im z|2), and is given by the
cocycle χN = (χ)N . The Hilbert space of the quantization consists of the sec-
tions of the line bundle over C that are holomorphic and whose pull-backs to the
plane are square integrable with respect to the measure exp(2Nπy2)dxdy and
satisfy f(λz) = χN (z, λ)f(z), λ ∈ Λ. The Hilbert space can thus be identified
with that of holomorphic functions on the plane subject to the conditions

f(z +m+ in) = (−1)mnNeNπ(n2−2inz)f(z)

and

f(−z) = −f(z).

This is nothing but the space of odd theta functions. If we drop the second
condition, then we get the space of classical theta functions

ΘN = {f | f(z +m+ in) = eNπ(n2−2inz)f(z)}
It can be seen in [5] that the torus has other possible quantization spaces, which
arise by twisting the line bundle with flat bundles. This is not the case withM.

The Hilbert space of the quantization is

HN = {f ∈ ΘN | f(z) = −f(−z)}.
Both ΘN and HN are endowed with the inner product

< f, g >=

∫

T2

f(z)g(z)e−2Nπ|Im z|2dxdy.

To be more accurate, the integral that defines the inner product on HN
should be performed over a fundamental domain of the group Λ, however it is
more convenient to compute on the torus.

Recall that an orthogonal basis of ΘN is given by θj , j = 0, 1, . . . , 2r − 1,
where

θj(z) =
∞∑

n=−∞
e−π(Nn2+2jn)+2πiz(j+Nn).
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The formula makes sense for all j. We have θj+N (z) = eπ(N+2j)θj(z) and
θ−j(−z) = θj(z), where the second equality follows by replacing n by −n.

An orthonormal basis of HN is given by

ζj =
4

√
N

2
e−πj

2/N (θj − θ−j), j = 1, 2, . . . , r − 1.

To see why these vectors are indeed orthonormal note that

< θk − θ−k, θj − θ−j >=< θk, θj > + < θ−k, θ−j >

− < θ−k, θj > − < θk, θ−j >= δjk ‖ θj ‖2 .
Here we used the fact that the θj ’s can be shifted to have indices equal to one
of the numbers 0, 1, . . . , 2r − 1 and the latter form an orthonormal basis in the
Hilbert space associated to the torus.

Using the same formula we extend the definition of ζk for all k ∈ Z. Clearly
ζr has to be equal to zero, since

θr(z)− θ−r(z) = θr(z)− e−π(2r−2r)θr(z) = 0.

Also, for 1 ≤ k ≤ r − 1 we have

θr+k − θ−r−k = eπ(2r−2(−r+k))θ−r+k − e−π(2r+2(r−k))θr−k

= −e2rkπ(θr−k − θ−r+k).

Thus normalizing we get that ζr+k = −ζr−k. Finally, since θj+2r is a multiple of
θj it follows that ζj+2r = ζj , for all integers j.

4.3. The operators of the quantization. Each observable f : M → R yields a
sequence of operators indexed by the level N = 2r. Whenever there is no danger
of confusion we omit the index N . We relate Weyl quantization to Toeplitz
quantization and then work with Toeplitz operators, for which computations
are easier.

Let us first consider the case of the complex plane. Modulo some adjustments
to suit the notations of this paper, Propositions 2.96 and 2.97 in [7] (see also [13])
show that the operator associated by the Toeplitz quantization to a function f
on C is equal to the operator associated by the Weyl quantization to the function

σ(z, z̄) =
1

N

∫

C

e−2π|z−u|2Nf(u, ū)dudū.

Note that

σ(z, z̄) = e
∆
4N f(z, z̄)

where

∆f =
1

2π

(
∂2f

∂x2
+
∂2f

∂y2

)
.

Here we used the notation z = x+ iy, z̄ = x− iy. Hence doing Weyl quantization

with symbol f is the same as doing Toeplitz quantization with symbol e−
∆
4N f .
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Thinking equivariantly, we now define the operators of the quantization of the
character variety. Let

ΠN : L2(M,L⊗N )→ HN

be the orthogonal projection from the space of square integrable sections with

respect to the measure e−2Nπy2

dxdy onto the space HN .
To a sufficiently regular function f on the character variety we associate the

operator opN (f) (in level N) given by

opN (f) : HN → HN , g → ΠN

((
e−

∆
4N f

)
g
)
.

The operator g → ΠN (fg) is the Toeplitz operator of symbol f , denoted by Tf .
An important family of operators are the ones associated to the functions

2 cos 2π(px+qy), which we denote by C(p, q). These are the same as the Toeplitz
operators with symbols

2e−
∆
4N cos 2π(px+ qy) = 2e

p2+q2

2N π cos 2π(px+ qy).

