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Chapter 1

Topological Spaces and Continuous

Functions

Topology studies properties that are invariant under continuous transformations (homeomorphisms).
As such, it can be thought of as rubber-sheet geometry. It is interested in how things are connected,
but not in shape and size. The fundamental objects of topology are topological spaces and contin-
uous functions.

1.1 The topology of the real line

The Weierstrass ǫ− δ definition for the continuity of a function on the real axis

Definition. A function f : R → R is continuous if and only if for every x0 ∈ R and every ǫ > 0
there is δ > 0 such that for all x ∈ R with |x− x0| < δ, one has |f(x)− f(x0)| < ǫ.

can be rephrased by the more elegant

Definition. A function f : R → R is continuous if and only if the preimage of each open interval
is a union of open intervals

or even by the most elegant

Definition. A functions f : R → R is continuous if and only if the preimage of each union of open
intervals is a union of open intervals.

For simplicity, a union of open intervals will be called an open set. And because the complement
of an open interval consists of one or two closed intervals, we will call the complements of open sets
closed sets. Our topological space is R, and the topology on R is defined by the open sets.

Let us examine the properties of open sets. First, notice that the union of an arbitrary family
of open sets is open. This is not true for the intersection though, since for example the intersection
of all open sets centered at 0 is just {0}. However the intersection of finitely many open sets is
open, provided that the sets intersect nontrivially. Add the empty set to the topology so that the
intersection of finitely many open sets is always open. Notice also that R is open since it is the
union of all its open subintervals.

Open intervals are the building blocks of the topology. For that reason, they are said to form
a basis. If we just restrict ourselves to bounded open intervals, they form a basis as well. Each
bounded open interval is of the form (x0 − δ, x0 + δ), and as such it consists of all points that are
at distance less than δ from x0. So the distance function (metric) on R can be used for defining a
topology.
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1.2 The definitions of topological spaces and continuous maps

We will define the notions of topological space and continuous maps to cover Rn with continuous
functions on it (real analysis), spaces of functions with continuous functionals on them (functional
analysis, differential equations, mathematical physics), manifolds with continuous maps, algebraic
sets (zeros of polynomials) and regular (polynomial) maps (algebraic geometry).

Definition. A topology on a set X is a collection T of subsets of X with the following properties

(1) ∅ and X are in T ,

(2) The union of arbitrarily many sets from T is in T ,

(3) The intersection of finitely many sets from T is in T .

The sets in T are called open, their complements are called closed. Let us point out that closed
sets have the following properties: (1) X and ∅ are closed, (2) the union of finitely many closed
sets is closed, (3) the intersection of an arbitrary number of closed sets is closed.

Example 1. On Rn we define the open sets to consist of the whole space, the empty set and the
unions of open balls Bx0,δ = {x ∈ Rn | dist(x, x0) < δ}. This is the standard topology on Rn.

Example 2. Let C[a, b] be the set of real-valued continuous functions on the interval [a, b] endowed
with the distance function dist(f, g) = supx |f(x)− g(x)|. Then C[a, b] is a topological space with
the open sets being the unions of “open balls” of the form Bf,δ = {g ∈ C[a, b] | dist(f, g) < δ}.
Example 3. The Lebesgue space L2(R) of integrable functions f on R such that

∫
|f(x)|2dx <∞,

with open sets being the unions of “open balls” of the form Bf,δ = {g ∈ L2(R) |
∫
|f(x)−g(x)|2dx <

δ}.
Example 4. In Cn, let the closed sets be intersections of zeros of polynomials. That is, closed sets
are of the form

V = {z ∈ Cn | f(z) = 0 for f ∈ S}

where S is a set of n-variable polynomials. The open sets are their complements. This is called the
Zariski topology.

A particular case is that of n = 1. In that case every polynomial has finitely many zeros (maybe
no zeros at all for constant polynomials), except for the zero polynomial whose zeros are the entire
complex plane. Moreover, any finite set is the set of zeros of some polynomial. So the closed sets
are the finite sets together with C and ∅. The open sets are C, ∅, and the complements of finite
sets.

Example 5. Inspired by the Zariski topology on C, given an arbitrary infinite set X we can let Tc
be the collection of all subsets U of X such that X\U is either countable or it is all of X.

Example 6. We can cook up examples of exotic topologies, such as X = {1, 2, 3, 4}, T =
{∅, X, {1}, {2, 3}, {1, 2, 3}, {2, 3, 4}}.
Example 7. There are two silly examples of topologies of a set X. One is the discrete topology,
in which every subset of X is open and the other is the trivial topology, whose only open sets are
∅ and X.

Example 8. Here is a fascinating topological proof given in 1955 by H. Fürstenberg to Euclid’s
theorem.



1.2. THE DEFINITIONS OF TOPOLOGICAL SPACES AND CONTINUOUS MAPS 9

Theorem 1.2.1. (Euclid) There are infinitely many prime numbers.

Proof. Introduce a topology on Z, namely the smallest topology in which any set consisting of all
terms of a nonconstant arithmetic progression is open. As an example, in this topology both the
set of odd integers and the set of even integers are open. Because the intersection of two arithmetic
progressions is an arithmetic progression, the open sets of T are precisely the unions of arithmetic
progressions. In particular, any open set is either infinite or void.

If we denote

Aa,d = {. . . , a− 2d, a− d, a, a+ d, a+ 2d, . . .}, a ∈ Z, d > 0,

then Aa,d is open by hypothesis, but it is also closed because it is the complement of the open set
Aa+1,d ∪Aa+2,d ∪ . . . ∪Aa+d−1,d. Hence Z\Aa,d is open.

Now let us assume that only finitely many primes exist, say p1, p2, . . . , pn. Then

A0,p1 ∪A0,p2 ∪ . . . ∪A0,pn = Z\{−1, 1}.

This union is the complement of the open set

(Z\A0,p1) ∩ (Z\A0,p2) ∩ · · · ∩ (Z\A0,pn),

hence it is closed. The complement of this closed set, which is the set {−1, 1}, must therefore
be open. We reached a contradiction because this set is neither empty nor infinite. Hence our
assumption was false, and so there are infinitely many primes.

Given two topologies T and T ′ such that T ′ ⊂ T , one says that T is finer than T ′, or that T ′

is coarser then T .

Definition. Given a point x, if a set V contains an open set U such that x ∈ U then V is called a
neighborhood of x.

Let X and Y be topological spaces.

Definition. A map f : X → Y is continuous if for every open set U ∈ Y , the set f−1(U) is open
is X.

Example 1. This definition covers the case of continuous maps f : Rm → Rn encountered in
multivariable calculus.

Example 2. Let X = C[a, b], the topological space of continuous functions from Example 2 above,

and let Y = R. The functional φ : C[a, b] → R, φ(f) =
∫ b
a f(x)dx is continuous.

Example 3. Let X = Lp(R), Y = R and φ : X → Y , φ(f) = (
∫
p |f(x)|pdx)1/p.

Remark 1.2.1. An alternative way of phrasing the defintion is to say that for every neighborhood
W of f(x) there is a neighborhood V of x such that f(V ) ⊂W .

Proposition 1.2.1. The composition of continuous maps is continuous.

Proof. Let f : X → Y and g : Y → Z be continuous, and let us show that g ◦ f is continuous. If
U ⊂ is open, then g−1(U) is open, so f−1(g−1(U)) is open. Done.

Definition. If f : X → Y is a one-to-one and onto map between topological spaces such that both
f and f−1 are continuous, then f is called a homeomorphism.

If there is a homeomorphism between the topological spaces X and Y then from the topological
point of view they are indistinguishable.
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1.3 Procedures for constructing topological spaces

1.3.1 Basis for a topology

Rather than specifying all open sets, we can exhibit a family of open sets from which all others can
be recovered. In general, basis elements mimic the role of open intervals in the topology of the real
line.

Definition. Given a set X, a basis for a topology on X is a collection B of subsets of X such that

(1) For each x ∈ X, there is at least one basis element B containing x,

(2) If x ∈ B1 ∩ B2 with B1, B2 basis elements, then there is a basis element B3 such that
x ∈ B3 ⊂ B1 ∩B2.

Proposition 1.3.1. Let T be the collection of all subsets U of X with the property that for every
x ∈ U , there is Bx ∈ B such that x ∈ Bx ⊂ U . Then T is a topology.

Proof. (1) X and ∅ are in T trivially.
(2) If Uα ∈ T for all α, let us show that U = ∪αUα ∈ T . Given x ∈ U , there is Uα such that

x ∈ Uα. By hypothesis there is Bα ∈ B such that x ∈ Bα ⊂ Uα, and hence x ∈ Bα ⊂ U .
(3) Let us show that the intersection of two elements U1 and U2 from T is in T . For x ∈ U1∪U2

there are basis elements B1, B2 such that x ∈ Bi ⊂ Ui, i = 1, 2. Then there is a basis element B3

such that x ∈ B3 ⊂ B1 ∩ B2 ⊂ U1 ∩ U2, and so U1 ∩ U2 ∈ T . The general case of the intersection
of n sets follows by induction.

Now suppose that we are already given the topology T . How do we recognize if a basis B is
indeed a basis for this topology.

Proposition 1.3.2. Let X be a topological space with topology T . Then a family of subsets of
X, B, is a basis for T , if and only if

(1) Every element of B is open and if U ∈ T and x ∈ U , then there is B ∈ B with x ∈ B ⊂ U .

(2) If x ∈ B1 ∩ B2 with B1, B2 basis elements, then there is a basis element B3 such that
x ∈ B3 ⊂ B1 ∩B2.

In this case T equals the collection of all unions of elements in B.

Proof. Condition (2) is required by the definition of basis. Also the fact that T consists of unions
of elements of B implies that B consists of open sets. Finally, since by definition, the elements of
T are unions of elements in B, we get (1).

Example 1. The collection of all disks in the plane is a basis for the standard topology of the
plane.

Example 2. The collection of all rectangular regions in the plane that have sides parallel to the
axes of coordinates is a basis for the standard topology.

Example 3. The basis consisting of all intervals of the form (a, b] with a < b and a, b ∈ R generates
a topology called the upper limit topology. This topology is different from the standard topology,
since for example (a, b] is not open in the standard topology. Since (a, b) = ∪n(a, b − 1/n], we see
that the standard topology is coarser than the upper limit topology.
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Similarly, the sets [a, b) with a < b and a, b ∈ R form a basis for the lower limit topology.

Taking into account both unions and finite intersections, one can simplify further the generating
family for a topology. A subbasis S for a topology on X is a collection of subsets of X whose union
equals X.

Proposition 1.3.3. The set T consisting of all unions of finite intersections of elements of S and
the empty set is a topology on X.

Proof. (1) ∅, X ∈ T by hypothesis.

(2) The union of unions of finite intersections of elements in S is a union of finite intersections
of elements in S.

(3) It suffices to show that the set B of all finite intersections of elements in S is a basis
for a topology. And indeed, if B1 = S1 ∩ S2 ∩ · · · ∩ Sm and B2 = S′

1 ∩ S′
2 ∩ · · · ∩ S′

n, then
B1 ∩B2 = S1 ∩ S2 ∩ · · · ∩ S′

1 ∩ S′
2 ∩ · ∩ S′

n which is again in B. Done.

Here is a criterion that allows us to recognize at first glance bases for topologies.

Proposition 1.3.4. Let X be a topological space with topology T . Suppose that C is a collection
of open sets of X such that for each open set U ⊂ X and each x ∈ U , there is C ∈ C such that
x ∈ C ⊂ U . Then C is a basis for T .

Proof. First, we show that C is a basis. Since for every x ∈ X, there is C ∈ C such that x ∈ C ⊂ X,
it follows that X is the union of the elements of C. For the second condition, let C1, C2 ∈ C, and
x ∈ C1∩C2. Since C1∩C2 is open (both C1 and C2 are), there is C3 ∈ C such that x ∈ C3 ⊂ C1∩C2.

Let us show now that C is a basis for the topology T . First, given U ∈ T , for each x ∈ U , there
is Cx ∈ C such that x ∈ Cx ⊂ U . Then U = ∪x∈UCx. Thus all open sets belong to the topology
generated by C. On the other hand, every union of elements of C is a union of open sets in T , thus
is in T . Hence the conclusion.

Working with a basis simplifies the task of comparing topologies.

Proposition 1.3.5. Let B and B′ be bases for the topologies T respectively T ′ on X. Then T ′ is
finer than T if and only if for each x ∈ X and each B ∈ B that contains x, there is B′ ∈ B′ such
that x ∈ B′ ⊂ B.

Proof. If T ′ is finer than T , then every B ∈ B is in T ′. Hence for every x ∈ B, there is B′ ∈ B′

such that x ∈ B′ ⊂ B.

For the converse, let us show that every U ∈ T is also in T ′. For every x ∈ U , there is Bx ∈ B
such that x ∈ Bx ⊂ U , and hence there is B′

x ∈ B′ such that x ∈ B′
x ⊂ Bx ⊂ U . Then U = ∪x∈UB′

x,
showing that U ∈ T ′.

Example. The collection of all disks in the plane and the collection of all squares in the plane
generate the same topology. Indeed, for every disk, and every point in the disk there is a square
centered at that point included in the disk, and for every square and every point in the square
there is a disk centered at the point included in the square.

Using a basis makes it easier to check continuity.

Proposition 1.3.6. Let X and Y be topological spaces. Than f : X → Y is continuous if and
only if for every basis element of the topology on Y , f−1(B) is open in X.
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1.3.2 Subspaces of a topological space

One studies continuous functions on subsets of the real axis, as well, such as continuous functions
on open and closed intervals. Continuity is then rephrased by restricting open intervals to the
domain of the function, that is by intersecting open sets with the domain.

Definition. Let X be a topological space with topology T . If Y is a subset of X, then Y itself is
a topological space with the subspace topology

TY = {Y ∩ U |U ∈ T }.

Proposition 1.3.7. The set TY is a topology on Y . If B is a basis of T , then

BY = {B ∩ Y |B ∈ B}

is a basis for TY .

Proof. (1) Y = X ∩ Y and ∅ = ∅ ∩ Y are in TY .
(2) and (3) follow from

(U1 ∩ Y ) ∩ · · · ∩ (Un ∩ Y ) = (U1 ∩ U2 · · · ∩ Un) ∩ Y
∪α(Uα ∩ Y ) = (∪αUα) ∩ Y.

For the second part, let U be open in X and y ∈ U ∩ Y . Choose B ∈ B such that y ∈ B ⊂ U .
Then y ∈ B ∩ Y ⊂ U ∩ Y , and the conclusion follows.

Example 1. For [0, 1] ⊂ R, then a basis for the subspace topology consists of all the sets of the
form (a, b), [0, b), (a, 1] with a, b ∈ (0, 1).

Example 2. For Z ⊂ R, then the subset topology is the discrete topology.

Example 3. For (0, 1) ∪ {2}, then the open sets of the subset topology are all sets of either the
form U or U ∪ {2}, where U is a union of open intervals in (0, 1).
Example 4. the n-dimensional sphere

Sn = {(x0, x1, . . . , xn) ∈ Rn+1 |x20 + x21 + · · ·+ x2n = 1}

is a subspace of Rn+1.

Proposition 1.3.8. If f : X → Z is a continuous map between topological spaces and if Y ⊂ X
is a topological subspace, then the restriction f |Y : Y → Z is a continuous map.

Proof. Let U ⊂ Z be open. Then f−1(U) is open in X. But f |−1
Y (U) = f−1(U)∩ Y , which is open

in Y . Hence f is continuous.

1.3.3 The product of two topological spaces

By examining how the standard topology on R2 = R× R compares to the one on R, we can make
the following generalization

Definition. Let X and Y be topological spaces. The product topology on X × Y is the topology
having as basis the collection B of all the sets of the form U × V , where U is an open set of X and
V is an open set of Y .
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Of course, for this to work we need the following

Proposition 1.3.9. The collection B defined this way is a basis.

Proof. The first condition for the basis just states that X × Y is in B, which is obvious. For the
second condition, note that if U1 × V1 and U2 × V2 are basis elements, then

(U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2)× (V1 ∩ V2),
and the latter is a basis element because U1 ∩ U2 and V1 ∩ V2 are open.

Proposition 1.3.10. If BX is a basis for the topology on X and BY is a basis for the topology on
Y , then

B = {B1 ×B2 |B1 ∈ BX , B2 ∈ BY }
is a basis for the topology of X × Y .

Proof. We will apply the criterion from Proposition 1.3.4. Given an open set W ⊂ X × Y and
(x, y) ∈ W , by the definition of the product topology there is a basis element of the form U × V
such that (x, y) ∈ U ×V ⊂W . Then, there are B1 ∈ BX such that x ∈ B1 ⊂ U and B2 ∈ BY , such
that y ∈ B2 ⊂ V . Then (x, y) ⊂ B1 ×B2 ⊂ U × V . It follows that B meets the requirements of the
criterion, so B is a basis for X × Y .

Using an inductive construction we can extend the definition of product topology to a cartesian
product of finitely many topological spaces.

1.3.4 The product of an arbitrary number of topological spaces

There are two ways in which the definition of product topology can be extended to an infinite
product of topological spaces, the box topology and what we will call the product topology. Let
Xα, α ∈ A be a family of topological spaces.

Definition. The box topology is the topology on
∏
αXα with basis all sets of the form

∏
α Uα with

Uα open in Xα, for all α ∈ A.

Definition. The product topology is the topology on
∏
αXα with basis all sets of the form

∏
α Uα,

with Uα open in Xα and Uα = Xα for all but finitely many α ∈ A.

Notice that the second topology is coarser than the first. At first glance, the box topology seems
to be the right choice, but unfortunately it is to fine to be of any use in applications. In the case
of normed spaces, the second topology becomes the weak topology, which is quite useful (e.g. in
the theory of differential equations). In fact, the next result is a good reason for picking this as the
right topology on the product space.

Proposition 1.3.11. Let Xα, α ∈ A and Y be topological spaces. Then f : Y → ∏
αXα is

continuous if and only if the coordinate functions fα : Y → Xα are all continuous.

Proof. Assume first that for each α, fα is continuous. Let B be a basis element for the topology of
X, say B =

∏
α∈A0

Uα×
∏
α 6∈A0

Xα, where A0 is finite and Uα are open. Then f−1(B) = ∩αf−1
α (Uα).

But there are finitely many Uα’s! It follows that

f−1(B) = ∩αf−1
α (Uα)

which is open, being an intersection of finitely many open sets.
For the converse, notice that the projection maps πα :

∏
αXα are continuous because of the way

the topology was defined, and that fα = πα ◦ f . By Proposition 1.2.1, fα is continuous. QED.
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Lemma 1.3.1. The addition, subtraction, and multiplication operations are continuous functions
from R× R into R; and the quotient operation is continuous from R× (R\{0}) into R.

Proposition 1.3.12. If X is a topological space and f, g : X → R are continuous functions, then
f + g, f − g and f · g are continuous. If g(x) 6= 0 for all x, then f/g is continuous.

Proof. Let µ : R× R → R be one of the (continuous) operations from Lemma 1.3.1. The function
φ : X → R×R, φ(x) = (f(x), g(x)) is continuous by Proposition 1.3.11. The conclusion follows by
taking the composition µ ◦ φ.

1.3.5 The disjoint union of two topological spaces.

Definition. Given a family Xα of topological spaces, α ∈ A, the topological space ∐αXα is the
disjoint union of the spaces Xα endowed with the topology in which U is open if and only if U ∩Xα

is open for all α.

Example 1. If X is any topological space, then ∐x∈X{x} equals X as a set, but it is now endowed
with the discrete topology.

Proposition 1.3.13. If Xα, α ∈ A, Y are topological spaces then f : ∐αXα → Y is continuous if
and only if f |Xα is continuous for each α.

1.3.6 Metric spaces as topological spaces

Metric spaces are examples of topological spaces that are widely used in areas such as geometry,
real analysis, or functional analysis.

Definition. A metric (distance) on a set X is a function

d : X ×X → R

satisfying the following properties

(1) d(x, y) ≥ 0 for all x, y ∈ X, with equality if and only if x = y.

(2) d(x, y) = d(y, x) for all x, y ∈ X.

(3) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

For ǫ > 0, set

B(x, ǫ) = {y | d(x, y) < ǫ}.

This is called the ǫ-ball centered at x.

Proposition 1.3.14. If d is a metric on a set X, then the collection of all balls B(x, ǫ) for x ∈ X
and ǫ > 0 is a basis for a topology on X.

Proof. The first condition for a basis is trivial, since each point lies in a ball centered at that point.
For the second condition, let B(x1, ǫ1) and B(x2, ǫ2) be balls that intersect, and let x be a point in
their intersection. Choose

ǫ < min(ǫ1 − d(x, x1), ǫ2 − d(x, x2)).



1.3. PROCEDURES FOR CONSTRUCTING TOPOLOGICAL SPACES 15

Then the triangle inequality implies that if y ∈ B(x, ǫ), then

d(y, xi) < d(y, x) + d(x, xi) < ǫi − d(x, xi) + d(x, xi) < ǫi, i = 1, 2.

Hence y lies in both balls. This shows that B(x, ǫ) ⊂ B(x1, ǫ1) ∩ B(x2, ǫ2), and the condition is
satisfied.

Definition. The topology with basis all balls in X is called the metric topology.

Remark 1.3.1. Every open set U is of the form ∪x∈UB(x, ǫx).

Example 1. If X is a metric space with distance function d and A ⊂ X, then A is a metric space
with the same distance.

Example 2. The standard topology of Rn induced by the Euclidean metric.

Example 3. Given a set X, define

d(x, y) = 1, if x 6= y

d(x, y) = 0, if x = y.

Then d is a metric which induces the discrete topology.

Example 4. On Rn define the metric

ρ(x,y) = max(|x1 − y1|, |x2 − y2|, . . . , |xn − yn|)

Then this is a metric that induces the standard topology on Rn.

The fact that ρ is a metric is easy to check. Just the triangle inequality poses some difficulty,
and here is the proof:

|xi − zi| ≤ |xi − yi|+ |yi − zi|, for all i.

Thus

|xi − zi| ≤ ρ(x,y) + ρ(y, z).

Taking the maximum over all i on the left yields the triangle inequality.

The fact that the metric ρ defined above induces the same metric is a corollary of the following
result.

Lemma 1.3.2. Let d and d′ be two metrics on X inducing the topologies T respectively T ′. Then
T ′ is finer than T if and only if for each x ∈ X and each ǫ > 0 there is δ > 0 such that

Bd′(x, δ) ⊂ Bd(x, ǫ).

Proof. Indeed, if T ′ is finer than T , then any ball in T is the union of balls in T ′, and, by eventually
shrinking the radius, we can make sure that such a ball is centered at any desired point.

Conversely, suppose the ǫ − δ condition holds. Let U be open in T and x ∈ U . Choose
Bd(x, ǫ) ⊂ U . Then there is Bd′(x, δ) ⊂ Bd(x, ǫ) ⊂ U . This shows that U is open in T ′, as
desired.
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Example 5. Let A be an index set and consider X =
∏
a∈AR. Define the metric

ρ(x,y) = sup
α∈A

(|xα, yα|).

This is called the uniform metric on X. Note that X is in fact the set of all functions on A. If
A = [a, b], then C[a, b], the space of all continuous functions on [a, b], is a subset of the set of all
functions, hence it is a metric space with the uniform metric.

Definition. Let X be a metric space with metric d. A subset A of X is said to be bounded if there
is some x ∈ X and M > 0 such that A ⊂ B(x,M).

An equivalent way of saying this is that the distances between points in A are bounded.

Proposition 1.3.15. Let X be a metric space with metric d. Define d̄ : X ×X → R by

d̄(x, y) = min(d(x, y), 1).

Then d̄ is a metric that induces the same topology as d.

Proof. The first two conditions for a metric are trivially satisfied. For the triangle inequality,

d̄(x, z) ≤ d̄(x, y) + d̄(y, z),

note that if any of the distances on the right are 1 the inequality is obvious since d̄(x, y) ≤ 1. If all
three distances are less than 1, then the inequality follows from that for d. If only the distance on
the left is 1, then we have

d̄(x, z) ≤ d(x, z) ≤ d(x, y) + d(y, z) = d̄(x, y) + d̄(y, z).

To show that the two metrics generate the same topology, note that open sets can be defined using
only small balls, namely balls of radius less than 1.

Theorem 1.3.1. Let X and Y be metric spaces with metrics dX and dY . Then f : X → Y is
continuous if and only if for every x0 ∈ X and every ǫ > 0 there is δ > 0 such that dX(x0, x) < δ
implies dY (f(x0), f(x)) < ǫ.

Proof. An open set in Y is a unions of balls B(y, ǫ) over all y ∈ Y . The condition from the statement
is equivalent to the fact that the preimage of any open set is a union of balls in X, which is the
same as saying that the preimage of any open set is open.

For metric spaces there is a stronger notion of continuity.

Definition. Given the metric spaces X and Y , a function f : X → Y is uniformly continuous if for
every ǫ > 0 there is δ > 0 such that if x1, x2 ∈ X with dX(x1, x2) < δ then dY (f(x1), f(x2)) < ǫ.

1.3.7 Quotient spaces

Definition. Let X be a topological space and p : X → Y be a surjective map. The quotient
topology on Y is defined by the condition that U in Y is open if and only if p−1(U) is open in X.

Proposition 1.3.16. The above definition gives rise to a topology on Y .
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Proof. (1) ∅ and Y are clearly open.
(2) If Uα are open sets in Y , then

p−1(∪Uα) = ∪p−1(Uα)

which is open in X.
(3) If U1, U2, . . . , Un are open in Y then

p−1(U1 ∩ U2 ∩ . . . ∩ Un) = p−1(U1) ∩ p−1(U2) ∩ . . . ∩ p−1(Un)

which is open in X.

Definition. Let X be a topological space, and let X∗ be a partition of X into disjoint subsets
whose union is X. Let p : X → X∗ be the surjective map that carries each of the points of X to
the element of X∗ containing it. In the quotient topology induced by p, the space X∗ is called the
quotient space of X.

Example 1. The circle.
Let f : R → C, f(x) = exp(2πix). The image of f is the circle

S1 = {z ∈ C | |z| = 1}.
The quotient topology makes S1 into a topological space.

Example 2. The 2-dimensional torus.
Consider the square [0, 1] × [0, 1] with the subspace topology, and define on it the equivalence

relation

(x1, 0) ∼ (x1, 1)

(0, x2) ∼ (1, x2).

The quotient space is the 2-dimensional torus. This space is homeomorphic to S1 × S1.

Example 3. The 2-dimensional projective plane.
In projective geometry there is a viewpoint O in the space and all planes not passing through

O are identified by the rays that pass through O. In coordinates,

RP 2 = (R3\{0})/ ∼
where x ∼ y if there is λ 6= 0 such that x = λy.

Equivalently, RP 2 is the quotient of the sphere

S2 = {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1}
obtained by identifying antipodes ((x, y, z) ∼ (−x,−y,−z)). Even simpler, it is the quotient of the
upper hemisphere

S2
+ = {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1, z ≥ 0}

obtained by identifying diametrically opposite points on the circle z = 0 (this circle is the line at
infinity).

Example 4. On [0, 1]∪ [2, 3] introduce the equivalence relation 0 ∼ 1 ∼ 2 ∼ 3. The quotient space
is the figure eight.
Example 5. Let X be a topological space. The suspension ΣX is defined as the quotient X ×
[−1, 1]/ ∼, where the equivalence relation is the following
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• for λ 6= −1, 1, (x, λ) ∼ (y, µ) if and only if x = y, λ = µ;

• (x, 1) ∼ (y, 1) for all x, y;

• (x,−1) ∼ (y,−1) for all x, y.

1.3.8 Manifolds

The first three examples from the previous section are particular cases of manifolds. Manifolds are
a special type of quotient spaces, obtained by patching together open sets in Rn, for some positive
integer n.

Definition. A topological space M is an n-dimensional real manifold if there is a family of subsets
Uα, α ∈ A, of Rn and a quotient map f : ∐αUα → M such that f |Uα is a homeomorphism onto
the image for all α.

The n-dimensional manifolds over complex numbers are defined in the same way by replacing
Rn by Cn. It is customary to denote the maps f |Uα by fα. The maps fα : Uα → M are called
coordinate charts. By requiring the maps f−1

β ◦ fα (where they are defined) to be smooth or
analytical, one obtains the notions of smooth manifolds or of analytical manifolds. If the maps are
complex analytical (i.e. holomorphic) then the manifold is called complex.

Example 1. The circle.
Let U1 = (0, 2π), U2 = (−π, π), U1, U2 ⊂ R. The quotient map

f : U1 ∐ U2 → S1,

f(x) = exp(ix) determines a 1-dimensional real manifold structure on S1.

Example 2. The 2-dimensional torus.
Consider the family of (a, a+ 1)× (b, b+ 1), a, b ∈ 1

2Z. The map

f : ∪a,b(a, a+ 1)× (b, b+ 1) → S1 × S1,

f(x1, x2) = (exp(ix1), exp(ix2)) induces a manifold structure on the torus.

Example 3. The real projective space

RPn = Rn+1/ ∼

where x ∼ y if there is a real number λ 6= 0 such that x = λy. What are the coordinate charts?

Example 4. The complex projective space

CPn = Cn+1/ ∼

where z ∼ w if there is a complex number λ 6= 0 such that z = λw.

Example 5. If M1 and M2 are manifolds of dimension n1 and n2, then M1 ×M2 is a manifold
of dimension n1 + n2. If f1 : ∐αUα → M1 and f2 : ∐βVβ → M2 are the maps that define M1

respectively M2, then f : ∐αUα × ∐βUβ → M1 × M2, f(x, y) = (f1(x), f2(y)) is the map that
defines the manifold structure on the product.

As such, the n-dimensional torus (S1)n is an n-dimensional manifold.

Example 6. The figure eight is not a manifold. This is not easy to prove, the proof requires
examining the number of connected components obtained by removing the “crossing point” from
a small open set containing it.



Chapter 2

Closed sets, connected and compact

spaces

2.1 Closed sets and related notions

2.1.1 Closed sets

The natural generalization of a closed interval is that of a closed set.

Definition. A subset A of a topological space X is said to be closed if the set X\A is open.

Example 1. In the standard topology on R, each singleton {x}, x ∈ R is closed.

Example 2. The Cantor set.

C = [0, 1]\ ∪∞
n=1 ∪3n−1−1

k=0

(
3k + 1

3n
,
3k + 2

3n

)
.

Alternatively, the Cantor set consists of all numbers in [0, 1] that allow a ternary expansion with
only the digits 0 and 2 (note that 1 = .2222..., so it is in the Cantor set.)

Example 3. The Sierpinski triangle (Figure 2.1). It is obtained by starting with the set T
consisting of an equilateral triangle together with its interior. Divide T into four congruent triangles,
then remove the interior of the triangle in the middle. Repeat this operation with each of the three
other equilateral triangle, and then continue forever.

Figure 2.1:

Example 4. In the discrete topology every set is both closed and open.

Example 5. In the topology on Q induced by the standard topology on R, every set of the form
(a, b) ∩Q, with a, b irrational is both open and closed.

19
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Example 6. In the standard topology on Rn, each set of the form

B(x, ǫ) = {y ∈ R | d(x,y) ≤ ǫ}
is closed.

Example 7. In the Zariski topology the closed sets are the algebraic sets (called by some algebraic
varieties), which are the sets of solutions of a system of polynomial equations.

As a corollary of de Morgan’s laws, we obtain the following result.

Proposition 2.1.1. In a topological space X, the following are true:

(1) X and ∅ are closed.

(2) Arbitrary intersections of closed sets are closed.

(3) Finite unions of closed sets are closed.

The notion of a closed set is well behaved with respect to taking subspaces and products of
topological spaces.

Proposition 2.1.2. (1) If Y is a subspace of X then A ⊂ Y is closed if and only if A = B ∩ Y
with B a closed subset of X.
(2) Let Y be a subspace of X. If A is closed in Y and Y is closed in X, then A is closed in X.
(3) If A is closed in X and B is closed in Y , then A×B is closed in X × Y .
(4) If Aα, α ∈ A are closed, then

∏
αAα is closed in the product topology.

Proof. (1) If B is closed in X, then X\B is open. Thus A = B ∩ Y is the complement of the open
set (X\B) ∩ Y , and hence is closed.

For the converse, if A is closed then Y \A is open, thus there is an open set U in X such that
U ∩ Y = Y \A. Then B = X\U is closed and A = B ∩ Y , as desired.

(2) If A is closed in Y , then Y \A is open in Y , so there is an open U ⊂ X such that Y \A = Y ∩U .
Then

X\A = U ∪ (X\Y )

which is a union of open sets, so it is open. Consequently A is closed in X.
(3) This follows from

(X × Y )\(A×B) = X × (Y \B) ∪ (X\A)× Y.

(4) We have
∏

α

Aα = ∩αAα ×
∏

β 6=α

Aβ .

By (3) each of the sets Aα ∩∏β 6=αAβ is closed, so their intersection is also closed.

Also, we have the following “alternative definition” of continuity.

Proposition 2.1.3. Let X and Y be topological spaces. Then f : X → Y is continuous if and
only if the preimage of every closed set is closed.

Proof. Since

f−1(Y \A) = X\f−1(A)

the condition from the statement is equivalent to the fact that the preimage of every open set is
open.
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2.1.2 Closure and interior of a set

Definition. Given a subset A of a topological space X, the interior of A, denoted by Int(A), is
the union of all open sets contained in A and the closure of A, denoted by A, is the intersection
of all closed sets containing A.

Because arbitrary unions of open sets are open, the interior of a set is open; it is the largest
open set contained in the set. Also, because arbitrary intersections of closed sets are closed, the
closure of a set is closed; it is the smallest closed set containing the given set. We have

Int(A) ⊂ A ⊂ A.

Note also that A is closed if and only if A = A and A is open if and only if Int(A) = A.

Lemma 2.1.1. For every set A ⊂ X,

X\A = X\Int(A).
Proof. We have X\A ⊂ X\Int(A), so X\A ⊂ X\Int(A). For the converse inclusion, note that
X\X\A ⊂ A, and because it is open, we have X\X\A ⊂ Int(A). Hence X\Int(A) ⊂ X\A.

Example 1. For Q ⊂ R with the subset topology we have Int(Q) = ∅ and Q = R.

Example 2. The closure of an open ball in Rn is the closed ball with the same center and radius.
The interior of a closed ball in Rn is the open ball with the same center and radius.

Definition. A subset A of a topological space X is called dense if A = X.

Example. The set of polynomials is dense in the space of continuous functions with the sup norm
(this is the content of the Stone-Weierstrass Theorem).

Theorem 2.1.1. Let A be a subset of a topological space X. Then x is in A if and only if every
open set U containing x intersects A. Moreover, it suffices for the condition to be verified only for
basis elements containing x.

Proof. Note that indeed, the two conditions are equivalent because for every open set U containing
x, there is a basis element B such that x ∈ B ⊂ U .

For the direct implication, we use Lemma 2.1.1 for X\A:
A = X\Int(X\A).

Let x ∈ X and assume there is U ⊂ X\A open, such that x ∈ U . Then U ⊂ Int(X\A), which
shows that x ∈ Int(X\A). This implies that x 6∈ X\(X\A) = A.

Conversely, assume that every open set that contains x intersects A. Then Int(X\A) does not
contain x, so x ∈ X\Int(X\A) = A.

So x is in A if and only if every neighborhood of x intersects A. Let us see now how the closure
behaves under passing to a subspace and under products.

Proposition 2.1.4. (1) Let Y be a subspace of X and A a subset of Y . Let AX denote the closure
of A in X. Then the closure of A in Y equals AX ∩ Y .
(2) Let Y be a closed subspace of X, and A a subset of Y . Then the closure of A in X and Y is
the same.
(3) Let (Xα), α ∈ A, be a family of topological spaces, and let Aα ⊂ Xα, α ∈ A. If we endow∏
Xα with either the product or the box topology, then

∏
Aα =

∏
Aα.
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Proof. (1) Let AY be the closure of A in Y . The set AX is closed in X, so AX ∩ Y is closed in
Y . This means that AX ∩ Y contains AY . On the other hand, by Theorem 2.1.1, every point
x ∈ AX ∩ Y has the property that every open set U ⊂ X intersects A. It follows that U ∩ Y
intersects A as well, so x ∈ AY by Theorem 2.1.1.

(2) As seen above, AY ⊂ AX . Also, AY is closed in X by Proposition 2.1.2. Hence AY ⊃ AX .
Consequently AX = AY .

(3) We prove the equality by double inclusion. Let x = (xα) be a point in
∏
Aα. Let U =

∏
Uα

be a basis element in either topology that contains x. Then Uα ∩ Aα is nonempty (when we have
the product topology all but finitely many of the Uα’s coincide with Xα’s. If yα, α ∈ A are points
in the intersections, then U ∩∏Aα contains (yα). By Theorem 2.1.1, x ∈∏Aα.

Conversely, let x = (xα) be a point in
∏
Aα. For a given Aα0

, and an open set Uα0
containing

xα, the set

U = Uα0
×
∏

α 6=α0

Xα

intersects
∏
Aα. Then Uα0

must intersect Aα0
, so xα0

∈ Aα0
. This proves the other inclusion.

Regarding the properties of the interior, it is not true that if Y is a subspace of X and A ⊂ Y
then the interior of A in Y is the intersection with Y of the interior of A in X; the interior of A
in Y might be larger. Nor is it true that, for infinitely many spaces, the product of the interiors is
the interior of the product in the product topology. We only have

Proposition 2.1.5. If Xα, α ∈ A, are topological spaces and Aα ⊂ Xα, then
∏

Int(Aα) equals
the interior of

∏
Aα in the box topology.

Proof. Since
∏

Int(Aα) is open in the box topology, it is included in Int(
∏
αAα). If x 6∈∏ Int(Aα),

for each α there is Uα such that xα ∈ Uα and Uα ∩ (Xα\Aα) 6= ∅. Consequently, the open set
∏
Uα

contains x, and so by Theorem 2.1.1, x ∈∏Xα\Aα. Hence x 6∈ Int(
∏
Aα).

As a corollary, for finitely many spaces, the product of the interiors is the interior of the product
in the product topology.

There is a characterization of continuity using closures of sets.

Proposition 2.1.6. Let X,Y be topological spaces. Then f : X → Y is continuous if and only if
for every subset A of X, one has

f(A) ⊂ f(A).

Proof. Assume that f is continuous and let A be a subset of X. Let also x ∈ A. For an open set U
in Y containing f(x), f−1(U) is open in X, so by Theorem 2.1.1 it intersects A. Hence U intersects
f(A), showing that f(x) ∈ f(A).

Conversely, let us assume that f(A) ⊂ f(A) for all subsets A ofX, and show that f is continuous.
We will use Proposition 2.1.3. Let B be closed in Y and A = f−1(B). We wish to prove that A is
closed in X, namely that A = A. We have

f(A) ⊂ f(A) = B = B = f(A).

Hence the conclusion.
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2.1.3 Limit points

Definition. Let X be a topological space, A a subset, and x ∈ X. Then x is said to be a limit
point (or accumulation point) of A if every open set containing x intersects A in some point other
than x itself.

This means that x is a limit point of A if and only if every neighborhood of x contains a point
in A which is not x. Said differently, x is a limit point of A if it belongs to the closure of A\{x}.
The set of all limit points of a set A is denoted by A′.

Example 1. If A = {1/n |n = 1, 2, 3, . . .}, then A′ = {0}.
Example 2. If A = (0, 1) ⊂ R, in the standard topology, then A′ = [0, 1].

Example 3. If C is the Cantor set (see §2.1.1) then C ′ = C (prove it).

Example 4. For Z ⊂ R, Z′ = ∅.

Proposition 2.1.7. Let A be a subset of a topological space X. Then

A = A ∪A′.

Proof. A point x is in A if and only if every open set U containing x intersects A. If for some x
that intersection is x itself, then x ∈ A. Otherwise x ∈ A′ by definition.

Corollary 2.1.1. A subset of a topological space is closed if and only if it contains all its limit
points.

For metric spaces, limit points can be characterized using convergent sequences.

Definition. In an arbitrary topological space, one says that a sequence (xn)n of points in X
converges to a point x ∈ X provided that, corresponding to each neighborhood V of x, there is a
positive integer N such that xn ∈ V for all n ≥ N . The point x is called the limit of xn.

The notion of convergence can be badly behaved in arbitrary topological spaces, for example in
the trivial topology any sequence converges to all points in the space. In the Zariski topology on
C, all sequences that do not contain constant subsequences converge to all points in C. In metric
spaces however, we have the following result.

Proposition 2.1.8. Given a metric space X with metric d, if a sequence (xn)n converges, then its
limit is unique.

Proof. Assume that (xn)n converges to both x and y, x 6= y. Then for every ǫ, all terms of the
sequence but finitely many lie in both B(x, ǫ) and B(y, ǫ). But for ǫ < d(x, y)/2, this is impossible,
since the balls do not intersect. Hence (xn)n can have at most one limit.

In metric spaces the closure and the limit points of a set can be described in terms of convergent
sequences.

Lemma 2.1.2. (The sequence lemma) Let X be a metric space and A a subset of X.

(1) A point x is in A if and only if there is a sequence of points in A that converges to x.

(2) A point x is in A′ if and only if there is a sequence of points in A converging to x that does
not eventually become constant.
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Proof. Using Proposition 2.1.7 we see that (2) implies (1) since if x ∈ A we can use the constant
sequence xn = x, n ≥ 1.

To prove (2), assume first that x ∈ A′. Then for every ǫ, there is a point y 6= x in A such that
y ∈ B(x, ǫ). Start with ǫ = 1 and let x1 be such a point. Consider the ball B(x, d(x, x1)/2) and let
x2 6= x be a point of A that lies in this ball. Choose x3 ∈ B(x, d(x, x2)/2) in the same fashion, and
repeat to obtain the sequence x1, x2, . . . , xn, . . ., whose terms are all distinct.

Because d(x, xn) → 0, and because for every neighborhood V of x there is an ǫ such that
B(x, ǫ) ⊂ V , it follows that all but finitely many terms of the sequence are in V . Hence (xn)n is a
sequence of points in A converging to x that does not eventually become constant.

Conversely, assume that there is a sequence (xn)n of points in A convering to x that does not
eventually become constant. Given an arbitrary neighborhood V of x, there are infinitely many
terms of the sequence in that neighborhood, and infinitely many of those must be different from x.
So x ∈ A′ by definition.