5. Weyl quantization versus quantum group quantization

To simplify the computation, we pull back everything to the line bundle on the
torus. Hence we do the computations in ΘN . We start with two lemmas that
hold on the torus. They were inspired by [5].

Let j, k, p be integers such that −r + 1 ≤ j, k ≤ r − 1, p = p0 + γN with γ
an integer. There are two possibilities −r + 1 ≤ j + p0 < N = 2r or N = 2r ≤
j + p0 < N + 1. Let also u(y) be a bounded continuous function.

Lemma 2. Assume that j+p0 < N . Then < e2πipxu(y)θj , θk > is different from
zero if and only if k = j + p0 and in this case it is equal to

e−
π

2N p
2+(j+p0/2)2/N

∞∑

m=−∞
e−πm

2/2Ne−2πi(j+p/2)m/N û(m)

where û(m) is the mth Fourier coefficient of u.

Proof. Separating the variables we obtain

< exp(2πpx)u(y)θj , θk >=

∫

T2

exp(2πpx)u(y)θjθke
−2Nπy2

dxdy

=
∑

m,n

e−π(Nm2+2jm+Nn2+2kn)

∫ 1

0

e2πix(N(m−n)+p+j−k)dx

×
∫ 1

0

e−2πy(j+Nn+k+Nm)−2πNy2

u(y)dy.
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The first integral is equal to zero unless n = m+ γ and k = p0 + j. If k = p0 + j
the expression becomes

e−πNγ
2−2πjγ−2πp0γ

∫ 1

0

(
e−2π(Ny2+(2j+p0+Nγ)y)

×
∑

m

e−2π(Nm2+Nmγ+2m(j+ p0
2 +Ny))

)
u(y)dy.

After completing the square in the exponent of the third exponential we
obtain that this is equal to

e−
π

2N p
2+(j+p0/2)2/N

∫ 1

0

∑

m

e
−2πN

(
m+y+

j+p/2
N

)2

u(y)dy.

Using the Poisson formula (
∑
m f(m) =

∑
m f̂(m)) for the function e−x

2

we
transform the sum of the exponentials into

∑

m

e−πm
2/2Ne

2πi
(
y+

j+p/2
N

)
m
.

It follows that the inner product we are computing is equal to

e−
π

2N p
2+π(j+p0/2)2/N

∑

m

e−πm
2/2Ne2πi(j+p/2)m/N

∫ 1

0

e2πimyu(y)dy

which proves the lemma.

Lemma 3. Assume that j + p0 ≥ N and denote p1 = p − (γ + 1)N . Then
< e2πipxu(y)θj , θk > is different from zero if and only if k = j + p1 and in this
case it is equal to

e−
π

2N p
2+π(j+p1/2)2/N

∞∑

n=−∞
e−πm

2/2Ne−2πi(j+p/2)m/N û(m)

where û(m) is the mth Fourier coefficient of u.

Proof. We start with a computation like the one in the proof of Lemma 2 to
conclude that k = p0 + j −N = p1 + j and m = n− γ − 1. From here the same
considerations apply mutatis mutandis to yield the conclusion.

Theorem 2. The quantum group and the Weyl quantizations of the moduli
space of flat SU(2)-connections on the torus are unitary equivalent. The unitary
isomorphism establishing this equivalence maps the orthonormal basis V j(α),
j = 1, 2, . . . , r − 1, of V (T2) to the orthonormal basis ζj, j = 1, 2, . . . , r − 1, of
HN .
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Proof. One has to show that the matrices of the operators associated by the
two quantizations to a given function are the same. Since linear combinations
of cosines are dense in the algebra of functions on the moduli space, it suffices
to check this property for cosines. The quantum group quantization associates
to cos 2π(px + qy) the operator C(p, q), while Weyl quantization associates to
it the operator C(p, q). We verify that the matrix of the operator C(p, q) in the
basis ζj is the same as the matrix of the operator C(p, q) in the basis V j(α). We
have

C(p, q) = e
p2+q2

2N T2 cos 2π(px+qy)

where T2 cos 2π(px+qy) is the Toeplitz operator of symbol 2 cos 2π(px + qy). Let

us pull back everything to the torus using the covering map T2 → M so that
we can work with exponentials.

We do first the case j+p0 < N . If in Lemma 2 we let u(y) = e2πiqy we obtain

Te2πipx+2πiqyθj = e−
π

2N p
2+(j+p1/2)2/Ne−πq

2/2Ne−2πi(j+p/2)q/Nθj+p0
.

Using this formula and the fact that

ζj =
4

√
N

2
e−πj

2/N (θj − θ−j)

after doing the algebraic computations we arrive at

e
p2+q2

2N πT2 cos 2π(px+qy)ζj = t−pq
(
t2jqζj−p0

+ t−2jqζj+p0

)
.