In fact one of the implications in (1) is true in topological spaces, namely if there is a sequence
(xn)n of points in A that converges to x then x ∈ A. Indeed, by the definition of convergence, every
neighborhood of x contains infinitely many points of the sequence, hence it contains points in A.
By Theorem 2.1.1, x ∈ A.

For metric spaces continuity can also be characterized in terms of convergent sequences.

Theorem 2.1.2. LetX be a metric space and Y a topological space. Then f : X → Y is continuous
if and only if for every x ∈ X and every sequence (xn)n in X that converges to x, f(xn) converges
to f(x).

Proof. Assume that f is continuous and that xn → x. If V is a neighborhood of f(x), then f−1(V )
is a neighborhood of x, which contains therefore all but finitely many terms of the sequence. Hence
all but finitely many terms of (f(xn))n are in V . This proves that f(xn) → f(x).

For the converse we will use Proposition 2.1.6. Let A be a subset of X and x ∈ A. Then by
Lemma 2.1.2, there is a sequence (xn)n of points in A such that xn → x. Then f(xn) → f(x) so by
the same lemma, f(x) ∈ f(A). It follows that f(A) ⊂ f(A), which proves that f is continuous.

2.2 Hausdorff spaces

Topologies in which sequences converge to more than one point are are counterintuitive and they
seldom show up in other branches of mathematics, the Zariski topology being a rare example. We
will therefore introduce a large class of “nice” topological spaces in which this bizarre phenomenon
does not occur.

Definition. A topological space X is called a Hausdorff space if for each pair x1, x2 of distinct
points of X, there exist neighborhoods U1 and U2 of x1 respectively x2 that are disjoint.

Example 1. Every metric space is a Hausdorff space.

Example 2. The product space
∏∞
n=1R is Hausdorff but is not a metric space. To see that it is

Hausdorff, choose two points x 6= y. Then there is some n such that xn 6= yn. Choose neighborhood
U and V of xn and yn in R such that U ∩ V = ∅. Then

n−1∏

i=1

R× U ×
∞∏

i=n+1

R and

n−1∏

i=1

R× V ×
∞∏

i=n+1

R
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are disjoint neighborhoods of x and y in
∏∞
n=1R.

Example 3. Cn endowed with the Zariski topology is not Hausdorff.

Proposition 2.2.1. If X is a Hausdorff space and x ∈ X, then {x} is a closed set.

Proof. For y ∈ X\{x} there is an open neighborhood V of y such that x 6∈ V . Hence V ⊂ X\{x},
so X\{x} is open. Hence {x} is closed.

As a corollary, finite subsets of a Hausdorff space are closed.

Proposition 2.2.2. (1) A subspace of a Hausdorff space is Hausdorff.
(2) The product of Hausdorff spaces is a Hausdorff space in both the product and the box topology.

Proof. (1)Let Y ⊂ X, and let x, y ∈ Y . Then there are disjoint open sets U, V in X such that
x ∈ U , y ∈ V . Then the sets U ∩ Y and V ∩ Y are open in Y , still disjoint, and the first contains
x, the second contains Y .

(2) Let Xα, α ∈ A be Hausdorff. If (xα)α and (yα)α are distinct, then there is α0 such that
xα0

6= yα0
. There are disjoint open sets Uα0

and Vα0
such that xα0

∈ Uα0
and yα0

∈ Vα0
. We

conclude that the open sets

Uα0
×
∏

α 6=α0

Xα and Vα0
×
∏

α 6=α0

Xα

separate (xα)α from (yα)α.

Remark 2.2.1. In a Hausdorff space a convergent sequence has exactly one limit. Indeed, if x 6= y
were limits of the sequence, and U and V are disjoint neighborhoods of x respectively y, then both
U and V should contain all but finitely many terms of the sequence, which is impossible.

Example. The space Cn with the standard topology and the space Cn with the Zariski topology
are not homeomorphic because one is Hausdorff and one is not.

2.3 Connected spaces

2.3.1 The definition of a connected space and properties

Definition. Let X be a topological space. Then X is called connected if there are no disjoint
nonempty open sets U and V such that X = U ∪ V .

If such U and V exist then they are said to form a separation of X. Thus X is not connected
if it has a separation. Another way of formulating the definition is to say that the only subspaces
of X that are both open and closed are X and the empty set.

Connectedness is difficult to verify. It is much easier to disprove it.

Example 1. The real line is connected. (We will prove this later).

Example 2. The set of rational numbers Q with the topology induced by the standard topology
on R is not connected. Indeed, the open sets (−∞,

√
2)∩Q and (

√
2,∞)∩Q are a separation of Q.

In fact for every two points a and b of Q, there is a separation Q = U ∪ V with a ∈ U and b ∈ V .
We say that Q is totally disconnected.
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Proposition 2.3.1. (1) If A and B are two disjoint nonempty subsets of a topological space X
such that X = A∪B and neither of the two subsets contains a limit point of the other, then A and
B form a separation of X.
(2) If U and V form a separation of X and if Y is a connected subspace of X, then Y lies entirely
within either U or V .

Proof. (1) Since A ⊂ X\B, it follows that A = A. Similarly, B = B. So A and B are closed, which
means that their complements, which are again A and B, are open. So A and B form a separation
of X.

(2) If this were not true, then Y ∩ U and Y ∩ V were a separation of Y .

Theorem 2.3.1. The image under a continuous map of a connected space is connected.

Proof. This is a powerful result with a trivial proof. If f : X → Y is continuous and f(X) is not
connected, and if U and V are a separation of f(X), then f−1(U) and f−1(V ) are a separation of
X.

Proposition 2.3.2. (1) The union of a collection of connected spaces that have a common point
is connected.
(2) Let A be a connected dense subspace of a topological space X. Then X is connected.
(3) The product of connected spaces is connected in the product topology.

Proof. (1) Let X = ∪αXα and a be a common point of the Xα’s. Assume that U ∪V is a separation
of X. Then by Proposition 2.3.1 (1), each Xα is included in either U or V . In fact, each is included
in that of the two sets which contains a, say U . But then V is empty, a contradiction. The
conclusion follows.

(2) Assume by contrary that X is not connected, and let X = U ∪V be a separation of X. Then
A lies entirely in one of the sets U or V , say U . But since U = U , A = X ⊂ U , a contradiction.
Hence X is connected.

(3) Let us prove first that the product of two connected spaces X1 and X2 is connected. Fix
xi ∈ Xi, i = 1, 2. By part (1),

({x1} ×X2) ∪ (X1 × {x2})

is connected being the union of two connected sets that share (x1, x2). Now vary x2 and take the
union of all such sets. This union is the entire space X1 × X2, and each of the spaces contains
{x1} ×X2. Again from (1) it follows that X1 ×X2 is connected.

An inductive argument shows that the product of finitely many connected sets is connected.
Now let us consider a product X =

∏
αXα α ∈ A of connected spaces endowed with the product

topology. For each α, fix a point aα ∈ Xα. Then each set of the form

Aα1,α2,...,αn = Xα1
×Xα2

× · · · ×Xαn ×
∏

α 6=αi

{aα}

are connected, being finite products of connected spaces, and hence their union is also connected
because these sets have the common point (aα). Let us show that

A = ∪∞
n=1 ∪α1,α2,...,αn∈A Aα1,α2,...,αn

is dense in X. Indeed, if (xα) ∈ X and

B = Uα1
× Uα2

× · · · × Uαn ×
∏

α 6=αi

Xα
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is a basis element containing x, then

{xα1
} × {xα2

} × · · · × {xαn} ×
∏

α 6=αi

{aα} ∈ B ∩Aα1,α2,...,αn .

This shows that A = X, hence X is connected.

Remark 2.3.1. The product of infinitely many connected spaces in the box topology is not nec-
essarily connected. For example a separation of RN in the box topology consists of the set of all
bounded sequences and the set of all unbounded sequences.

Corollary 2.3.1. If A ⊂ B ⊂ A, then B is also connected. This follows from (2) by letting B = X.

Definition. A maximal connected subset of a topological space is called a connected component.

Theorem 2.3.2. Every topological space can be partitioned into connected components.

Proof. Each singleton {x} of a topological space X is connected. The union of all connected sets
that contain x is connected by Proposition 2.3.2 (1). This union is a maximal connected set that
contains x, hence it is a connected component. Varying x we partition the set into connected
componets.

If X and Y are homeomorphic, then there is a bijective correspondence between their connected
components.

Definition. A space X is said to be locally connected if for every neighborhood U of x there is a
connected neighborhood V of x such that V ⊂ U .

Proposition 2.3.3. A space is locally connected if and only if the connected components of any
open set are open.

Proof. Let us assume that the topological space X is locally connected, and let U be an open set.
If x is a point in U , then there is a connected open neighborhood of x, V , which is contained in
U . But then V must lie in a connected component of U (Proposition 2.3.1 (2)). So the connected
components of U are unions of open sets, so they are open.

Conversely, suppose that the connected components of open sets are open. Then the neighbor-
hood V from the definition can be taken to be just one such connected component.

Example 3. The comb space defined as

({0} × [0, 1]) ∪ ([0, 1]× {0}) ∪ ∪∞
n=1

({
1

n

}
× [0, 1]

)

is connected but not locally connected.

2.3.2 Connected sets in R and applications

Theorem 2.3.3. The only connected subsets of the real line in the standard topology are the
intervals and R.
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Proof. Let A be a subset of R. If there are a, b ∈ A a < b such that [a, b] is not a subset of A,
that is there is c, a < c < b and c 6∈ A, then (−∞, c) ∩ A and (c,∞) ∩ A form a separation of A.
So in this case A is not connected. Hence if α = inf A and β = supA, α, β ∈ R ∪ {±∞}, then
(α, β) ⊂ A ⊂ [α, β], which shows that A is an interval or the whole space.

Conversely, let us show that R and all intervals are connected. If U ∪ V is a separation of
an interval I (or of R), let a, b ∈ I with a ∈ U and b ∈ V , and without loss of generality let us
assume that a < b. Consider c = sup{x |x < b, x ∈ U}. Then c ∈ U on the one hand, and because
c = inf{x |x ∈ V }, c ∈ V . But this is impossible. It follows that I (and for the same reason R)
does not admit a separation.

As a corollary of Proposition 2.3.2 we obtain the following examples of connected spaces:

Example 1. The product [0, 1]a, where a can be a positive integer or can be infinite is connected.

Example 2. Every polygonal line in the plane is connected.

Example 3. The comb is connected.

Theorem 2.3.1 becomes the well known

Theorem 2.3.4. (The intermediate value theorem) Let f : R → R be a continuous function. Then
f maps intervals to intervals.

Here intervals can consist of just one point (for example when f is constant). Let us see some
applications.

Theorem 2.3.5. Let f : [a, b] → [a, b] be a continuous map. Then f has a fixed point, meaning
that there is x ∈ [a, b] such that f(x) = x.

Proof. Assume f has no fixed points. Consider the function g : [a, b] → R, g(x) = f(x)− x. Then
g([a, b]) is an interval. We have f(a) > a and f(b) < b (because f has no fixed points), so g([a, b])
is an interval that contains both positive and negative numbers. It must therefore contain 0. This
is a contradiction, which proves that f has a fixed point.

Theorem 2.3.6. (The one-dimensional Borsuk-Ulam theorem) Given a continuous map of a circle
into a line, there is a pair of diametrically opposite points that are mapped to the same point.

Proof. First let us notice that S1 is connected, because it is the image of R through the continuous
map f(x) = eix. Let f : S1 → R be the continuous map. For a point z ∈ S1, the diametrically
opposite point is −z. Define g : S1 → R, g(z) = f(z) − f(−z). If for some z, g(z) = 0, then z
has the desired property. If for some z, g(z) > 0, then g(−z) < 0, and because the set g(S1) is
connected, this set must contain 0. The conclusion follows.

Theorem 2.3.7. Let A and B be two polygonal regions in the plane. Then there is a line that
divides each of the regions in two (not necessarily connected) parts of equal areas.

Proof. For each given line ℓ there is one and only one line parallel to ℓ that divides A into two
regions of equal areas, and one and only one line parallel to ℓ that divides B into two parts of equal
areas.

Now fix a line ℓ0 in the plane, then fix on ℓ0 a point 0, as well as a positive direction and a unit
of length. Consider the lines perpendicular to ℓ0 that cut A respectively B into equal areas, and
let xA and xB be the coordinates of their intersections with ℓ0. Now rotate ℓ0 keeping 0 fixed, and
let xA(θ) and xB(θ) be now the same coordinates on ℓ0 depending on the angle of rotation.
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Define g : [0, 2π] → R, g(θ) = xA(θ)− xB(θ). Then g(0) = −g(π) (in fact g(x) = −g(x+ π) for
all x). The function g is continuous, and g([0, 2π]) must be an interval. This interval must contain
both nonpositive and nonnegative numbers, hence it contains 0. Thus there is an angle θ such that
xA(θ) = xB(θ). In this case the two lines perpendicular to ℓ0 coincide, they form a line that cuts
both A and B in parts of equal area.

2.3.3 Path connected spaces

There is a property that is much easier to verify in particular applications, and which guarantees
that a space is connected. This is the property of being path connected.

Definition. Given a topological space X and x, y ∈ X, a path from x to y is a continuous map
φ : [0, 1] → X such that f(0) = x and f(1) = y.

In fact any continuous map φ : [a, b] → X, φ(a) = x, φ(b) = y defines a path, since we can
rescale it to ψ(t) = φ((b− a)t+ a).

Proposition 2.3.4. The relation on X defined by x ∼ y if there is a path from x to y is an
equivalence relation.

Proof. Clearly x ∼ x by using the constant path. Also, if φ : [0, 1] → X is a path from x to y, then
ψ(t) = φ(1− t) is a path from y to x. Hence if x ∼ y then y ∼ x.

Finally, if x ∼ y and y ∼ z, that is if there are paths φ1, φ2 : [0, 1] → X from x to y and from y
to z, then

ψ(t) =

{
φ1(2t) if 0 ≤ t ≤ 1/2
φ2(2t− 1) if 1/2 ≤ t ≤ 1

is a path from x to z.

Definition. The equivalence classes of ∼ are called the path components of X.

Note that ∼, being an equivalence relation, partitions X into its path components.

Definition. If the space X consists of only one path component, it is called path connected.

Proposition 2.3.5. Each path component of a topological space X is included in a connected
component. Consequently, a path connected space is connected.

Proof. Each path is connected, being the image of a connected set through a continuous map, so by
Proposition 2.3.1 its image is included in a connected component of X. This means that if x ∼ y,
then x and y belong to the same connected component of X. Hence the conclusion.

Proposition 2.3.6. (1) The union of a collection of connected spaces that have a common point
is connected.
(3) The product of path connected spaces is path connected.

The property of a space to be path connected is well-behaved under continuous maps.

Theorem 2.3.8. Let f : X → Y be a continous map from the path-connected topological space
X to the topological space Y . Then f(X) is path connected.

Proof. If φ is a path from x to y, then f ◦ φ is a path from f(x) to f(y).
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Corollary 2.3.2. If X and Y are homeomorphic, then there is a bijective correspondence between
their path components.

Example 1. Every convex set in an R-vector space is path connected. Indeed, a set A is convex
if for every x, y ∈ A, the segment {tx+ (1− t)y | t ∈ [0, 1]} is in A. This segment is the path.

In particular every R-vector space, such as Rn, C[a, b], Lp(R), is path connected.

Example 2. Every curve in Rn is path connected, being the continuous image of an interval.

Example 3. If n ≥ 2 and x ∈ Rn, then Rn\{x} is path connected.
Indeed, given y and z in Rn\{x}, consider a circle of diameter yz. Then one of the semicircles

does not contain x, and a parametrization of this semicircle defines a path from y to z.

Example 4. If x ∈ R, the space R\{x} has two path components, which are also its connected
components, namely (−∞, x) and (x,∞).

Example 5. The n-dimensional sphere and the n-dimensional projective space are path connected.
The n-dimensional sphere is the image through the continuous map f(x) = x/‖x‖ of the connected
space Rn+1\{0}. The projective space is the image of the sphere through the continuous map that
identifies the antipodes.

Example 6. The n-dimensional torus (S1)n is path connected. This follows from Proposition 2.3.6.
Here are some applications.

Theorem 2.3.9. If n ≥ 2, the spaces R and Rn are not homeomorphic.

Proof. Arguing by contradiction, let us assume that there is a homeomorphism f : Rn → R. Choose
x ∈ Rn. Then f : Rn\{x} → R\{f(x)} is still a homeomorphism (it is one-to-one and onto, the
preimage of each open set is open, and the image of each open set is open). But Rn\{x} is path
connected, while its image through the continuous map f is not. This is a contradiction, which
proves that the two spaces are not homeomorphic.

Example 4. The figure eight from §1.3.7 is not a manifold.
To prove this, recall that the figure eight is obtained by factoring [0, 1]∪ [2, 3] by 0 ∼ 1 ∼ 2 ∼ 3.

Let us denote this space by X. Let 0̂ be the equivalence class of 0. If X were an n-dimensional
manifold, then there would be a neighborhood U of 0̂ homeomorphic to an open disk D ⊂ Rn; let
f be this homeomorphism. This neighborhood can be chosen small enough as to be included in
[0, 1/3)∪ (2/3, 1]∪ [2, 7/3)∪ (8/3, 3]. Then U\{0̂} is homeomorphic with D\{f(0̂}. But U\{0̂} has
at least four path components, while D\{f(0̂)} has either one path component, if n ≥ 2, or two
path components, if n = 1. This is a contradiction. Hence the figure eight is not a manifold.

Note that a similar argument shows that a 1-dimensional manifold cannot be an n-dimensional
manifold for n ≥ 2.

Definition. A topological space X is called locally path connected if for every x ∈ X, and open set
U containing x, there is a path connected neighborhood V of x such that V ⊂ U .

Example 1. If we remove from R2 a finite set of lines, the remaining set (with the induced
topology) is locally path connected, but not connected.

Example 2. Every manifold is locally path connected, since every point has a neighbourhood
homeomorphic to a ball.
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Proposition 2.3.7. (1) A topological space X is locally path connected if and only if for every
open set U of X, each path component of U is open in X.
(2) If X is locally path connected, then the components and the path components are the same.

Proof. The proof of (1) is the same as for Proposition 2.3.3.

For (2), note that the path components are open, hence they form a partition of X into open
sets. This means that they must also be the connected components of X (recall that the path
components are connected).

And now some pathological examples.

Example 1. The topologists sine curve

T =

{(
x, sin

1

x

)
|x ∈ (0, 1]

}
∪ {(0, 0)}

with the topology induced by the standard topology of R2.

This space is connected. Indeed, the graph of sin 1
x is connected, because it is the image in

the plane of the connected interval (0, 1] through the continuous map h(x) = (x, sin 1
x). Thus any

separation of T must separate the origin from this graph. But any neighborhood of the origin
contains a part of this graph. This proves connectivity.

The topologists sine curve is not locally connected, because any neighborhood of (0, 0) contained
in B((0, 0), 1/2) ∩ T is not connected (it consists of the origin and several disjoint arcs).

The topologists sine curve is not path connected. This is equivalent to the fact that f(x) = sin 1
x

cannot be extended continuously to [0, 1]. Any path φ : [0, 1] → T would have as limit points when
t→ 0 the entire interval {0} × [−1, 1], and so it could not be continuous.

Example 2. The comb space defined in §2.3.1 is path connected by not locally path connected.

Example 3. The deleted comb, which is a subspace of the comb defined as

D = {(0, 1)} ∪ ∪∞
n=1

({
1

n

}
× [0, 1]

)
∪ ([0, 1]× {0}).

This space is connected but not path connected, since there is no path from (0, 1) to (1, 0) (Prove
it!).

2.4 Compact spaces

2.4.1 The definition of compact spaces and examples

Definition. A collection U is called an open cover of a topological space X if the elements of U
are open subsets of X and the union of all elements in U is X.

Remark 2.4.1. In general, if A is a subset of a topological space X, an open cover of A is a collection
of open sets in X whose intersections with A is an open cover of A in the subspace topology.

Definition. A space X is said to be compact if every open cover of X contains a finite subcover
(i.e. a finite family that also covers X).

Remark 2.4.2. Some mathematicians are unhappy with this very general definition, and require the
space to be Hausdorff, too.
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Example 1. Any topological space that has finitely many points is compact.

Example 2. R with the standard topology is not compact because the family U = {(−n, n) |, n ≥ 1}
is an open cover that does not have a finite subcover.

As you can see, it is much easier to prove that a space is not compact, then to prove that it is
compact.

The next result will show that there are many (nontrivial) compact spaces.

Theorem 2.4.1. (The Heine-Borel Theorem) A subspace of Rn is compact if and only if it is closed
and bounded (in the Euclidean metric).

Proof. Let us first prove that a compact set K ⊂ Rn is closed and bounded. If K were not bounded,
then the collection of open balls

B(0, k) = {x ∈ Rn | d(x,0) < k}, k = 1, 2, 3, . . . ,

would be an open cover of K that does not have a finite subcover. If K were not closed, and
x ∈ K ′\K, then the open sets which are complements of the closed balls

B(x, 1/k) = {y ∈ Rn | d(x,y) ≤ 1/k}, k = 1, 2, 3, . . . ,

would be an open cover of K with no finite subcover.
For the converse, let us assume that K is closed and bounded in Rn but has an open cover U

with no finite subcover. Add to U the complement of K, so that now we have a cover of the whole
space.

Place K in an n-dimensional cube, which by a translation and rescaling, can be made [0, 1]n.
Cut the cube into 2n equal cubes. Each of these cubes is covered by some sets in U , and because the
open cover of K does not have a finite subcover, there is some cube which is covered by infinitely
many elements in U , and which furthermore cannot be covered by finitely many elements in U . Cut
this cube into 2n equal cubes, and again there would be one that cannot be covered by just finitely
many open sets in U . And this would go on forever.

Note that at kth step, the choice of the cube specifies the kth digits of the binary expansions
of the coordinates of the points inside that cube. Repeating the process for all n and choosing the
corresponding kth digits in the binary expansion, we define a point x ∈ Rn which belongs to all
cubes that were chosen. This point is in the closure of K (just because every of the cubes must
contain points of K or else it is covered by the complement of K). And x must belong to some
open set U in U .

Because U is open, there is some open ball B(x, ǫ) contained in U . Note that the kth cube in
the process has diameter equal to

√
n/2k, so, for k sufficiently large, it will be contained in B(x, ǫ)

and hence in U . This is a contradiction because that cube does not have a finite subcover. It
follows that our assumption was false, and consequently K is compact.

2.4.2 Properties of compact spaces

Proposition 2.4.1. A topological space X is compact if and only if for any collection C of closed
subsets of X, with the property that the intersection any finitely many of them is nonempty, the
intersection of all elements of C is nonempty.

Proof. By looking at the complements of the elements in C and applying de Morgan’s law the
condition from the statement turns into the definition of compactness.
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Definition. The collection C as in the statement of this result is said to have the finite intersection
property.

Proposition 2.4.2. (1) Given a subspace Y of X, Y is compact if and only if every cover by open
sets in X has a finite subcollection that covers Y .
(2) Every closed subspace of a compact space is compact.
(3) Every compact subspace of a Hausdorff space is closed.
(4) If Y is a compact subspace of a Hausdorff space X and if x is not in Y , then there are disjoint
open sets U and V of X such that Y ⊂ U and x ∈ V .
(5) (The tube lemma) Consider the product space X × Y , where Y is compact. If x0 is in X and
N is an open set of X × Y containing {x0}× Y , then N contains a set of the form W × Y with W
a neighborhood of x0 in X.

Proof. (1) This follows from the fact that the open sets in Y are those of the form Y ∩ U with U
open in X.

(2) Given Y ⊂ X with X compact and Y closed, any open cover U of Y by open sets of X can
be extended to an open cover of X by adding the open set X\Y . This will have a finite subcover
of X, which is a finite cover of Y as well. We can remove the set X\Y from this collection and still
have a finite subcover of Y . Using (1) we conclude that Y is compact.

(3) If Y is a compact subspace of the Hausdorff space X, then for every y ∈ Y and x ∈ X\Y ,
there are disjoint open sets Ux,y and Vx,y in X such that x ∈ Ux,y and y ∈ Vx,y. Fix x. The sets
Vx,y form an open cover of Y , from which we can extract a finite subcover Vx,y1 , Vx,y2 , . . . , Vx,yn .
The open set Ux,y1 ∩ Ux,y2 ∩ · · · ∩ Ux,yn contains x and is disjoint from Y . It follows that X\Y is
open so Y is closed.

(4) This is just a corollary of the proof of (3).
(5) Choose an open cover of this set by basis elements of the form U × V that are included

in N . Since {x0} × Y is compact, there is a subcover U1 × V1, U2 × V2, . . . , Un × Vn. If we set
W = U1 ∩ U2 ∩ . . . ∩ Un, then {x0} × Y ⊂W × Y ⊂ N and we are done.

The most important property of compact spaces is the following result:

Theorem 2.4.2. The image of a compact space through a continuous function is compact.

Proof. Let f : X → Y be continuous with X compact. Let U be an open cover of f(X). The
collection of open sets

{f−1(U) |U ∈ U}

is an open cover of X, which has a finite subcover because X is compact. The image through f of
that subcover is a finite subcover of f(X).

We list two useful corollaries of this theorem.

Theorem 2.4.3. Let f : X → Y be a bijective continuous function. If X is compact and Y is
Hausdorff, then f is a homeomorphism.

Proof. The only thing that we have to show is that f−1 is continuous. We use the definition of con-
tinuity based on closed sets from Proposition 2.1.3 (2). Let C be closed in X. By Proposition 2.4.2,
C is compact in X, so (f−1)−1(C) = f(C) is compact in Y . The space Y being Hausdorff, f(C)
is closed by Proposition 2.1.3 (3). Hence the preimage under f−1 of every closed set C ⊂ X is a
closed subset of Y . Therefore f−1 is continuous.
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Theorem 2.4.4. If f : X → R is continuous and X is compact, then f has an absolute maximum
and minimum.

Proof. The set f(X) is compact in R, so by the Heine-Borel Theorem it is closed and bounded.
The maximum and minimum of this set are the maximum and the minimum of f .

This theorem is very useful, and we list below several applications.

Theorem 2.4.5. (The Lebesgue number theorem) Let U be an open covering of the compact
metric space X. Then there is δ > 0, called the Lebesgue number, such that for each subset of X
having diameter less than δ, there is an element of U containing it.

Proof. If X belongs to U , we are done. Otherwise, choose a finite subcover U1, U2, . . . , Un, and
consider the closed sets Ci = X\Ui, i = 1, 2, . . . , n.

Recall that the diameter of a set A is

diam(A) = sup{d(a1, a2) | a1, a2 ∈ A},

where d is the distance function on X. Additionally, for a point x ∈ X and a set A ⊂ X, define

d(x,A) = inf{d(x, a) | a ∈ A}.

Define f : X → R,

f(x) =
1

n

n∑

i=1

d(x,Ci).

Let us show that f is continuous, which amounts to showing that d(x,Ci) is a continuous function
in x.

Lemma 2.4.1. If A is a subset of the metric space X, then d(x,A) is a continuous function of x.

Proof. We will show that if xn → x, then d(xn, A) → d(x,A). Indeed, if d(xn, x) ≤ ǫ, then by the
triangle inequality |d(xn, a)−d(x, a)| ≤ d(x, xn) < ǫ. If we choose a such that d(x, a)−d(x,A) < ǫ,
the d(xn, a) < d(x,A) + 2ǫ. Hence d(xn, A) < d(x,A) + 2ǫ. Also, if we choose a such that
d(xn, a) − d(xn, A) < ǫ, then d(x, a) < d(xn, A) + 2ǫ, and so d(x,A) < d(xn, A) + 2ǫ. Thus
|d(x,A)− d(xn, A)| < 2ǫ, and the lemma is proved.

By Theorem 2.4.4, f has a minimum. If x ∈ X is a minimum of f and Ui contains x, then
there is a ball B(x, ǫ) contained in Ui. So d(x,Ci) > 0 and consequently the minimal value of f is
strictly positive.

Let us show that we can choose the Lebesgue number δ to be the minimum of f . If A is a set
of diameter let than δ, and x0 ∈ A, then A ⊂ B(x0, δ). Let us show that B(x0, δ) lies in one of the
sets Ui. If this is not the case, then d(x0, Ci) < δ, and hence

f(x0) =
1

n

n∑

i=1

d(x0, Ci) <
1

n
nδ = δ.

This is impossible, since f(x0) has to be at least δ. Therefore B(x0, δ) lies in some Ui and we are
done.

Corollary 2.4.1. Let f : X → Y be a continuous function from the compact metric space X to
the metric space Y . Then f is uniformly continuous.
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Proof. Let ǫ > 0. Then for every x0 ∈ X there is δx0 > 0 such that if dX(x, x0) < δx0 , then
dY (f(x), f(x0)) < ǫ/2.

The balls B(x0, δx0), x0 ∈ X cover X. If δ is their Lebesgue number, then every set of diameter
δ lies inside some B(x0, δx0). If x1, x2 have the property that dX(x1, x2) < δ, and if x0 is such that
x1, x2 ∈ B(x0, δx0), then

dY (f(x1), f(x2)) ≤ dY (f(x1), f(x0)) + d(f(x0), f(x2)) < ǫ/2 + ǫ/2 = ǫ.

This proves that f is uniformly continuous.

Theorem 2.4.6. Among all n-gons that are inscribed in the unit circle, the regular n-gon has the
largest area.

Proof. Let us define f : (S1)n → [0,∞) by f(z1, z2, . . . , zn) equal to the area of the convex n-gon
with vertices at z1, z2, . . . , zn (in some order). The function f is continuous, and the set (S1)n is
closed and bounded in R2n. Hence f has a maximum.

Let us show that an arbitrary n-gon which is not regular does not maximize f . Indeed, such
an n-gon would have two adjacent sides AB and BC such that AB < BC. If we choose B′ the

midpoint of the arc
⌢

ABC, then the area of ABC is strictly smaller than the area of AB′C (because
the altitude from B′ is greater than the altitude from B). Hence if we replace vertex B by B′, then
we obtain a polygon with strictly larger area. This proves our claim. It follows that the regular
n-gon is the (unique) maximum.

Example 1. (1984 Balkan Mathematical Olympiad) Let α1, α2, · · · , αn be positive real numbers,
n ≥ 2, such that α1 + α2 + · · ·+ αn = 1. Prove that

α1

1 + α2 + · · ·+ αn
+

α2

1 + α1 + · · ·+ αn
+ · · ·+ αn

1 + α1 + · · ·+ αn−1
≥ n

2n− 1
.

Solution: Rewrite the inequality as

α1

2− α1
+

α2

2− α2
+ · · ·+ αn

2− αn
≥ n

2n− 1
,

then define the function

f(α1, α2, . . . , αn) =
α1

2− α1
+

α2

2− α2
+ · · ·+ αn

2− αn
.

As said in the statement, this function is defined on the subset of Rn consisting of points whose
coordinates are positive and add up to 1. We would like to show that on this set f is greater than
or equal to n

2n−1 .

Does f have a minimum? The domain of f is bounded but is not closed, being the interior of
a tetrahedron. We can enlarge it, though, adding the boundary, to the set

M = {(α1, α2, . . . , αn) |α1 + α2 + · · ·+ αn = 1, αi ≥ 0, i = 1, 2, . . . , n}.

We now know that f has a minimum on M .

A look at the original inequality suggests that the minimum is attained when all αi’s are equal.
So let us choose a point (α1, α2, . . . , αn) for which αi 6= αj for some indices i, j. Assume that αi < αj
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and let us see what happens if we substitute αi+ x for αi and αj − x for αj , with 0 < x < αj −αi.
In the defining expression of f , only the ith and jth terms change. Moreover

αi
2− αi

+
αj

2− αj
− αi + x

2− αi − x
− αj − x

2− αj + x

=
2x(αj − αi − x)(4− αi − αj)

(2− αi)(2− αj)(2− αi − x)(2− αj − x)
> 0,

so when moving the numbers closer, the value of f decreases. It follows that the point that we
picked was not a minimum. Hence the only possible minimum is

(
1
n ,

1
n , . . . ,

1
n

)
in which case the

value of f is n
2n−1 . This proves the inequality.

Example 2. The proof of the arithmetic mean - geometric mean inequality (AM-GM):

x1 + x2 + · · ·+ xn ≥ n n
√
x1x2 · · ·xn,

which holds for any nonnegative numbers x1, x2, . . . , xn.

For the proof, notice that the inequality is homogeneous, meaning that it does not change if we
multiply each of the numbers x1, x2, . . . , xn by the same positive constant. Hence it suffices to prove
the inequality for the case where x1 + x2 + · · ·+ xn = 1. Consider f(x1, x2, . . . , xn) = n

√
x1x2 · · ·xn

defined on the thetrahedron x1 + x2 + · · · + xn = 1, which is a compact set being closed and
bounded. Then f has a maximum. If the xi are not all equal, say xi < xj for some i and j, choose
ǫ < xj − xi and replace xi by xi + ǫ and xj by xj − ǫ. We are still in the domain of f , and because
(xi+ ǫ)(xj − ǫ) = xixj + ǫ(xj −xi− ǫ) > xixj . Hence the maximum is not attained at points where
the xi are not all equal. Consequently, the maximum is attained at x1 = x2 = · · · = xn = 1

n , when
f equals 1

n . In this case we have equality in AM-GM, and the inequality is proved.

2.4.3 Compactness of product spaces

Theorem 2.4.7. The product of finitely many compact spaces.

Proof. It suffices to check that the product of two compact spaces is compact. Let X and Y be
these spaces. Let U be an open covering of X × Y . Given x ∈ X, the slice {x} × Y is compact,
and can be covered by finitely many elements U1, U2, . . . , Un of U . Their union is an open set Nx of
X×Y , which by Proposition 2.4.2 (5) contains a tube Wx×Y . The open sets Wx, x ∈ X cover X,
and since X is compact, there are x1, x2, . . . , xn such that Wx1 ,Wx2 , . . . ,Wxn cover X. It follows
that Nx1 , Nx2 , . . . , Nxn cover X ×Y , and consequently the open sets in U that comprise them form
a finite cover of X × Y .

Theorem 2.4.8. (The Tychonoff theorem) The product of an arbitrary number of compact spaces
is compact in the product topology.

Proof. This case is significantly harder, and makes use of the Axiom of Choice in the guise of Zorn’s
Lemma.

Lemma 2.4.2. If C is a collection of subsets of a set A having the finite intersection property, then
there exists a maximal collection M of subsets of A that has the finite intersection property and
contains C.

Proof. We will apply Zorn’s lemma to the set S whose elements are collections of subsets of A with
the finite intersection property that contain C.
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We will show that if S′ is a subset of S that is (totally) ordered under inclusion then S′ has
a maximal element. We will show that the union U of all collections in S′ is an element of S.
If C1, C2, . . . , Cn are finitely many elements of U , then each of them belongs to some Si ∈ S′,
i = 1, 2, . . . , n. Hence all of them belong the the largest of the Si, and because this one has the
finite intersection property, the sets C1, C2, . . . , Cn have nonempty intersection. Consequently U
has the finite intersection property. This proves the lemma.

Lemma 2.4.3. Let M be a collection of subsets of a set A that is maximal with respect to the
finite intersection property. Then
(1) Any finite intersection of elements in M is in M.
(2) If B is a subset of A that intersects every element of M, then B is an element of M.

Proof. (1) If we add to M the finite intersections of elements in M we still get a collection of sets
that has the finite intersection property. Because of maximality, this collection is M.

(2) Let M′ = M ∪ {B}. Then M′ still has the finite intersection property. Indeed, if
M1,M2, . . . ,Mn are in M′, then either none of them is B, in which case their intersection is
nonempty, or one of them, say Mn is B. Then

M1 ∩M2 ∩ · · · ∩Mn = (M1 ∩M2 ∩ · · · ∩Mn−1) ∩B.
By part (a), M1 ∩M2 ∩ · · · ∩Mn−1 ∈ M, and so by the hypothesis, its intersection with B is not
empty. This shows that M1,M2, . . . ,Mn have nonempty intersection, and consequently that M′

has the finite intersection property. Because of maximality, M′ = M. Done.

Let us now proceed with the proof of the theorem. Let

X =
∏

α∈A

Xα,

where each Xα is compact. Let C be a collection of closed subsets with the finite intersection
property. We will show that

∩C∈CC

is nonempty, which will imply that X is compact by Proposition 2.4.1. Choose M be a maximal
family that contains C and has the finite intersection property. It suffices to show that

∩M∈MM

is nonempty. Let πα : X → Xα, α ∈ A be the projection. Consider the collections

Mα = {πα(M) |M ∈ M}
of subsets of Xα. This collection has finite intersection property because M does. By the compact-
ness of Xα and Proposition 2.4.1, the intersection of the sets πα(M), M ∈ M is nonempty. Let xα
be a point in the intersection. We let x = (xα)α∈A and show that x ∈ ∩M∈MM .

To this end, we show that every open set containing x intersects the closure of every set in
M. First we verify this for an open set of the form π−1

α (Uα), where Uα is open in Xα. Indeed, Uα
intersects πα(M) and πβ(π

−1
α (Uα)) = Xβ for α 6= β. Hence this is true for such a set. In particular,

by Lemma 2.4.3 (2), each set of the form π−1
α (Uα) is in M. By Lemma 2.4.3 (1), intersections of

such sets are in M as well, and these intersections form the basis for the product topology of X.
The finite intersection property of M implies that every basis element that contains x intersects all
M , M ∈ M. Hence x ∈ ∩M∈MM , which shows that this intersection is non-empty. The theorem
is proved.
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2.4.4 Compactness in metric spaces and limit point compactness

There are two other definitions for compactness, which historically precede the one given above.

Definition. A space is said to be limit point compact if every infinite subset has a limit point.

Definition. A space is said to be sequentially compact if every sequence has a convergent subse-
quence.

Proposition 2.4.3. Every compact space is limit point compact.

Proof. We argue by contradiction. Let X be a compact subspace that has an infinite subspace Y
such that Y ′ = ∅. Because Y = Y ∪ Y ′, it follows that Y is closed, and consequently compact by
Proposition 2.4.2 (2). The fact that Y ′ = ∅ implies that every point in Y is contained in some open
set that does not contain other points of Y . These open sets form an open cover of Y with no finite
subcover (because Y is infinite). This is a contradiction which proves that the original assumption
was false. Hence X is limit point compact.

Example. Let X = {0, 1} × Z, where {0, 1} is given the trivial topology and Z the discrete
topology. In X, every set has a limit point, since in every neighborhood of a point {t, n} you can
find the point {1− t, n}. On the other hand, the cover of the space by the open sets {0, 1} × {n},
n ∈ Z has no finite subcover.

The three notions of compactness coincide for metric spaces.

Theorem 2.4.9. Let X be a metric space. The following are equivalent:
(1) X is compact.
(2) X is limit point compact.
(3) X is sequentially compact.

Proof. We have shown above that (1) implies (2).

To see why (2) implies (3), let (xn)n≥1 be a sequence and let A = {xn |n ≥ 1}. If A is finite,
we are done, because there is a constant subsequence. If A is infinite, then it has a limit point, and
there is a subsequence that converges to that point.

Let us prove that (3) implies (1). For this we will use the notion of an ǫ-net. By definition, and
ǫ-net is a set Nǫ of points in X such that any point in X is at distance less than ǫ from Nǫ.

Lemma 2.4.4. If X is sequentially compact then for every ǫ there is a finite ǫ-net.

Proof. Assume that for some ǫ, X does not have a finite ǫ-net. If we start with a point x1 then
there must exist x2 ∈ X\B(x1, ǫ), x3 ∈ X\(B(x1, ǫ) ∪ B(x2, ǫ)), etc. The sequence (xn)n≥1 does
not have a convergent subsequence, because the distance between any two terms is at least ǫ. This
contradicts the hypothesis, absurd. Hence the conclusion.

Returning to the theorem, we mimic the proof of the Heine-Borel theorem in a more general
setting. Assume that X is not compact and let U be an open cover of X with no finite subcover.
Consider a finite 1/2-net, N1/2. The balls B(x, 1/2) cover X, so one of them, say B(x1, 1/2) is
not covered by finitely many elements of U . Now consider a finite 1/4-net, N1/4. Among the
balls B(x, 1/4) that intersect B(x1, 1/2) one must not admit a finite cover by elements of U , or
else B(x1, 1/2) would have a finite cover. Let B(x2, 1/4) be this ball. Continue the construction
to obtain a sequence x1, x2, . . . , xn, . . . such that B(xn, 1/2

n) intersects B(xn+1, 1/2
n+1) and such
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that none of the balls B(xn, 1/2
n) is covered by finitely many elements of U . This sequence has a

convergent subsequence; let l be its limit. Because

d(xn, xn+1) <
1

2n
+

1

2n+1
=

3

2n+1
,

and therefore

d(xn, xn+k) < 3

(
1

2n+1
+

1

2n+2
+ · · ·+ 1

2n+k

)
<

3

2n
,

it follows that d(xn, xm) → 0 as m,n → ∞. This implies that xn → l, as n → ∞. Note that by
passing to the limit as k → ∞ in the inequality d(xn, xn+k) < 3/2n we obtain d(xn, l) ≤ 3/2n.

Let U be an element of U that contains l. Then there is a ball B(l, ǫ) ⊂ U . If we choose n
such that 1/2n−2 < ǫ, then B(xn, 1/2

n) ⊂ B(l, ǫ). Indeed, if x ∈ B(xn, 1/2
n) then by the triangle

inequality

d(x, l) ≤ d(x, xn) + d(xn, l) <
1

2n
+

3

2n
=

1

2n−2
< ǫ.

Hence B(xn, 1/2
n) is covered by just one element of U , namely U , a contradiction. We conclude

that our initial assumption was false, and therefore X is compact.

2.4.5 Alexandroff compactification

A compactification of a space X is a compact space Y in which X is dense. The Alexandroff
compactification is obtained by adding one point to X, and can be performed on locally compact
Hausdorff spaces.

Definition. A space X is said to be locally compact if every point has a compact neighborhood.

Example 1. Rn is locally compact, but clearly not compact.

Theorem 2.4.10. Let X be a locally compact Hausdorff space. Then there exists a compact space
Y containing X such that Y \X consists of one point. Moreover, if Y ′ is a space with the same
properties, then Y and Y ′ are homeomorphic.