If j + p0 ≥ N , we let p1 = p− (γ + 1)N , and an application of Lemma 3 shows
that in this case

e
p2+q2

2N πT2 cos 2π(px+qy)ζj = t−pq
(
t2jqζj−p1

+ t−2jqζj+p1

)
.

But we have seen that ζj+N = ζj for all j, so in the above formulas p0 and p1

can be replaced by p. It follows that for all j, 1 ≤ j ≤ r − 1, and all integers p
and q we have

e
p2+q2

2N πT2 cos 2π(px+qy)ζj = t−pq
(
t2jqζj−p + t−2jqζj+p

)
.

Theorem 1 shows that

C(p, q)V j(α) = t−pq
(
t2jqV j−p(α) + t−2jqV j+p(α)

)
.

Hence the unitary isomorphism defined by V j(α)→ ζj transforms the operator
C(p, q) into the operator C(p, q), and the theorem is proved.

From now on we identify the two quantizations and use the notation C(p, q)
for the operators. Recall the notation t = eiπ/N . As a byproduct of the proof of
the theorem we obtain the following product-to-sum formula for C(p, q)’s (see
also [9]).
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Proposition 1. For any integers m,n, p, q one has

C(m,n) ∗ C(p, q) = t|
mn
pq |C(m+ p, n+ q) + t−|

mn
pq |C(m− p, n− q),

where |mnpq | is the determinant.

We conclude this section by noting that in Witten’s picture the operator associ-
ated by Weyl quantization to the function sin 2π(n+ 1)(p′x+ q′y)/ sin 2π(p′x+
q′y) (p′, q′ relatively prime) is the same as the quantum group quantization of
the Wilson line around the curve of slope p′/q′ on the torus in the n-dimensional
irreducible representation of SU(2).

6. The star product

6.1. Definition of the star product. Let (M,ω) be a symplectic manifold. A ∗-
product on M is a binary operation on

C∞(M)[[N−1]]

which is associative, and for all f, g ∈ C∞(M) satisfies N−kf ∗ g = f ∗N−kg =
N−k(f ∗ g) and also

f ∗ g =

∞∑

k=0

N−kBk(f, g).

The operators Bk(f, g) are bi-differential operators from C∞(M) × C∞(M) to
C∞(M), such that B0(f, g) = fg, and such that Dirac’s correspondence principle

B1(f, g)−B1(g, f) = {f, g}

is satisfied. Here {f, g} stands for the Poisson bracket induced by the symplectic
form. One says that C∞(M)[[N−1]] is a deformation of C∞(M) in the direction
of the given Poisson bracket. We use N for the variable of the formal series to
be consistent with the rest of the paper.

The character variety M is a symplectic manifold off the four singularities.

Proposition 2. The formula

2 cos 2π(mx+ ny) ∗ 2 cos 2π(px+ qy)

= t|
mn
pq |2 cos 2π((m+ p)x+ (n+ q)y)

+t−|
mn
pq |2 cos 2π((m− p)x+ (n− q)y)

defines a ∗-product on C∞(M)[[N−1]], which is a deformation quantization in
the direction of the Kähler form iπdz ∧ dz̄.

In these formulas the exponentials should be expanded formally into power
series in N−1.
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Proof. We have

2 cos 2π(mx+ ny) ∗ 2 cos 2π(px+ qy)

−2 cos 2π(mx+ ny) ∗ 2 cos 2π(px+ qy) =

π(imq − inp)N−12 cos 2π((m+ p)x+ (n+ q)y)

+π(inp− imq)N−12 cos 2π((m− p)x+ (n− q)y)

−π(ipn− iqm)N−12 cos 2π((p+m)x+ (q + n)y)

−π(imq − inp)N−12 cos 2π((p−m)x+ (q − n)y) +O(N−2)

= 2πiN−1(mq − np)2 cos 2π((m+ p)x+ (n+ q)y)

−2πiN−1(mq − np)2 cos 2π((m− p)x+ (n− q)y) +O(N−2)

= N−1{2 cos 2π(mx+ ny), 2 cos 2π(px+ qy)}+O(N−2).

so the correspondence principle is satisfied. The coefficients Bk(f, g) are bidif-
ferential operators since

B1(f, g) =
1

4πi
det

∣∣∣∣∣
∂
∂x1

∂
∂y1

∂
∂x2

∂
∂y2

∣∣∣∣∣ f(x1, y1)g(x2, y2)| x1=x2=x
y1=y2=y

and Bk = Bk1/k!.

We would like to point out that this ∗-product is different from the one
that would arise if we applied the quantization methods outlined in [3] since
Berezin’s ideas correspond to the anti-normal (respectively normal) ordering of
the operators.

Thinking now of the deformation parameter as a fixed natural number we
see that the ∗-algebra defined in Proposition 6.1 is a subalgebra of Rieffel’s non-
commutative torus [18] with rational Planck’s constant. That is, our ∗-product
is the restriction of Rieffel’s ∗-product to trigonometric series in cosines.