Proof. We can let Y = X ∪ {∞}. We let the open sets of Y be the open sets of X together with
the sets of the form {∞} ∪ (X\K) = Y \K, where K is compact in X. Let us check that this is
indeed a topology on Y .

First, Y and ∅ are clearly open sets (the emptyset in X is compact). Let us check that an
arbitrary union of open sets in X and sets of the form Y \K is open in Y . Let U be the union
of the open sets in X. Because the intersection of compact sets is compact, the union of the sets
that are complements of compact sets is the complement of a compact set. Hence the set we are
supposed to check is open is of the form U ∈ X (if no complements of compact sets are taken), or
Y \K (if no open sets in X are taken), or U ∪ Y \K. The first two types are clearly open. Let us
check that the third type is open.

Indeed,

U ∪ (Y \K)) = Y \(K\U)

which is of the desired form since K\U is closed in K and therefore compact.
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For the intersection of two open sets in Y we have the following possibilities

U1 ∩ U2

(Y \K1) ∩ (Y \K2) = Y \(K1 ∪K2)

U ∩ (Y \K) = U ∩ (X\K).

All these are open. By induction, the intersection of finitely many open sets is open.
We need to check that Y is compact. Consider an open cover of Y . One of the open sets covers

{∞}, hence is of the form Y \K. The other open sets must cover K, and because K is compact,
there is a finite subcover. Add to this the open set that covers {∞} to obtain a finite subcover of
Y .

Let us show that X is a subspace of Y (in the sense that the topology on X is induced by the
topology on Y ). Indeed, for every open subset U of X, U ∩ X = U is open in X. Also, if K is
compact in X, then (Y \K) ∩X = X\K, and since K is closed, this is open in X.

Let us prove that Y is Hausdorff. We only have to check that any point x ∈ X can be separated
from ∞. Choose a compact neighborhood K of X. Then V1 = Int(K) and V2 = X\K are disjoint
open sets such that x ∈ V1 and ∞ ∈ V2.

Finally, we check uniqueness. If Y ′ = X ∪{∞′} is another space with the same property, define
h : Y → Y ′, h(x) = x if x ∈ X and h(∞) = ∞′.

Then h is bijective. By Theorem 2.4.3, it suffices to check that h is continuous. Let U be an
open set in Y ′. If U ⊂ X, then h−1(U) = U , open. If ∞′ ∈ U , then U = U0 ∪ {∞′} where U0 is
open in X. Note that because Y ′ is compact, the complement of U0 in X, which is the same as the
complement of U in Y , is compact. We thus have h−1(U) = U0 ∪ {∞}, which is of the form Y \K,
with K compact in X. This set is open, and hence h is continuous. The theorem is proved.

Definition. The space Y defined by this theorem is called the Alexandroff (or one-point) compact-
ification of X.

It is important to note that X = Y only when X is not already compact.

Example 2. The one point compactification of the plane R2 is the sphere S2. We stress out that
there are other possible compactifications (compacs spaces in which the original space is dense),
for example the projective plane is a compactification of R2 as well.
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Separation Axioms

3.1 The countability axioms

Definition. A space is called separable if it contains a countable subset that is dense.

Example 1. R is separable because Q is dense in R.

Definition. A space is called first-countable if each point has a countable system of neighborhoods.

Definition. A space is called second-countable if its topology has a countable basis.

Example 2. R is second-countable because (a, b), a, b ∈ Q is a countable basis for the standard
topology.

Example 3. If we endow R with the topology defined by the basis [a, b), a, b ∈ R, then it is not
second-countable. Indeed, if we write [a, b) as a union of basis elements, then one of these basis
elements has its minimum equal to a. Thus there are at least as many basis elements as there are
real numbers (the function B → inf B is onto), and hence there is no countable basis.

Example 4. The disjoint union of an uncountable family of copies of R with the standard topology
is first-countable but not second-countable.

Proposition 3.1.1. If X is second-countable then it is separable and first-countable.

Proof. Choose one point in each basis element (different basis elements may have the same chosen
point). The set containing these points is countable and dense.

The system of neighborhoods consisting of all basis elements that contain the given point is
countable.

3.2 Regular spaces

Definition. A topological space X is said to be regular if for every point x and every closed set C
there are disjoint open set U and V such that x ∈ U and C ⊂ V .

Proposition 3.2.1. (i) A space X is regular if and only if given a point x and a neighborhood U
of x, there is a neighborhood V of x such that V ⊂ U .
(ii) A subspace of a regular space is regular.
(iii) A product of regular spaces is regular.

41
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Proof. (i) If the space is regular, let x be the point and C the closed set which is the complement
of U . Then there are open sets V and W such that x ∈ V , C ⊂ W . Then x ∈ V ⊂ V ⊂ U , as
desired.

Conversely, let x be a point and C a closed set that does not contain x. Then for U = X\C
there is an open neighborhood V of x such that V ⊂ U . The sets V and W = X\V satisfy the
condition from the definition of a regular space.

(ii) Let Y be a subspace of a regular space X, x ∈ Y and C a closed subset of Y which does
not contain x. We know that C = C ′ ∩ Y , where C ′ is closed in X. Clearly C ′ does not contain x.
So there are disjoint open subsets of X, U and V , such that x ∈ U , C ′ ⊂ V . The open subsets of
Y U ∩ Y and V ∩ Y separate x from C.

(iii) Let Xα, α ∈ A be a family of regular spaces. We use (i) to check the regularity of
∏
αXα

in the product topology. Let x = (xα)α∈A and U an open neighborhood of this point. Without
loss of generality we may assume U =

∏
α Uα (or else we pass to a smaller neighborhood). Here

Uα = Xα for all but finitely many α.

For every α choose an open neighborhood Vα of xα such that Vα ⊂ Uα, with the condition
that we choose Vα = Xα whenever Uα = Xα. Then V =

∏
α Vα is a neighborhood of x. Since by

Proposition 2.1.4 (3) V =
∏
α Vα, it follows that V ⊂ U , and we are done.

3.3 Normal spaces

3.3.1 Properties of normal spaces

Definition. A topological space X is said to be normal if for every disjoint closed sets C1 and C2

there are disjoint open sets U1 and U2 such that C1 ⊂ U1 and C2 ⊂ U2.

Proposition 3.3.1. (i) A space X is normal if and only if given a closed set C and an open set U
containing C, there is an open set V containing C such that V ⊂ U .
(ii) A compact Hausdorff space is normal.

Proof. (i) Suppose X is normal. Let C ′ = X\U , which is a closed set. By hypothesis there are
disjoint open sets V and V ′ containing C respectively C ′. Then V is disjoint from C ′ (since C ′ lies
in an open set disjoint from V ) and therefore V ⊂ U = X\C ′, as desired.

For the converse, let C1 and C2 be disjoint closed sets. Let U = X\C1, and consider the open
set V such that C1 ⊂ V ⊂ V ⊂ U . The disjoint open sets V and X\V separate C1 and C2.

(ii) Let C1 and C2 be disjoint closed sets in X, which are therefore compact. For every pair
of points x and y in C1 respectively C2, there are disjoint open sets Ux,y respectively Vx,y such
that x ∈ Ux,y and y ∈ Vx,y. For a fixed y, the open sets Ux,y, x ∈ C1 cover C1, and because C1

is compact there is a finite cover Ux1,y, Ux2,y, . . . , Uxn,y. Define Uy = Ux1,y ∪ Ux2,y ∪ · · ·Uxn,y and
Vy = Vx1,y ∩ Vx2,y ∩ · · ·Vxn,y. Then the open sets Uy and Vy are disjoint and separate C1 from
y. If we vary y, the sets Vy cover C2. There is a therefore a finite cover Vy1 , Vy2 , . . . Vyn . Define
U = Uy1 ∩Uy2 ∩ · · ·Uyn and V = Vy1 ∪ Vy2 ∪ · · · ∪ Vyn . Then U and V are disjoint and separate C1

and C2. This completes the proof.

Proposition 3.3.2. Every regular space with countable basis is normal.

Proof. Let X be the space and let C1 and C2 be two disjoint closed sets. By regularity, each x ∈ C1

has a neighborhood U that does not intersect C2. Choose an open neighborhood V of x such that
V ⊂ U (which exists by Proposition 3.2.1). There exists a basis element B such that B ⊂ V and
hence B ⊂ U and in particular B does not intersect C2.
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Since the basis is countable, there basis elements B1, B2, B3, . . . that cover C1 and whose closures
do not intersect C2. Similarly choose basis elements B′

1, B
′
2, B

′
3, . . . that cover C2 and whose closures

do not intersect C1. Naively we can try U = ∪Bn and U ′ = ∪B′
n, but these need not be disjoint.

Instead let

Vn = Bn\ ∪ni=1 B
′
i, V ′

n = B′
n\ ∪ni=1 Bi.

Note that Vm and V ′
n are disjoint for every m and n. Hence V = ∪Vn and V ′ = ∪V ′n are disjoint

as well. These two sets separate C1 from C2, and we are done.

To rephrase, every second-countable regular space is normal. Normal spaces avoid many of the
pathologies of the general topological spaces, and are the most common spaces that we encounter
in mathematics.

Example 1. Every metric space is normal. Indeed, let A and B be two disjoint closed subsets of
X. The sets

U = {x | d(x,A) < d(x,B)} and V = {x | d(x,A) > d(x,B)}

are open because x → d(x,A) is continuous (see proof of Lebesque number theorem). They are
disjoint, and A ⊂ U , B ⊂ V .

Example 2. Every second-countable manifold is normal. In view of Proposition 3.3.2, we only
have to check that it is regular. But Proposition 3.2.1 (i) shows that regularity is a local property,
and clearly Rn with the standard topology is regular, even normal, as seen in Example 1.

We now prove two fundamental properties of normal spaces.

3.3.2 Urysohn’s lemma

Theorem 3.3.1. (Urysohn’s lemma) Given a normal space X and disjoint closed subsets C0 and
C1, there is a continuous function f : X → [0, 1] such that f(C0) = {0} and f(C1) = {1}.

Proof. Here is one way of writing the proof: For every dyadic number r ∈ [0, 1] (meaning that r is
of the form m/2n with m,n ∈ Z+) we will construct an open set Ur such that
(i) Ur contains C0 and is disjoint from C1,
(ii) if r < s then Ur ⊂ Us.

Define the function f : X → [0, 1], f(x) = inf{r |x ∈ Ur}. To prove that it is continuous, it
suffices to show that for every a, b ∈ (0, 1), f−1([0, b)) and f−1((a, 1]) are open, because these sets
form a subbasis of the standard topology.

We have

f−1([0, b)) = {x |x ∈ Ur for some r < b} = ∪r<bUr

and this is open. Also,

f−1((a, 1]) = {x | there is s > a such that x 6∈ Us}.

Because numbers of the form m/2n are dense, and because of the way the sets Us were constructed,
this is the same as

{x | there is r > a such that x 6∈ Ur} = ∪r>a(X\Ur)
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which is open, being the union of open sets. This proves continuity.
To show the existence of the sets Ur, we prove a stronger fact, namely that for every r there

are disjoint open sets Ur and Vr that satisfy the following nesting conditions:
(a) C0 ⊂ Ur, C1 ⊂ Vr;
(b) for r < s the complement of Vr is contained in Us.

We proceed by induction on n. The disjoint open sets U1/2 and V1/2 such that C1 ∈ U1/2,
C2 ∈ V1/2 exist because X is normal. Now assume that the sets Um/2k and Vm/2k were chosen for

k ≤ n and m = 1, . . . , 2k−1. We want to construct Um/2n+1 and Vm/2n+1 for m = 0, 1, . . . , 2n+1−1.
This was already done for m even, since 2l/2n+1 = l/2n. Thus we have to do it for m odd, say
m = 2l + 1.

If l 6= 0 or l 6= 2n−1, then, because the space is normal, we can find disjoint open sets U and V
that separate the complement of Vl/2n from the complement of U(l+1)/2n . Let these be U(2l+1)/2n+1

and V(2l+1)/2n+1 . Then Vl/2n ⊂ U(2l+1)/2n+1 and V(2l+1)/2n+1 ⊂ U(l+1)/2n , which shows that the new
sets satisfy the required nesting conditions with their neighbours. Because all other sets satisfy the
nesting conditions (b) and (c) they will satisfy these with the newly constructed sets.

If l = 0, we replace in this construction the complement of Vl/2n by C0, and if l = 2n − 1, we
replace in this construction U2l+1/2

n by C1. Again, the nesting conditions are satisfied. The sets
Ur constructed this way satisfy the desired properties, and the result is proved.

Here is a second way of writing the proof: Order the rational numbers in the interval (0, 1] as
r0 = 0, r1 = 1, r2, r3, r4, . . .. Using Proposition 3.3.1, we will construct a family of open sets Ur,
r ∈ Q ∩ (0, 1] such that for r < s C0 ⊂ Ur ⊂ Ur ⊂ Us ⊂ X\C1. Choose U0 and U1 to separate
C0 from C1. Assume that Ur1 , Ur2 , . . . , Urk have been chosen and let us construct Urk+1

. Suppose
rm = max{rl | rl < rk+1, 1 ≤ l ≤ k}, rn = max{rl | rl < rk+1, 1 ≤ l ≤ k}. Let Urk+1

to be an open
set such that

Urm ⊂ Urk+1
⊂ Urk+1

⊂ Urn .

Continue inductively and you obtain the desired result.
From here continue like in the previous proof: Define f : X → [0, 1], f(x) = inf{r |x ∈ Ur},

etc.

3.3.3 The Tietze extension theorem

As a corollary of Urysohn’s lemma we have the following result.

Theorem 3.3.2. (Tietze extension theorem) Let C be a closed subspace of a normal space X.
Then any continuous map f : C → [−1, 1] can be extended to a continuous map f̃ : X → [−1, 1].

Proof. We start by proving the following

Lemma 3.3.1. If X is normal and C is closed in X, then for any continuous function f : C →
[−1, 1], there is a continuous function g : X → [−1/3, 1/3] such that |f(x) − g(x)| ≤ 2/3 for all
x ∈ C.

Proof. The sets C1 = f−1(−∞,−1/3]) and C2 = f−1([1/3,∞)) are disjoint and closed in A. By
Urysohn’s lemma, there is a continuous function g : X → [−1/3, 1/3] such that g|C1 = −1/3
and g|C2 = 1/3. So on C ∩ (C1 ∪ C2), |f(x) − g(x)| ≤ 1 − 1/3 = 2/3, and on C\(C1 ∪ C2),
|f(x)− g(x)| ≤ |f(x)|+ |g(x)| ≤ 1/3 + 1/3 = 2/3.

Let us return to the proof of the theorem. We will construct a sequence of continuous functions
that approximate f on C. To this end we use the lemma to construct g0 : X → [−1/3, 1/3], so that
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|f(x)−g0(x)| ≤ 2/3 for x ∈ C. Now we apply the lemma to the function (f−g0) : C → [−2/3, 2/3].
By rescaling, we conclude that there is g1 : C → [−2/9, 2/9] such that |f(x) − g0(x) − g1(x)| ≤
4/9. Repeating we obtain a sequence of continuous functions g0, g1, g2, . . . , with the property that
|gn(x)| ≤ 2n/3n+1 and

|f(x)− g0(x)− g1(x)− · · · gn(x)| ≤ 2n+1/3n+1 for x ∈ C.

The series of functions
∑

n gn converges absolutely and uniformly to a function f̃ : X → [−1, 1],
and this function has the property that f̃(x) = f(x) for all x ∈ C. The theorem is proved.

Here is an application of Tietze’s theorem.

Theorem 3.3.3. (Peano) There is a continuous map f : [0, 1] → [0, 1]× [0, 1] that is onto.

Proof. Let C be the Cantor set defined in §2.1.1. Define the function f : C → [0, 1] × [0, 1], as
follows. A number x ∈ C has a unique ternary representation using only 0 and 2 as 0.a1a2a3 . . ..
Let bn = an/2; as such bn = 0 or 1. We let f(x) = (0.b1b3b5 . . . , 0.b2b4b6 . . .), where the expansions
are considered in base 2. It is easy to check that convergence in C implies convergence digit-by-
digit, so f is continuous. The function f is also onto, because we can construct the number x from
the digits b1, b2, b3, ... by doubling them and then reading in base 3. By Tietze’s theorem f can be
extended to the entire interval [0, 1] and we are done.
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Part II

Algebraic topology
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Chapter 4

Homotopy theory

4.1 Basic notions in category theory

To explain the main idea behind algebraic topology we need to introduce a new language.

Definition. A category C consists of
(a) a class of objects Ob(C) and
(b) a class of morphisms Hom(C), where each morphism has a source object A and a target object
B, and is usually written as f : A→ B.
If the source of one morphism is the target of another, the two can be composed, that is if f : A→ B
and g : B → C, then there is a morphism g ◦ f : A→ C. The following axioms should hold:
(associativity) if f : A→ B, g : B → C, h : C → D, then h ◦ (g ◦ f) = (h ◦G) ◦ f .
(identity) for every object X, there is a morphism 1X : X → X, called the identity morphism, such
that for every morphisms f : A→ X and g : X → B, 1X ◦ f = f and g ◦ 1X = g.

Examples. The cateory of sets (objects=sets, morphisms=functions), the category of groups
(objects=groups, morphisms=group homomorphisms), the category of abelian groups, the cateory
of rings, the category of vector spaces (objects=vector spaces, morphisms=linear transformations),
the category of topological spaces (objects=topological spaces, morphisms=continuous maps), the
category of differentiable manifolds (objects=manifolds, morphisms=differentiable maps).

Definition. Let C1, and C2 be two categories. A functor F from C to D associates to
(a) each object X in C1 and object F (X) in C2, (b) each morphism f : X → Y in C1 a morphism
F (f) : F (X) → F (Y ) in C2 such that
(i) F (1X) = 1F (X)

(ii) F (g ◦ f) = F (g) ◦ F (f) if the functor is covariant, or F (g ◦ f) = F (f) ◦ F (g) if the functor is
contravariant.

Example. The forgetful functor from the category of groups to the category of sets which replaces
each group with the underlying set and views group homomorphisms simply as functions.

The main idea of algebraic topology is to associate to construct functors from the category of
topological spaces to various categories that arise in algebra: the category of groups, the category
of rings, the category of vector spaces.
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4.2 Homotopy and the fundamental group

4.2.1 The notion of homotopy

The idea of homotopy is to model more complicated types of connectedness, and to find ways of
distinuishing topological spaces. topological spaces. Throughout this chapter we will work with
locally path-connected spaces, and most of the time with path-connected spaces.

Examples. Domains in Rn.

Recall the way path components are defined. We say that x ∼ y in X if there is a path
f : [0, 1] → X such that f(0) = x and f(1) = y.

Here is a different way to state this, which is generalizable to other types of “connectivity”.
The point x can be thought of as a function fx : {0} → X. The fact that x ∼ y (i.e. x and y are
in the same path component) means that there is a continuous function F : {0} × [0, 1] → X such
that F |(0, 0) = fx and F |(0, 1) = fy. The set of path components is usually denoted by π0(X).

Now let us assume that X is path-connected. We want to look at other types of connectivity,
which record holes in the space. Here are some examples that explain why this is useful.

Example 1. Consider the differential equation

udx+ vdy = 0.

To solve this equation by integration, the differential form on the left should satisfy

∂u

∂y
=
∂v

∂x
.

If this condition holds, then we can find a function f such that df = udx+ vdy, and the equation
has the implicit solution f =constant. Well, not quite. The function f exists if the domain of
definition of the form has no “holes”, but otherwise f might not exist.

For example, for

− y

x2 + y2
dx+

x

x2 + y2
dy = 0,

we can ideed find f = arctan y
x , but... there is a problem when we cross the y-axis. There, f

becomes discontinuous.

Example 2. If f(z) is a holomorphic function on a domain D in the plane, and the loop Γ can be
shrunk to a point (in the domain), then

∫

Γ
f(z)dz = 0.

However, this is not necessarily true if Γ cannot be shrunk to a point. For example

∫

S1

1

z
dz = 2πi

for the function 1/z which is defined in C\{0}.

Definition. Two continuous maps f, g : X → Y are called homotopic if there is a continuous map
H : X × [0, 1] → Y such that H|X × {0} = f and H|X × {1} = g.
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Notation: f ∼ g.
In other words, two continuous maps f0, f1 : X → Y are homotopic if there is a (continuous)

path of continuous maps ft : X → Y that starts at f0 and ends at f1. If X is just one point, then
the homotopy is just a path, as we explained before.

Homotopy comes with a natural notion of equivalence between topological spaces.

Definition. Two topological spaces X and Y are called homotopically equivalent if there are maps
f : X → Y and g : Y → X such that g ◦ f is homotopic to idX and f ◦ g is homotopic to idY .

Notice that being homotopically equivalent is a weaker condition than being homeomorphic.

Definition. Let A be a subset of the topological space X and let f, g : X → Y be two continuous
maps such that f = g on A. We say that f and g are homotopic relative to A if there is a continuous
map H : X × [0, 1] → Y such that H|X × {0} = f , H|X × {1} = g and H|A× [0, 1] = f |A = g|A.

Notation: f ∼A g. If X = [0, 1], that is if f and g are paths, we denote the homotopic
equivalence of f and g relative to the endpoints by f ∼p g.

This notion of relative equivalence tells us to consider continuous maps between pairs of topo-
logical spaces in the following sense: if A ⊂ X and B ⊂ Y are topological spaces, then a continuous
map f : (X,A) → (Y,B) is a continuous map f : X → Y such that f(A) ⊂ B.

Proposition 4.2.1. The relations ∼ and ∼p are equivalence relations.

Proof. Let us show that ∼ is an equivalence relation. We have f ∼ f since H(x, s) = f(x) is a
homotopy between f and f . Also, if H(x, s) is a homotopy between f and g, then H ′(x, s) =
H(x, 1 − s) is a homotopy between g and f . Hence f ∼ g implies g ∼ f . Finally, if f ∼ g and
g ∼ h, with homotopies H(x, s) and H ′(x, s), then

H ′′(x, s) =

{
H(x, 2s), s ∈ [0, 1/2]
H ′(x, 2s− 1) s ∈ [1/2, 1]

is a homotopy between f and h, so f ∼ h.

Notation: We denote by [f ] the equivalence class of f .

Definition. Let f be a path from x0 to x1 and g a path from x1 to x2. Then the product of f and
g is

f ∗ g =

{
f(2t), t ∈ [0, 1/2]
g(2t− 1), t ∈ [1/2, 1].

Proposition 4.2.2. The product of paths factors to a product of homotopy equivalence classes of
paths relative to the endpoints.

Proof. It suffices to notice that if f ∼p f
′ and g ∼p g

′, with homotopies relative to the endpoints
H(t, s) respectively H ′(t, s), then

H ′′(t, s) =

{
H(2t, s), t ∈ [0, 1/2]
H ′(2t− 1, s) t ∈ [1/2, 1]

is a homotopy between f ∗ g and f ′ ∗ g′.

Definition. A groupoid is a category whose objects form a set and all of whose morphisms are
invertible.
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Theorem 4.2.1. The set of equivalence classes of paths relative to the endpoints is a groupoid,
meaning that the operation ∗ has the following properties:
(1) (associativity) if f(1) = g(0) and g(1) = h(0) then

[f ] ∗ ([g] ∗ [h]) = ([f ] ∗ [g]) ∗ [h].

(2) (left and right identities) Given x ∈ X, define ex : I → X, ex(t) = x. Then

[f ] ∗ [ef(1)] = [f ] = [ef(0)] ∗ [f ].

(3) Given [f ] there is a path [f̄ ] such that

[f ] ∗ [f̄ ] = [ef(0)], and [f̄ ] ∗ [f ] = [ef(1)].

Proof. (1) A homotopy between f ∗ (g ∗ h) and (f ∗ g) ∗ h is given by

H(t, s) =





f ((2s+ 2)t) t ∈ [0, 12 − s
4 ]

g (4t− 2 + s) t ∈ [12 − s
4 ,

3
4 − s

4 ]
h ((4− 2s)t− 3 + 2s) t ∈ [34 − s

4 , 1]

(2) A homotopy between ef(0) ∗ f and f is given by

H(t, s) =

{
f(0) t ∈ [0, 12 − 1

2s]

f
(

2
2−s t− s

2−s

)
t ∈ [12 − 1

2s, 1]

(3) A homotopy between ef(0) and f ∗ f̄ is given by

H(t, s) =

{
f(2st) t ∈ [0, 12 ]
f(2s(1− t)) t ∈ [12 , 1]

These three constructions can be schematically represented as in Figure 4.1, with x0 = f(0).

ex0
ex0

f

f

f

f

f fg

g

h

h

Figure 4.1:
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4.2.2 The definition and properties of the fundamental group

The central point of this chapter is the construction a functor from the category of path connected
topological spaces with one specified point to the category of groups.

Definition. A path whose endpoints coincide is called a loop. More precisely, if f : [0, 1] → X has
the property that f(0) = f(1) = x0, then f is called a loop based at x0.

Alternatively, a loop based at x0 can be identified with a map f : S1 → X, with f(1) = x0. As
such it is a continuous map (S1, 1) → (X,x0). In literature the set of loops is denoted by Ω(X,x0).
The point x0 is refered to as the base point.

From this moment on we fix the base point x0 and look at all loops based at x0. Recall the
equivalence relation of loops relative to the base point: two loops are called homotopic (relative to
the base point) if there is a continuous family of loops (with the same basepoint) that interpolate
between the two. As a corollary of Theorem 4.2.1 we obtain that the set of homotopy equivalence
classes of loops based at x0, denoted by π1(X,x0), is a group.

Definition. The group π1(X,x0) is called the fundamental group (or the first homotopy group) of
X at x0.

Remark 4.2.1. In the same way one can define the higher homotopy groups. One considers again
homotopy equivalence classes of continuous maps f : (Sn, p) → (X,x0), where p = (1, 0, 0, . . . , 0).
Then one defines the composition of f and g to be obtained by pinching the sphere along the
equator and thus obtaining two spheres, putting f on the upper sphere and g on the lower sphere.
This is an abelan group denoted by πn(X,x0) (the nth homotopy group). It is important to know
that the computation of all homotopy groups of spheres is one of the hardest problems in today’s
mathematics.

Theorem 4.2.2. Let X be a path connected space and x0 and x1 two points in X. Then π1(X,x0)
is isomorphic to π1(X,x1).

Proof. Let γ be a path from x0 to x1. Then the isomorphism between π1(X,x0) and π1(X,x1) is
given by

[f ] 7→ [γ̄] ∗ [f ] ∗ [γ].

The fact that this is a group homomorphism follows from

γ̄ ∗ f ∗ γ ∗ γ̄ ∗ g ∗ γ ∼p γ̄ ∗ f ∗ ex0 ∗ g ∗ γ ∼p γ̄ ∗ f ∗ g ∗ γ.

It is invertible, with the inverse given by [f ] 7→ [γ] ∗ [f ] ∗ [γ̄].

Definition. A path connected space is called simply connected if its fundamental group is trivial.

Definition. The loops in the equivalence class of ex0 are called null-homotopic.

So a space is simply connected if and only if all loops are null-homotopic.

Example 1. Any convex set in Rn is simply connected. In particular Rn is simply connected.
Indeed, let f : S1 → Rn is a loop in a convex set C, and let x0 be the base point. Then H(t, s) =
(1− s)f(t) + sx0 is a homotopy between f and the trivial loop based at x0.

Theorem 4.2.3. Sn is simply connected for n ≥ 2.
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Proof. We will do the proof only in the case n = 2, where it is easier to phrase. The other cases
are analogous.

Let f : (S1, 1) → (S2, x0) be a loop based at x0. We want to shrink the loop to a point by
pushing it away from a point that does not belong to it. In view of Theorem 3.3.3, f could pass
through every single point of S2. To fix this problem, we approximate it by a piece-wise linear loop
homotopic to it.

To construct this piece-wise linear loop, we use the fact that S1 is compact, which implies, by
Corollary 2.4.1, that f is uniformly continuous. So for every ǫ there is a positive integer n such that
the image of any interval of length 1/n lies inside a ball of radius ǫ. Choose ǫ < 1/4, divide [0, 1]
into n intervals of length 1/n and define a loop g : [0, 1] → S2 such that g|[ kn , k+1

n ] is the (shortest)

arc of a great circle connecting f( kn) with f(
k+1
n ). Because ǫ was chosen small enough, for each t

there is a unique arc of a great circle from f(t) to g(t). Parametrize this arc by its arc-length, then
rescale, to make it φt : [0, 1] → S2 (with the variable of φt being s).

Define H : [0, 1] × [0, 1] → S2, H(t, s) = φt(s). It is not hard to check that H is continuous,
because close-by points yield close-by arcs of great circles. Then H is a homotopy from f to g. So
the loop g is homotopic to f relative to the endpoint.

Now we will show that g is null homotopic. Let N ∈ S2 be a point that does not belong to the
image of g (such a point exists because the image of g is a finite union of arcs, hence has area zero
on the sphere). Then g : (S1, 1) → (S2\N, x0). We know that S2\N is homeomorphic to R2; let
h be the homeomorphism. The loop h ◦ g : (S1, 1) → (R2, h(x0)) is null homotopic because R is
simply connected. Let H ′ be the homotopy relative to the endpoints from h ◦ g and eh(x0). Then
H ′′(t, s) = h−1(H ′(t, s)) is a homotopy relative to the endpoints from g to ex0 . Hence g is null
homotopic, and so is f .

4.2.3 The behavior of the fundamental group under continuous transformations

Up to this point we have explained how to associate to each path-connected topological space X
with base-point x0 a group π1(X,x0). To complete the definition of the functor π1, we have to
show how it associates to continuous maps group homomorphisms.

Definition. Let g : (X,x0) → (Y, y0) be a continuous map. Define g∗ : π1(X,x0) → π1(Y, y0) by
g∗([f ]) = [g ◦ f ].

Proposition 4.2.3. (a) The map g∗ is well defined.
(b) If g : (X,x0) → (Y, y0) and h : (Y, y0) → (Z, z0) are continuous, then (h ◦ g)∗ = h∗ ◦ g∗.
(c) If 1X is the identity map of X, then (1X)∗ is the identity group homomorphism.

Proof. The fact that g∗ is well defined follows from the fact that if H is a homotopy relative to
the base point between the loops f and f ′ based at x0, then g ◦H is a homotopy relative to the
basepoint between the loops g ◦ f and g ◦ f ′.

For (b), we have (h ◦ g) ◦ f = h ◦ (g ◦ f) so

(h ◦ g)∗([f ]) = h∗([g ◦ f ]) = (h∗ ◦ g∗)([f ]).

Finally, (c) is obvious.

Now we know indeed that we have defined a functor

• (X,x0) topological space with base-point 7→ π1(X,x0) group;

• f : (X,x0) → (Y, y0) continuous map 7→ f∗ : π1(X,x0) → π1(Y, y0) group homomorphism.
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Proposition 4.2.4. If g, g′ : (X,x0) → (Y, y0) are homotopic (relative to x0), then g∗ = g′∗.

Proof. This follows from the fact that for every loop f based at x0, g ◦ f and g′ ◦ f are homotopic
relative to the basepoint.

Theorem 4.2.4. If X and Y are homotopy equivalent, then π1(X) is isomorphic to π1(Y ).

Proof. Let g : X → Y and h : Y → X be such that h ◦ g ∼ 1X and g ◦ h ∼ 1Y . We will show that
g∗ is an isomorphism. We will apply the following

Lemma 4.2.1. Let g : (X,x0) → (X,x1) be a map homotopic to the identity. Then g∗ :
π1(X,x0) → (X,x1) is a group isomorphism.

Proof. Let H : X × [0, 1] → X be the homotopy between 1X and g. Then for a loop f based
at x0 H ′(t, s) = H(f(t), s) is a homotopy between f and g ◦ f , but they are not homotopic
relative to the base point (they don’t even have the same base point). To fix this problem, let
γ(s) = H(x0, s) = H ′(0, s) be the path from x0 to x1 traveled by x0 during the homotopy. We will
show that g ◦ f ∼p γ̄ ∗ f ∗ γ.

The homotopy is

H ′′(t, s) =





γ̄(3st) t ∈
[
0, 13
]

H ′(3t− 1, 1− s) t ∈
[
1
3 ,

2
3

]

γ (3st+ (1− 3s)) t ∈
[
2
3 , 1
]
.

Using the lemma we obtain that g∗ ◦ h∗ and h∗ ◦ g∗ are group isomorphisms. Hence g∗ is both
one-to-one and onto, which implies that it is an isomorphism. This proves the theorem.

As a consequence of the theorem, the fundamental group defines a functor from the category
of homotopy equivalence classes of path-connected topological spaces to the category of groups.
So from the perspective of the fundamental group, spaces that are homotopy equivalent are in-
distinguishable. This is not so good because there are homotopy equivalent spaces that are not
homeomorphic (for example an annulus is homotopy equivalent to a circle).

Corollary 4.2.1. The spaces Rn\{0}, n ≥ 3 are simply connected.

Proof. We will show that Rn\{0} is homotopy equivalent to Sn−1 for all n ≥ 1.
To this end, consider the inclusion of Sn−1 in Rn\{0}, and the map r : Rn\{0} → Sn−1,

r(x) = x/‖x‖. Then r ◦ i = 1Sn−1 and i ◦ r ∼ 1Rn\{0}, with homotopy H(x, s) = x/‖x‖s.

In view of the proof of this result, we make the following definition.

Definition. If A ⊂ X, a retraction of X onto A is a continuous map r : X → A such that r|A = 1A.
In this case A is called a retract of X.

Proposition 4.2.5. If A is a retract of X, and i : A→ X is the inclusion, then i∗ : π1(A) → π1(X)
is a monomorphism and r∗ : π1(X) → π1(A) is an epimorphism.

Proof. We have r ◦ i = 1A, thus r∗ ◦ i∗ = 1π1(A). This implies that i∗ is one-to-one, and that r∗ is
onto.

There is a related notion.
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Definition. Let A be a subspace of X. We say that A is a deformation retract of X if 1X is
homotopic to a map that carries all X into A, such that each point of A remains fixed during the
homotopy. The homotopy is called deformation retraction.

Example 1. The circle is a deformation retract of C\{0}. The deformation retraction is H(z, s) =
z/|z|s.
Example 2. The figure eight is a deformation retract of the plane without two points, C\{−1

2 ,
1
2}.

Another deformation retract of the plane without two points, C\{− i
2 ,

i
2}, is S1 ∪ ({0} × [−1, 1]).

Proposition 4.2.6. Let A be a deformation retract of X. Then the inclusion map i : (A, x0) →֒
(X,x0) induces an isomorphism at the level of fundamental groups.

Proof. Let H : X × [0, 1] → X be the deformation retraction. Define r : X → A, r(x) = H(x, 1).
Then r ◦ i = 1A. On the other hand i ◦ r is homotopic to 1X , the homotopy being H itself. The
conclusion follows from Theorem 4.2.4.

4.3 The fundamental group of the circle

4.3.1 Covering spaces and the fundamental group

We will introduce now a useful tool for computing and studying the fundamental group of a space.
This construction was probably inspired by Riemann’s work on elliptic integrals, and the definition
of Riemann surfaces.

Definition. A continuous surjective map p : E → B is called a covering map if every point b ∈ B
has an open neighborhood U in B such that p−1(U) is a disjoint union of open sets in E and the
restriction of p to each of these open sets is a homeomorphism onto U . E is said to be a covering
space of B. This open neighborhood U is said to be evenly covered by p. The disjoint open sets in
p−1(U) are called slices.

Example 1. The map p : R → S1, p(x) = e2πix is a covering map.

Example 2. Define the space

X = R ⊔ (S1 × Z)/ ∼

where k ∼ (1, k). This is the real axis with a tangent circle at each integer. Let Y be the Figure 8
space defined in §1.3.7, which can be thought of as S1⊔S1/1 ∼ 1. The map p : X → Y , p(x) = e2πix

for all x ∈ R, where the image lies in the first S1, and p(z, k) = z for all z ∈ S1, k ∈ Z, where the
image lies in the second S1 is a covering map.

Proposition 4.3.1. (1) Let p : E → B be a covering map. If B0 is a subspace of B and E0 =
p−1(B0) then p|E0 : E0 → B0 is a covering map.
(2) Let p : E → B and p′ : E′ → B′ be covering maps. Then

p′′ : E × E′ → B ×B′

where p′′(e, e′) = (p(e), p′(e′)) is a covering map.
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Proof. (1) If b0 ∈ B0, there is an open set U in B such that p−1(U) is the disjoint union of open
sets Uα, α ∈ A such that p|Uα

: Uα → U is a homeomorphism for each α. The sets Uα ∩E0, α ∈ A
are open and disjoint in E0, and each of them is homeomorphic to U ∩ B0. This proves the first
part.

(2) For the second part, if p−1(U) = ∪αUα with Uα disjoint and each of them covers U and is
homeomorphic to it via p, and p−1(U ′) = ∪βU ′

β, where U
′
β are disjoint and each of them covers U ′

and is homeomorphic to U ′ via p′, then (p, p′)−1 = ∪α,βUα × U ′
β, and the products Uα × U ′

β are
disjoint and each covers U × U ′ and is homeomorphic to it via (p, p′).

Example 3. The map

p : R2 → S1 × S1,

p(x, y) = (e2πix, e2πiy) is a covering map.

Definition. Let p : E → B be a continuous surjective map, and let X be a topological space. If
f : X → B is continuous, then a lifting of f is a map f̃ : X → E such that p ◦ f̃ = f .

Theorem 4.3.1. (Path lifting lemma) Let p : (E, e0) → (B, b0) be a covering map. Then any path
f : [0, 1] → B beginning at b0 has a unique lifting to a path f̃ : [0, 1] → E beginning at e0.

Proof. Cover the path by open sets U that are evenly covered by p. Because [0, 1] is compact, so
is f([0, 1]), and by the Lebesgue number theorem (Theorem 2.4.5), there is n ≥ 1 such that the
partition of [0, 1] into n equal intervals has the image of each of this intervals lie inside an open
set evenly covered by p. Consider the first interval, [0, 1n ], and let U1 be an open set that contains
it and is evenly covered by p. Then the lift of f restricted to this interval must lie in the slice
V1 that contains e0 (since the slices are open and disjoint, and the path f̃ is connected). Because
p : V1 → U1 is a homeomorphism, f̃ |[0, 1n ] must equal p−1 ◦ f |[0, 1n ]. Thus the restriction of f to
this interval has a unique lifting that starts at e0.

We continue inductively. Let us assume that lifting f̃ |[0, kn ] exist and is unique. The lifting

of f |[ kn , k+1
n ] must start at f̃( kn). Let [ kn ,

k+1
n ] ⊂ Uk with Uk evenly covered by Vk. Then the

lift of f |[ kn , k+1
n ] must lie in the slice Vk that covers Uk and contains f̃( kn). We obtain again

f̃ |[ kn , k+1
n ] = p−1 ◦ f |[ kn , k+1

n ].

When k = n we obtain the entire lift f̃ , and the construction is unique.

Theorem 4.3.2. (Homotopy lifting lemma) Let p : (E, e0) → (B, b0) be a covering map. Let
H : [0, 1] × [0, 1] → B be a homotopy of the paths f and g with f(0) = g(0) = b0, relative to the
endpoints. Then there is a unique lifting of H to H̃ : [0, 1]× [0, 1] → E which is a homotopy relative
to the endpoints of the liftings of f and g that start at e0. Consequently f̃(1) = g̃(1).

Proof. The proof parallels that of Theorem 4.3.1. Using the fact that [0, 1] × [0, 1] and hence
H([0, 1] × [0, 1]) are compact, using the Lebesgue number theorem we can find n ≥ 1 such that
after dividing [0, 1]× [0, 1] into equal squares, the image of each square lies inside an open set evenly
covered by p.

We start with the square [0, 1n ]× [0, 1n ]. There is an open set U1 evenly covered by p such that
H([0, 1n ] × [0, 1n ]) ⊂ U1. Then the lift of H restricted to this square must lie in the slice V1 that

contains e0. Moreover, H̃|[0, 1n ]× [0, 1n ] must coincide with p−1◦H|[0, 1n ]× [0, 1n ] because p : V1 → U1

is an isomorphism. Hence the H restricted to this square has a lifting and this is unique.
Next we pass to [0, 1n ]× [ 1n ,

2
n ]. As above there is a unique lift H̃ of H restricted to this square

such that H̃(0, 1n) is as specified by the definition of H̃ on [0, 1n ]× [0, 1n ]. Because of Theorem 4.3.1,
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the two lifts of H|[0, 1n ] × { 1
n} that come from the two neighboring squares must coincide. So

H|[0, 1n ]× [0, 2n ] has a unique lifting to an H̃ such that H̃(0, 0) = e0.
If we travel through all the squares in lexicographical order ((i, j) < (k, l) if i < k or i = k and

j < l), we obtain the lift H̃ in an inductive manner.
Because H is continuous, and because the sets p−1(b0) and p−1(f(1)) are discrete, it follows

that H|{0} × [0, 1] and H|{1} × [0, 1] are constant, and hence H is a homotopy relative to the
endpoints.

Definition. Let p : (E, e0) → (B, b0) be a covering map. Given f a loop in B based at b0, let f̃
be its lifting to E starting at e0. The lifting correspondence is the map Φe0 : π1(B, b0) → p−1(b0),
Φe0([f ]) = f̃(1).

In view of Theorem 4.3.2, this map is well defined.

Theorem 4.3.3. Let p : (E, e0) → (B, b0) be a covering map. The lifting correspondence Φe0 is
surjective. If E is simply connected then Φe0 is a bijection.

Proof. Let e1 be a point in Φe0 . Consider a path f̃ : [0, 1] → E, such that f̃(0) = e0 and f̃(1) = e1.
Then f : [0, 1] → B, f = p◦f̃ is a loop in B with f(0) = b0, whose lift to E is f̃ . Then Φe0([f ]) = e1,
which proves surjectivity.

Assume now that E is simply connected. Let f and g be loops and B with liftings f̃ and
g̃ starting at e0, such that f̃(1) = g̃(1). Because E is simply connected, f̃ ∼ g̃. Let H̃ be the
homotopy relative to the end points. Then H = p ◦ H̃ is a homotopy relative to the base point
between f and g. This proves injectivity.

Example 4. Let us use this result to compute the fundamental group of the the Lie group SO(3)
of rotations in the three-dimensional space.