6.2. The generalized Hardy space. In [12] Guillemin has shown that for each
compact symplectic prequantizable manifold M there exists a ∗-product and
a circle bundle S1 ↪→ P → M with a canonical volume µ such that L2(P, µ)
contains finite dimensional vector spaces HN of N -equivariant functions (mod
the action of S1) satisfying for all f, g ∈ C∞(M):

ΠNMfΠNMgΠN = ΠNM(f∗g)NΠN +O(N−∞).

where ΠN is the orthogonal projection onto HN , Mf is the multiplication by
f and (f ∗ g)N is to be understood as the ∗-product for a certain fixed integer
value of N .

Our operators are not Toeplitz so they won’t fit exactly Guillemin’s construc-
tion. However, along the same lines we will construct a representation of the ∗-
algebra from the previous section onto an infinite dimensional Hilbert space that
contains all HN ’s as direct summands. The reader can find a detailed account
on how these things are done in general in [6].

Let L be the line bundle constructed in 4.1, and let Z ⊂ L∗ be the unit circle
bundle in the dual of L. Z is an S1-principal bundle. A point in Z is a pair
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(x, φ), where x ∈ C and φ is a complex valued functional with |φ(x)| = ‖x‖ (the
length of x being given by the hermitian structure). More precisely

Z = {(z, ξ); |ξ| = e−π|z|
2/2}.

The map (z, ξ)→ (z, ξ/|ξ|) identifies Z with C×S1. Let θ be the argument of ξ
and consider the volume form dθdz on Z. Using this volume form we can define
the space L2(Z).

Now let N be an even integer. Note that

L⊗N ' Z ×N C

where Z ×N C is the quotient of Z ×C by the equivalence

(p · eiNθ, z) ∼ (p, eiNθz).

A complex valued smooth function f on Z is called N -equivariant if for all
(x, φ) ∈ Z,

f(x, φ · eiθ) = eiNθf(x, φ).

The set of all N -equivariant functions is denoted by C∞(Z)N . There exists an
isomorphism

C∞(M,L⊗N ) ' C∞(Z)N ,

which transforms a section s ∈ C∞(M,L⊗N ) to a function f , with f(z, ξ) =
ξNs(z). Here of course s has to be viewed as a C-valued function subject to the
equivariance conditions from Section 4. It is easy to see that this map gives rise
to a unitary isomorphism between the space of L2-sections of L⊗N and the L2-
completion of C∞(Z)N . A little Fourier analysis (involving integrals of the form∫
eimθe−inθdθ ) shows that for different N ’s, the images of the corresponding L2

spaces are orthogonal.
As a result, the spaces HN are embedded as mutually orthogonal subspaces

of L2(Z). Define

H =
⊕

N even
HN .

This space is the generalized version of the classical Hardy space.
We denote byΠ the orthogonal projection of L2(Z) ontoH. Let f be a smooth

function on M, which can be viewed as as the limit (in the C∞ topology) of
a sequence of trigonometric polynomials in cos(px + qy), p, q ∈ Z. Define the
operator

op(f) : H → H, g → Π
((
e−

∆
4N f

)
g
)
.

If e−
∆
4N f is a C∞ function on the character variety, this operator is bounded.

The restriction of op(f) to HN coincides with opN (f), for all N ≥ 1. Moreover,
the product-to-sum formula from Proposition 5.4 shows that the ∗-product on
C∞(M)[[N−1]] defined by the multiplication of these operators is the same as
the ∗-product introduced in Section 6.1.
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7. Final remarks

An alternative approach to the Reshetikhin-Turaev theory was constructed in
[4] using Kauffman bracket skein modules. This approach also leads to a quanti-
zation of the moduli space of flat SU(2)-connections on the torus. Do we obtain
the Weyl quantization in that situation as well? The answer is no.

Indeed, the analogues of the basis vectors V n(α) are the colorings of the core
of the solid torus by Jones-Wenzl idempotents. More precisely, to the vector
V n(α) corresponds the vector Sn−1(α), where Sn−1(α) is the coloring of α by the
n−1st Jones-Wenzl idempotent. It follows from Theorem 5.6 and the discussion
preceding it in [9] that the action of the operator associated to 2 cos 2π(px+qy),
denoted by (p, q)T , on these basis elements is

(p, q)TSn−1(α) = (−1)qt−pq(t2qkSk−p−1(α) + t−2qkSk+p−1(α)).

The factor (−1)q does not appear in the formula from Theorem 1, proving that
this quantization is different. However, both quantizations yield the same ∗-
algebra, as shown in [9].

Finally, although quantum field theory is intimately related to Wick quan-
tization, the present paper shows that this is not the case with the topological
quantum field theory of Witten, Reshetikhin and Turaev.
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