Note that a rotation is determined by a pair (~v, ψ), where ~v is a unit vector and ψ is the rotation
angle (between 0 and 2π). However, (~v, ψ) and (−~v,−ψ) determine the same rotation, so the map
F : S2 × [0, 2π) → SO(3), (~v, ψ) 7→ rotation of angle ψ about ~v is 2− 1. Moreover, if ψ = 0, then
the vector ~v is ambiguous.

Consider now the space S3 = R3 ∪ {∞}. Define the map p : S3 → SO(3), by p(~v)= counter-

clockwise rotation about ~v by the angle 4 arcsin ‖~v‖
1+‖~v‖ . When ~v = 0 or ∞, then the axis of rotation

is ambiguous, but the rotation angle is 0, respectively 2π, and so this does not matter, in both
cases the rotation is the identity map.

The map p is 2 − 1, 0 and ∞ go to the identity map, and if ~v 6= 0,∞, then ~v determines the
same rotation with the vector ~w which is of opposite orientation, and whose length is such that

arcsin
‖~v‖

1 + ‖~v‖ + arcsin
‖~w‖

1 + ‖~w‖ =
π

2
.

It is not hard to check that p is continuous. Because S3 is simply connected, Theorem 4.3.3 implies
that π1(SO(3)) has two elements. The only group with 2-elements is Z2. We conclude that

π1(SO(3)) = Z2.

The fact that SO(3) is not simply connected is responsible for the existence of the spin in
quantum mechanics. One of the elements of Z2 is spin up, the other is spin down.

Example 5. Because the map Sn → RPn which identifies the antipodes is 2− 1, and because Sn

is simply connected if n ≥ 2, it follows that

π1(RP
n) = Z2, n ≥ 2.
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4.3.2 The computation of the fundamental group of the circle

Theorem 4.3.4. The fundamental group of S1 is isomorphic to the additive group of integers.

Proof. Consider the covering map p : (R, 0) → (S1, 1), p(x) = e2πix. From Theorem 4.3.3 it follows
that the lifting correspondence is bijective, and we see that p−1(1) = Z. In particular, the loops
f : (S1, 1) → (S1, 1), fn(z) = zn, n ∈ Z give all equivalence classes in π1(S

1, 1). Because S1 is
a group (the group U(1) of rotations of the plane about the origin), it follows from Problem 4 in
Homework 5 that [zm][zn] = [zm+n] is the multiplication rule in π1(S

1, 1). Hence the map Φ1 is a
group isomorphism.

Corollary 4.3.1. The manifolds S1 and S2 are not homeomorphic.

This result can be used to compute the fundamental groups of other spaces.

Example. π1(C\{0}) = Z.
This follows from the fact that C\{0} ∼ S1 (see the proof to Corollary 4.2.1).

Corollary 4.3.2. The manifolds R2 and R3 are not homeomorphic.

Proof. Suppose that h : R2 → R3 is a homeomorphism. Then h : R2\{0} → R3\{h(0)} is a
homeomorphism as well. But

π1(R
2\{0}) = Z and π1(R

3\{0}) = {0},

by Theorem 4.3.4 and Corollary 4.2.1, so the two spaces cannot be homeomorphic.

4.3.3 Applications of the fundamental group of the circle

For simplicity, in what follows we will denote by B̄2 the closed unit disk. Also, a map will be called
null homotopic if it is homotopic to a constant map.

Lemma 4.3.1. Let f : S1 → S1 be a continuous map. The following are equivalent:
(1) f is null homotopic;
(2) there is a continuous map F : B̄2 → S1 such that F |S1 = f ;
(3) f∗ : π1(S

1, 1) → π1(S
1, f(1)) is the zero map.

Proof. (1) implies (2). Let H : S1 × [0, 1] → S1 be the homotopy between f and the trivial loop
g(e2πit) = 1 for all t. Define F (re2πit) = H(e2πit, r).

(2) implies (3). The composition of F and the inclusion i

(S1, 1)
i−→ (B̄2, 1)

F−→ (S1, f(1))

is just f . Hence f∗ = F∗ ◦ i∗, by Proposition 4.2.3. But F∗ is the zero map since the fundamental
group of B̄2 is the trivial group.

(3) implies (1). The loop defined by the map 1S1 is mapped by f to a null homotopic loop.
This means that f ◦ 1S1 = f is null homotopic.

Theorem 4.3.5. Given a non-vanishing continuous vector field on B̄2, there is a point of S1 where
the vector field points directly inwards and a point of S1 where it points directly outwards.
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Proof. Let v(z) be the vector field. Normalize it to a unit vector field by taking v(z)/‖v(z)‖. This
can be interpreted as a continuous function F : B̄2 → S1. By Lemma 4.3.1 the function f = F |S1

induces the trivial homomorphism at the level of the fundamental group.

Consider the standard covering map p : R → S1, view f as a map from [0, 1] to S1 and take
the unique lifting f̃ : [0, 1] → R such that f̃(0) ∈ [0, 1] (which exists by Theorem 4.3.1). By
Theorem 4.3.3, f̃(1) = f̃(0). The function g(t) = f̃(t)− t has the property that g(0) ≥ 0, g(1) ≤ 0;
by the Intermediate Value Property there is t ∈ [0, 1] such that g(t) = 0. Then f̃(t) = t, showing
that p(t) is a fixed point for f . At this fixed point the vector field points directly outwards.

To find a point where the vector field points inwards, replace the vector field by its negative
and apply this result.

Theorem 4.3.6. (The 2-dimensional Brouwer fixed-point theorem) If f : B̄2 → B̄2 is continuous,
then there is z ∈ B̄2 such that f(z) = z.

Proof. We will argue by contradiction. Assume that f has no fixed point. Then we can define a
continuous vector field by assigning to each z ∈ B̄2 the vector from z to f(z). By Theorem 4.3.5
there is z ∈ S1 where the vector field points directly outwards. But this is impossible since it would
mean that f(z) lies outside of the disk. Hence the conclusion.

Here is a physical application to Theorem 4.3.5. Consider a flat elastic patch that is a convex
region placed on top of a plane. If we stretch this patch and then release, there is a point that
does not move. Indeed, the force field of tensions in the rubber patch points inwards at each point
of the boundary, so there must be a point where this vector field is zero. In fact this is the fixed
point of Brower’s theorem, since as the patch shrinks it ends up inside the region it covered when
extended, but we see that moreover this point does not move during the contraction.

Proposition 4.3.2. Let A be a 3×3 matrix with positive entries. Then A has an eigenvector with
positive entries.

Proof. The set D = [0,∞)3 ∩ S2 is topologically a closed 2-dimensional disk. Define f : D → D,
f(v) = Av/‖Av‖. By Brouwer’s fixed point theorem f has a fixed point v0. Then Av0 = ‖Av0‖v0,
thus v0 is the desired eigenvector.

Remark 4.3.1. The Perron-Frobenius theorem in Rn states that any square matrix with positive
entries has a unique eigenvector with positive entries (up to a multiplication by a positive constant),
and the corresponding eigenvalue has multiplicity one and is strictly greater than the absolute value
of any other eigenvalue.

Theorem 4.3.7. (The Gauss-d’Alembert fundamental theorem of algebra) Every non-constant
polynomial with complex coefficients has at least one complex zero.

Proof. Let f(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 by the polynomial. By rescaling the variable we

may assume that |a0|+ |a1|+ · · ·+ |an−1| < 1. We will show that f(B̄2) contains 0.

Arguing by contradiction we assume that 0 6∈ f(B̄2). Then we can define the continuous
function G : B̄2 → S1, G(z) = f(z)/|f(z)|. By Lemma 4.3.1, g = G|S1 induces the trivial map at
the level of the fundamental group.

On the other hand

H(z, s) =
zn + san−1z

n−1 + · · ·+ sa1z + sa0
|zn + san−1zn−1 + · · ·+ sa1z + sa0|
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is a homotopy between g and zn. But zn is not null homotopic because it induces the map k 7→ nk
at the level of the fundamental group. This is a contradiction, which proves that 0 ∈ f(B̄2). We
are done.

Theorem 4.3.8. (The Borsuk-Ulam theorem) Every continuous map from the 2-dimensional
sphere to the plane maps some pair of antipodal points to the same point.

Proof. Let us assume that this is not true, namely that there is a map f : S2 → R2 such that
f(x) 6= f(−x) for all x ∈ S2. Then we can define the map G : S2 → S1 as the unit vector parallel
to the vector from f(x) to f(−x). Intersecting S2 by R2 ×{0} gives a circle, and by restriction we
obtain a map g : S1 → S1 with g(−z) = −g(z). Because g extends to the upper hemisphere, which
is a disk, g is null-homotopic.

Returning to the theorem, think of g as a map from [0, 1] to S1 and lift it to a map g̃ :
[0, 1] → R. Because g is null homotopic, g̃(0) = g̃(1). By the 1-dimensional Borsuk-Ulam theorem
(Theorem 2.3.6), there are diametrically opposite points z and −z for which g̃ takes the same value.
It follows that g(z) = g(−z) which contradicts g(−z) = −g(z). Hence our initial assumption is
false. The conclusion follows.

4.4 The structure of covering spaces

In what follows all topological spaces will be assumed path connected, unless otherwise specified.

4.4.1 Existence of covering spaces

In this section we will introduce a method for constructing covering spaces. The idea should
probably be attributed to B. Riemann; this is how Riemann surfaces are constructed. In a historical
perspective, the question was that of studying an integral of the form

∫
R(x, y)dx, where R is a

rational function, and y is defined implicitly in terms of x by a polynomial equation P (x, y) = 0.
Riemann’s idea, based on insights of Abel and Jacobi, was to shift to complex variables x 7→ z,
y 7→ w. The function w is defined implicitly by P (z, w) = 0, and as such lives naturally on a
Riemann surface. Then we are supposed to study line integrals on a Riemann surface. Aha, so
Riemann surfaces and line integrals come together! But then line integrals themselves are used to
build the Riemann surface: choose a reference point in the plane, and then a point b in the plane
is covered by several points on the Riemann surface, and those points are defined by the different
values of the line integrals on various paths joining the reference point with b. Cauchy’s theorem
tells us that different values are obtained when paths have holes between them, and so we arrive
at topology. Now we take out the complex analysis, and keep just the topological skeleton. And
we have the construction below.

This method of constructing covering spaces works for all topological spaces of interest to us.
However, one should keep in mind that there are pathological topological spaces for which the
construction fails. We will impose the space to be semilocally simply connected:

Definition. A space B is called semilocally simply connected if for each b ∈ B, there is a neigh-
borhood U of b such that the homomorphism

i∗ : π1(U, b) → π1(B, b)

induced by inclusion is trivial.
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Example All manifolds have this property, and in particular any space in which all points have
simply connected neighborhoods.

Theorem 4.4.1. Let B be path connected, locally path connected, and semilocally simply con-
nected. Let b0 ∈ B. Given a subgroup H of π1(B, b0), there exists a path connected, locally path
connected space E with a covering map p : E → B, and a point e0 ∈ p−1(b0) such that

p∗(π1(E, e0)) = H.

Proof. • Construction of E

On the set of all paths in B beginning at b0 we define an equivalence by

α ∼ β if and only if α(1) = β(1) and [α ∗ β̄] ∈ H.

We denote the equivalence class of α by α̂. We define E to be the set of equivalence classes, and
e0 the equivalence class of the constant path eb0 . The covering map p : E → B is defined by the
equation

p(α̂) = α(1).

Since B is path connected, p is onto.

From the fact that H contains the identity element it follows that this equivalence relation is
coarser than homotopy relative to the endpoints.

Also, if α ∼ β then α ∗ δ ∼ β ∗ δ for any path δ for which this makes sense.

Now we give E a topology. A basis for this topology consists of

B(U,α) = {α̂ ∗ δ | δ is a path in U beginning at α(1)}.

Let us prove that this is indeed a basis for a topology.

(1) First note that α̂ ∈ B(U,α), since we can choose δ to be the trivial path. By varying α, we
find that the sets B(U,α) cover E, hence the first condition is satisfied.

Let us now show that if β̂ ∈ B(U1, α1) ∩B(U2, α2) then there is B(U3, α3) such that

β̂ ∈ B(U3, α3) ⊂ B(U1, α1) ∩B(U2, α2).

Note that β(1) belongs to the intersection of U1 and U2. We choose U3 = U1 ∩U2 and α3 = β. We
trivially have

B(U3, β) ⊂ B(U1, β) ∩B(U2, β),

and the conclusion would follow if we showed that B(Ui, β) ⊂ B(Ui, αi), i = 1, 2. In fact much
more is true, as the following lemma shows.

Lemma 4.4.1. If β̂ ∈ B(U,α) then B(U,α) = B(U, β).

Proof. Write β = α ∗ δ and note that α = β ∗ δ̄. Thus α̂ ∈ B(U, β).

On the other hand, if γ ∈ B(U, β), then γ = β ∗ δ′, and since β = α∗ δ, then γ = α∗ δ ∗ δ′. Thus
γ ∈ B(U,α). Thus B(U, β) ⊂ B(U,α). The first part of the proof implies the reverse inclusion and
we are done.
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• p : E → B is a covering map

We first check that p is continuous and maps open sets to open sets.

Indeed, let U be an open set in B and α̂ a point in p−1(U). We will show that α̂ has a
neighborhood that maps inside U . Let V be a path connected neighborhood such that p(α) ∈ V ⊂
U . Then B(V, α) is a neighborhood of α̂ that is mapped inside U . This proves continuity. As for
the rest, note that p(B(V, α)) = V .

Now let us show that every point b ∈ B has an open neighborhood that is evenly covered by p.
Here is where we use the fact that B is semilocally simply connected. Choose the open neighborhood
of U such that the homomorphism π1(U, b) → π1(B, b) induced by inclusion is trivial.

We will show that the set p−1(U) is the union of all sets of the form B(U,α), where α ranges
over all paths in B from b0 to b. As we saw, p maps B(U,α) to U , so the preimage contains all
these sets. On the other hand, if β̂ is in p−1(U), then β(1) ∈ U . Let α = β ∗ δ̄, where δ is a path
in U from b to β(1). Then β̂ ∈ B(U,α). This proves the converse inclusion.

If β̂ ∈ B(U,α1) ∩ B(U,α2) then B(U,α1) = B(U,α2) = B(U, β) by Lemma 4.4.1. So the sets
B(U,α) either coincide or are disjoint.

We now show that p : B(U,α) → U is a homeomorphism. We know that the map is onto, so
let us check that it is one-to-one. If

p(α̂ ∗ δ) = p(α̂ ∗ δ′)

then δ(1) = δ′(1), and the loop δ ∗ δ̄′ is null homotopic (in B), because it lies in U . Then [α ∗ δ] =
[α ∗ δ′], and the same is true for the coarser equivalence relation: α̂ ∗ δ = α̂ ∗ δ′. Using also the fact
that p maps open sets to open sets, we conclude that its restriction to B(U,α) is a homeomorphism.

• E is path connected

Let α̂ be a point in E. Define f : [0, 1] → E, f(s) = α̂s, where αs(t) = α(st). Then f is a
path from e0 = êb0 to α̂, which proves that E is path connected. But we need to check that f is
a continuous function. So let us check that for any open set of the form B(U, β), f−1(B(U, β)) is
open in [0, 1]. If s0 is a point in the preimage, then αs0 is in the same equivalence class as some
β ∗ δ with δ a path in U . Because β ∗ δ and αs0 have the same endpoint, it follows that αs0(1) ∈ U .
Because U is open, αs(1) = α(s) ∈ U for s in an open interval containing s0. Augmenting to β ∗ δ
the path from α(s0) to αs (running along α), we deduce that α̂s ∈ B(U, β) for all these s. This
shows that p−1(B(U, β)) contains an entire open interval around s0, and since s0 was arbitrary,
this set is open. This proves continuity.

• p∗(π1(E, e0)) = H.

Consider a loop α in B based at b0. Then we can lift it to a path α̃ in E by considering the
paths obtained by travelling partially around α. Note that the lift is unique. Explicitly, α̃(s) = αs
for s ∈ [0, 1], where αs(t) = α(st).

α ∈ p∗(π1(E, e0)) can be rephrased by saying that α̃ is a loop. The fact that α̃ is a loop is
equivalent to the fact that α̃(0) = α̃(1), i.e. êb0 = α̂. This is equivalent, by definition, to α ∈ H.
Hence the conclusion.

The next result shows that additional requirement that B be semilocally simply connected is
necessary, at least in the case H = {e}.

Proposition 4.4.1. Assume that there is a covering map p : E → B with E simply connected.
Then B is semilocally simply connected.
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Proof. Choose U and open set that is evenly covered by p. Then U has the desired property.
Indeed, if α is a loop in U , its lift to one of the slices is null-homotopic in E. Projecting the
homotopy to B we obtain a homotopy in B between α and the trivial loop. Thus i∗(α) = 0, as
desired.

4.4.2 Equivalence of covering spaces

The main result in the previous section allows us to construct many covering spaces, but some of
these constructions are equivalent.

Definition. Two covering maps p : E → B and p′ : E′ → B are called equivalent if there is a
homeomorphism h : E → E′ that makes the following diagram commute:

E
h−→ E′

p

ց
p′

ւ
B

Equivalence is the analogue of group isomorphism; the spaces are the same, they are only
denoted differently. In order to adress the equivalence problem for the covering spaces of a given
space, we need the following result.

Theorem 4.4.2. (The general lifting lemma) Let p : (E, e0) → (B, b0) be a covering map, and
f : (Y, y0) → (B, b0) be a continuous map, with Y path connected and locally path connected. The
map f can be lifted to f̃ : (Y, y0) → (E, e0) if and only if

f∗(π1(Y, y0)) ⊂ p∗(π1(E, e0)).

Furthermore, if such lifting exists, it is unique.

Proof. The condition is necessary since p ◦ f̃ = f implies

f∗(π1(Y, y0)) = p∗(f̃∗(π1(Y, y0)) ⊂ p∗(π1(E, e0)).

To show that the condition is sufficient, recall the Path Lifting Lemma 4.3.1, which is the
particular case of this result when Y is an interval. Since Y is path connected, we can cover it
with a “star” of paths starting at y0, lift f restricted to each path individually, then check that the
result yields the desired lifting of f on the whole Y .

For the rigorous construction, let y ∈ Y and α a path from y0 to y. Then f ◦ α is a path from
f(y0) = b0 to f(y). Lift this to a path β from e0 to some z ∈ E, and define f̃(y) = z. Note that by
the uniqueness of the path lifting, we are obliged to define the lift of f this way, which proves the
uniqueness of f̃ .

We have to show that f̃ is well defined and continuous. Let us assume that we have another
path α′ from y0 to y. Then f ◦ α′ is a different path from b0 to f(y), which lifts to some path β′

from e0 to some z′ ∈ E. Note that (f ◦α)∗ (f ◦ α′) is a loop in f∗(π1(Y, y0)), hence in p∗(π1(E, e0)).
Thus we can lift it to a loop in E. For this loop to “close up”, we need z = z′, so f̃ is well defined.

Let us check continuity. Given a point y ∈ Y , let b = f(y), U an open neighborhood of b evenly
covered by p, and V the slice containing f̃(y). The set f−1(U) is an open neighborhood of y, and
on this set f̃ = (p|V )−1 ◦ f which is continuous being a composition of continuous functions. The
theorem is proved.
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Theorem 4.4.3. Let p : (E, e0) → (B, b0) and p′ : (E′, e′0) → (B, b0) be covering maps. Then
there is a homeomorphism h : E → E′ such that h(e0) = e′0 establishing an equivalence of covering
maps if and only if the groups

H = p∗(π1(E, e0)) and H ′ = p′∗(π1(E
′, e′0))

are equal. If h exists, it is unique.

Proof. If h exists, then

p′∗(π1(E
′, e′0)) = p′∗(h∗(π1(E, e0)) = p∗((π1(E, e0))

so H = H ′.

For the converse, we apply the General lifting lemma 4.4.2. The trick is to turn “on one side”
the diagram defining equivalence:

E′

h
ր ↓ p′

E
p−→ B

As such, for Y = E, f = p and the covering map p′ : E′ → B. Let h : (E, e0) → (E′, e′0) be the
lift of p obtained this way. We claim that it is the desired homeomorphism.

To prove that this is a homeomorphism, let h′ : (E′, e′0) → (E, e0) be the map obtained by
switching the roles of E and E′. Note that the map h′ ◦ h satisfies the conditions of the General
lifting lemma for Y = E, f = p and p : E → B. So does the map 1E . By uniqueness h′ ◦ h = 1E .
Similarly h ◦ h′ = 1E′ .

Finally, the uniqueness of h is guaranteed by the General lifting lemma, since the fact that the
diagram is commutative is a way of saying that h is a lifting of p.

In fact we can do better than this, we can prove a result which does not involve base points.

Theorem 4.4.4. Let p : (E, e0) → (B, b0) and p′ : (E′, e′0) → (B, b0) be covering maps. Then
there is an equivalence relation h : E → E′ if and only if the groups

H = p∗(π1(E, e0)) and H ′ = p′∗(π1(E
′, e′0))

are conjugate in π1(B, b0).

Recall that two subgroups H1 and H2 of a group G are called conjugate if there is α ∈ G such
that H2 = αH1α

−1.

Proof. As in the case of the previous result, let us prove first the necessity. If e′1 = h(e0), then by
Theorem 4.4.3 p∗(π1(E, e0)) = p′∗(π1(E

′, e′1)). If β is a path from e′1 to e
′
0 in E

′, then, because e0, e
′
0

and e′1 sit above the same point in B, α = p ◦ β is a loop, and p′∗(π1(E
′, e′1)) = αp′∗(π1(E

′, e′0))α
−1.

To do the converse, we do this construction in reverse. If H ′ = αHα−1 let β be the lift of α
starting at e′0, and set e′1 = β(1). Then p′∗(π1(E

′, e′1)) = α−1π′∗(π1(E
′, e′0))α = π∗(π1(E, e0)), so we

are in the conditions of Theorem 4.4.3, and the conclusion follows.
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Thus, the covering spaces of a given space are in one-to-one correspondence with the conjugacy
classes of subgroups of its fundamental group.

Example 1. The projective space RPn has the fundamental group equal to Z2, so it has only two
covering spaces, the projective space itself and the sphere Sn.

Example 2. The covering spaces of the plane without a point C\{0} are in one-to-one correspon-
dence with the subgroups of Z. These subgroups are of the form mZ, m ≥ 0. The corresponding
covering spaces are the Riemann surfaces of the function z 7→ m

√
z if m > 0, and the Riemann

surface of the function z 7→ ln z if m = 0.

Example 3. The fundamental group of the torus S1×S1 is Z⊕Z, which is abelian, so its covering
spaces are in 1 − 1 correspondence with the subgroups of this group, namely with mZ ⊕ nZ,
m,n = 0, 1, 2, 3, . . .. These covering spaces are tori, if m,n > 0, cylinders, if m = 0 or n = 0 but
not both, or R2 if m = n = 0.

The subgroups of the fundamental group form a lattice under inclusion. To this lattice corre-
sponds a lattice of covering spaces, as the next result shows.

Proposition 4.4.2. Let H,H ′ be subgroups of π1(B, b0) such that H ′ is a subgroup of H. Let
also p : (E, e0) → (B, b0) and p′ : (E′, e′0) → (B, b0) be the coverings associated to H respective
H ′. Then there is a unique covering map p′′ : (E′, e′0) → (E, e0), that makes the following diagram
commutative:

E′ p′′−→ E
p′

ց
p

ւ
B

Proof. The existence and uniqueness of the map p′′ follow from the General lifting lemma (Theo-
rem 4.4.2) applied to f = p′, Y = E′ and the covering map p : E → B.

To show that p′′ is a covering map, choose e ∈ E. Let U be an open subset of B that is evenly
covered by E and contains p(e) and V the slice of E that lies above it containg e. Let U ′ be an
open set of B containing p(e) that is evenly covered by p′. Taking U ∩ U ′ for both U and U ′, we
may assume that U = U ′. In that case for each slice W of E′ that lies above U and maps through
p′′ to V the map p′′−1 : V →W is defined as p′′−1 = p′−1 ◦ p.

At the very top of the lattice of covering spaces sits the covering space corresponding to the
trivial subgroup of the fundamental group, which is simply connected. It is also the unique simply
connected covering space up to equivalence.

Definition. The unique simply connected covering space of a path connected, locally path con-
nected, semilocally simply connected space B is called the universal covering space of B.

Remark 4.4.1. All covering spaces in the lattice of a given space B have the same universal covering
space, namely the covering space of B. It is in this sense that the covering is universal.

4.4.3 Deck transformations

We assume again that all spaces are path connected and locally path connected. This section is
about the symmetries of a covering space.
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Definition. Given a covering map p : E → B, a deck transformation (or covering transformation)
is a homeomorphism h : E → E such that p ◦ h = p.

Another way to say this is that a deck transformation is an equivalence of a covering with itself.
Deck transformations form a group, the deck transformation group, which we denote by Aut(p).

A deck transformation induces a permutation of the elements of each fiber p−1(b). Thus the
group of deck transformation acts on the fibers. Because of the uniqueness of path lifting, if h is
not the identity map, then the action of h has no fixed points. For the same reason, the action
is free (i.e. the only map that acts as identity on a fiber is h = 1E). If the action is transitive in
one fiber (meaning that for every e, e′ ∈ p−1(b) there is h ∈ Aut(p) such that h(e) = e′), then it is
transitive in all fibers.

Definition. A covering for which the group of deck transformations acts transitively in each fiber
is called regular.

Example 1. The universal covering of the circle p : R → S1, p(x) = e2πix is regular. The group
of deck transformations is the group of integer translations in R, which is Z. In fact we have used
the group of deck transformations of this cover in the computation of the fundamental group of the
circle in §4.3.2.

Given a covering map p : (E, e0) → (B, b0), recall the lifting correspondence Φe0 : π1(B, b0) →
p−1(b0) defined in §4.3.1.
Lemma 4.4.2. Let H = p∗(π1(E, e0)). The lifting correspondence induces a bijective map

Φe0 : π1(B, b0)/H → p−1(b0)

where π1(B, b0)/H is the collection of the right cosets of the group H.

Proof. Assume that Φe0(f) = Φe0(g) for some loops f and g based at b0. Then f ∗ ḡ is a loop
based at b0 that lifts to a loop in E based at e0. Thus [f ∗ ḡ] ∈ H, and [f ] = [f ∗ ḡ][g] implies
[f ] ∈ H[g].

Working with f̄ ∗ g instead, we obtain the same conclusion with righ cosets replaced by left
cosets.

The group of deck transformations defines a map Ψe0 : Aut(p) → p−1(b0), by Ψe0(h) = h(e0).
Since h is uniquely determined once its value at e0 is known, Ψe0 is injective.

Lemma 4.4.3. The image of Ψe0 is equal to Φe0(N(H)/H), where N(H) is the normalizer of H,
namely the group of all deck transformations h for which hHh−1 = H.

Proof. Recall that Φe0([α]) = α̃(1), where α̃ is the lift of α starting at e0. Hence we have to show
that there is h ∈ Aut(p) such that h(e0) = α̃(1) if and only if α ∈ N(H).

By Theorem 4.4.3, h exists if and only if H = p∗(π1(E, h(e0))). But, as in the proof of The-
orem 4.4.4, H = [α] ∗ p∗(π1(E, e0)) ∗ [α]−1. Thus h exists if and only if H = [α] ∗ H ∗ [α]−1, i.e.
α ∈ N(H).

Note that although π1(B, b0)/H does not have a group structure, N(H)/H does. This is because
H is normal in N(H).

Theorem 4.4.5. The bijection

Φ−1
e0 ◦Ψe0 : Aut(p) → N(H)/H

is a group isomorphism.
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Proof. The fact that this map is bijective follows from Lemma 4.4.3. To check that it is a group
homomorphism, note that Φ−1

e0 ◦Ψe0 maps h to the class of a loop α in N(H)/H such that α̃(1) =
h(e0). If h, h′ ∈ Aut(p), and if α and α′ are representatives of the corresponding classes of paths,
then the unique lift of α′ that starts at h(e) ends at h′(h(e)), so the path α ∗ α′ is the path that
corresponds to h′ ◦ h, which shows that

Φ−1
e0 ◦Ψe0(h

′ ◦ h) = Φ−1
e0 ◦Ψe0(h

′) ∗ Φ−1
e0 ∗Ψe0(h).

Also it is not hard to see that the identity deck transformation is mapped to the (class of the)
trivial loop. This proves that the map is a group homomorphism and the conclusion follows.

Corollary 4.4.1. The group H is normal in π1(B, b0) if and only if the covering is regular. In this
case N(H) = π1(B, b0) and there is an isomorphism

Φ−1
e0 ◦Ψe0 : Aut(p) → π1(B, b0)/H.

Corollary 4.4.2. If E is the universal cover of B, then Aut(p) is isomorphic to π1(B, b0).

Definition. Given a group of homeomorphisms acting on a space X, we define the orbit space to
be the quotient space by the equivalence relation x ∼ g(x), x ∈ X, g ∈ G. The equivalence class of
x is called the orbit of x.

Definition. The action of a group G of homeomorphisms on a space X is called properly discon-
tinuous, if for every x ∈ X there is an open neighborhood U of x such that for every g1, g2 ∈ G,
g1 6= g2, the sets g1(U) and g2(U) are disjoint.

Theorem 4.4.6. Let G be a group of homeomorphisms of a path connected, locally path connected
space E. Then the quotient map π : E → E/G is a covering map if and only if the action of G is
properly discontinuous. In this case π is regular, and G is its group of deck transformations.

Moreover, if p : E → B is a regular covering map, and G its group of deck transformations,
then there is a homeomorphism f : E/G→ B such that p = f ◦ π.

Proof. The fact that on E/G we put the quotient topology makes π both continuous and open.

First, if π is a covering map, then the action is properly discontinuous. Indeed, if b ∈ E/G,
then π−1(b) = {g(x) | g ∈ G} for some x. If V is an open neighborhood of b that is evenly covered,
then π−1(V ) is the disjoint union of slices of the form g(U), where U is some open neighborhood
of x, and therefore the sets g(U), g ∈ G are disjoint from each other.

Conversely, if the action is properly discontinuous, then for each open set U such that the sets
g(U), g ∈ G are disjoint, the set π(U) is evenly covered (with slices the sets g(U)). So π is a
covering map.

Now let us show that G is indeed the group of covering transformations. Certainly any g ∈ G
defines a covering equivalence, because the orbit of x is the same as the orbit of g(x). On the other
hand, if h maps x1 to x2, then these belong to the same orbit, so there is g such that h(x1) = g(x1).
The uniqueness in Theorem 4.4.3 implies that h = g.

Finally, π is regular because G acts transitively on orbits.

To prove the second part, notice that p is constant on each orbit, and so it induces a continuous
map f : E/G → B. Also π factors to a continuous map B → E/G. It is not hard to see that this
is the inverse of f , and we are done.
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Example 2. The real projective space RPn arises as the properly discontinuous action of Z2 on
the sphere Sn.

Example 3. A family of topological spaces that arise as quotients of a space by a group action
that is properly discontinuous are the lens spaces. They arise as quotients of S3 by a finite cyclic
group. Specifically, let n, k be positive integers, and consider

S3 = {(z1, z2) | |z1|2 + |z2|2 = 1} ⊂ C3}

with the Zn-action given by

m̂(z1, z2) =
(
e2πim/nz1, e

2πimk/nz2

)
, m̂ ∈ Zn.

This action is properly discontinuous, because one of z1 or z2 has the absolute value at least
√
2/2,

and when you rotate it in the plane you move it at some distance from itself.
The quotient is a 3-dimensional manifold L(n, k), called lens space. Note that L(2, 1) is the

3-dimensional real projective space RP 3.
By Corollary 4.4.2, π1(L(n, k)) = Zn. In particular, if n 6= n′ then L(n, k) is not homeomorphic

to L(n′, k′). We thus deduce the existence of infinitely many 3-dimensional manifolds that are not
homeomorphic to each other.

Example 4. The computation of the fundamental group of the figure eight.
Let B be the figure eight. Consider the x and y-axes in the plane, and at each point of integer

coordinates glue another copy of the real axis, with the zero at the point. Now you have infinitely
many real axes. At each integer of these axes glue another copy of the real axis (at its origin). Keep
repeating forever. At each stage you have a topological space, and it is not hard to see that the
final result can be given the structure of a topological space itself. Call this space E. It is simply
connected.

Now consider the maps that send this space to itself so that the restriction to any line is an
isometry to the image of that line (which is another line). This is a group G that acts properly
discontinuously. The quotient E/G is homeomorphic to B, and we obtain the covering map E →
E/G = B. The group of deck transformations is isomorphic to π1(B) and this group is F2, the free
group on 2 elements.

4.5 The Seifert-van Kampen theorem

4.5.1 A review of some facts in group theory

Given a family of groups {Gα}α∈A, consider all words whose “letters” are elements of these groups.
Next we reduce these words by the following two operations:

(1) identify all identity elements.
(2) any consecutive letters belonging to the same group should be replaced by their product.

As such we obtain reduced words, in which consecutive letters belong to different groups. Two
words are multiplied by juxtaposition followed by reduction. The common identity element acts as
identity for this multiplication.

Definition. The free product of the groups Gα, α ∈ A, denoted by ∗α∈AGα, is the group of reduced
words with the multiplication defined above.

Note that the group Gα embeds naturally in the free product as the set of all words consisting
of one letter which letter is in Gα.
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Proposition 4.5.1. Let G = ∗αGα. Given group homomorphisms hα : Gα → H, where H is some
group, there is a unique group homomorphism h : G → H such that h|Gα

= hα. Conversely, if G
contains all Gα and this property holds for any group H, then G is the free product.

Definition. The free product of several copies of Z is called a free group.

Free groups are universal in the following sense. Let G be an arbitrary group, and {gα} a set
of generators (which could be all elements of G). Then for each generator there is a group homo-
morphism hα : Z → G, hα(k) = gkα. By the previous proposition there is a group homomorphism
h : ∗αZ → G. If N is the kernel of h, then

∗αZ/N ≃ G.

Definition. The description of a group G as the quotient of a free group by a normal subgroup is
called a presentation of G. The generators of the normal subgroup are called relators.

If the normal subgroup has finitely many elements, the presentation is called finite. A group
that is finitely generated and finitely presented is usually written as

G = 〈g1, g2, . . . , gm |β1, β2, . . . , βn〉

where the gi’s are the generators, and the βi’s are the relators. Note that the βi’s are words in the
gi’s.

Example.

Z = 〈g | 〉
Zn = 〈g | gn〉
Z2 =

〈
g1, g2 | g1g2g−1

1 g−1
2

〉

K =
〈
a, b, c | a2, b2, c2, abc−1, bca−1, cab−1

〉
.

where K is the Klein 4-group, i.e. the group of symmetries of a rectangle.

As we will see below, the Seifert-van Kampen Theorem yields a group presentation of the
fundamental group. There is a downside to this, there does not exist an algorithm that decides if
two presentations give the same group. This is a theorem!

The groups that make up the free product do not intersect. But what if these groups overlap?
We consider only the case of two groups, and make the following definition.

Definition. Given the groups G1, G2 and H, and the group homomorphisms φ1 : H → G1,
φ2 : H → G2, we define the free product with amalgamation to be

G1 ∗H G2 = (G1 ∗G2)/N

where N is the smallest normal subgroup of G1 ∗G2 containing all elements φ1(h)φ2(h)
−1, h ∈ H.

Note that Gk →֒ G1 ∗G2 → G1 ∗H G2 defines a natural map jk : Gk → G1 ∗H G2, k = 1, 2.
One usually thinks of H as being a common subgroup of G1 and G2, and φ1, φ2 as being the

inclusion homomorphisms.

Example 2. If

G1 = 〈u1, . . . , uk |α1, . . . , αl〉
G2 = 〈v1, . . . , vm |β1, . . . , βn〉
H = 〈w1, . . . , wp | γ1, . . . , γq〉
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then the amalgamated product is

G1 ∗H G2 =
〈
u1, . . . , uk, v1, . . . , vm |α1, . . . , αl, β1, . . . , βn, i1∗(w1)i2∗(w1)

−1, . . . , i1∗(wp)i2∗(wp)
−1
〉

The free product with amalgamation also has a universality property, stated in the following
proposition.

Proposition 4.5.2. Given the groups G1, G2 and H, and the group homomorphisms φk : H → Gk,
k = 1, 2, consider G1 ∗H G2. Given a group G and group homomorphisms ψk : Gk → G, k = 1, 2,
such that ψ1 ◦ φ1 = ψ2 ◦ φ2, there is a unique group homomorphism Φ : G1 ∗H G2 → G such that
Φ ◦ jk = ψk, k = 1, 2. Moreover, G′ is a group for which this property holds for every group G,
then G′ = G1 ∗H G2.

4.5.2 The statement and proof of the Seifert-van Kampen theorem

Theorem 4.5.1. (Seifert-van Kampen theorem, modern version) Let X = U1 ∪ U2 where U1

and U2 are open in X, such that U1, U2, U1 ∩ U2 are path connected, and let x0 ∈ U1 ∩ U2.
Consider the homomorphisms ik∗ : π1(U1 ∩ U2, x0) → π1(Uk, x0) and jk∗ : π1(Uk, x0) → π1(X,x0)
induced by the inclusion maps, k = 1, 2. If G is a group and φk : π1(Uk, x0) → G, k = 1, 2,
are group homomorphisms such that φ1 ◦ i1∗ = φ2 ◦ i2∗, then there is a unique homomorphism
Φ : π1(X,x0) → G such that Φ ◦ j1∗ = φ1 and Φ ◦ j2∗ = φ2.

The result states that if φ1 and φ2 coincide on U1 ∩U2 then they induce a homomorphism from
π1(X,x0) to G.

Proof. First let us prove the following result.

Lemma 4.5.1. Suppose X = U1 ∪ U2 where U1 and U2 are open subsets of X such that U1 ∩ U2

is path connected. Consider x0 ∈ U1 ∩ U2. If ik : Uk → X, k = 1, 2 are the inclusion maps then
i1∗(π1(U1, x0)) and i2∗(π1(U2, x0)) generate π1(X,x0).

Proof. Let f be a loop in X. Using the Lebesgue number theorem (Theorem 2.4.5), we can find
a subdivision a0 = 0 < a1 < · · · < an = 1 of [0, 1] such that f([al, al+1]) lies entirely in one of the
sets Uk. By joining consecutive intervals whose images lie in the same Uk, we may assume that
for each l, f([al, al+1]) and f([al−1, al]) lie in different Uk’s. It follows that f(al) ∈ U1 ∩ U2 for
l = 1, 2, . . . , n − 1. Also f(a0) = f(an) = x0. Consider paths γl, l = 0, 1, 2, . . . , n from x0 to f(al)
inside U1 ∩ U2 (γ0 = γn = ex0). If we denote fl = γl ∗ f |[al,al+1] ∗ γl+1, then

[f ] = [f1] ∗ [f2] ∗ · · · ∗ [fn−1].

Of course, [fl] is either in U1 or U2, which proves the lemma.

Because of Lemma 4.5.1, Φ is completely determined if we know where it maps loops that lie
entirely in U1 or U2. This proves uniqueness.

Let us prove existence. To avoid ambiguities, we use indices for homotopy equivalence classes,
to specify in which space the homotopy equivalence takes place. So for a path f , [f ]X stands for
the homotopy class rel endpoints of f in X, while [f ]U1

stands for the homotopy class rel endpoints
of f in U1.

1. We define first a map ρ from the set of loops that lie entirely in one of the Uk to G by

ρ(f) =

{
φ1([f ]U1

) if f lies in U1

φ2([f ]U2
) if f lies in U2.
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The map ρ is well defined since if f lies in U1 ∩ U2, then

φk([f ]Uk
) = φkik∗([f ]U1∩U2

)

and we know that φ1i1∗ = φ2i2∗. The map ρ satisfies the following conditions
(1) If [f ]Uk

= [g]Uk
for some k, then ρ(f) = ρ(g).

(2) If both f and g lie in the same Uk, then ρ(f ∗ g) = ρ(f) · ρ(g).
This second condition holds because φk, k = 1, 2 are homomorphisms.

2. Next, we extend ρ to the set of paths that lie entirely in U1 or U2. First consider for each
x ∈ X a path αx from x0 to x (if x0 = x take the constant path). For a path f from x to y define

ρ(f) = ρ(αx ∗ f ∗ αy).

The conditions (1) and (2) are again satisfied. Indeed, if [f ]Uk
= [g]Uk

, then [αx∗f∗αy] = [αx∗g∗αy],
with the homotopy being constant on αx and αy. For (2), notice that if f runs from x to y and
g from y to z, then αx ∗ f ∗ αy ∗ αy ∗ g ∗ αz is homotopic relative to the endpoints (in Uk) to
αx ∗ f ∗ g ∗ αz.

3. We extend ρ further to arbitrary paths in X. Removing the constraints about U1 and U2

we have the new conditions for the extended map
(1) [f ] = [g] implies ρ(f) = ρ(g).
(2) ρ(f ∗ g) = ρ(f) ∗ ρ(g) wherever f ∗ g is defined.

The trick is the same as in the lemma. Consider a subdivision of the interval [0, 1] such that each
interval of the subdivision is mapped entirely to one of the two sets U1 or U2. Using this subdivision,
break f as f1 ∗ f2 ∗ · · · ∗ fn (fj is the restriction of f to the j-th subinterval). Define

ρ(f) = ρ(f1)ρ(f2) · · · ρ(fn).

But, is this independent of the subdivision? Any subdivision with the given property can be
transformed into any other by adding or subtracting points. So it is sufficient to show that ρ(f)
does not change if we add one point to the subdivision. The path fj in the middle of whom the
point was added now breaks into the paths fj,1 and fj,2. These paths belong to the same Uk, so we
already know that ρ(fk) = ρ(fk,1) ∗ ρ(fk,2). And that’s all we need. So the map is well defined. It
is an extension of the old ρ because if the path lies entirely in one of the Uk’s we can use the trivial
partition.

Let us now check condition (1). Consider a homotopy F : [0, 1] × [0, 1] → X between f
and g (relative to the endpoints). Consider the subdivisions 0 = a0 < a1 < · · · < am = 1,
b0 = 0 < b1 < · · · < bn = 1 of the interval [0, 1] such that for each (p, q), F ([ap, ap+1] × [bq, bq+1])
lies entirely in one of Uk.

Take one of the slices [0, 1] × [bq, bq+1], and let f ′ = F |[0,1]×{bq}, g
′ = F |[0,1]×{bq+1}. If we show

that ρ(f ′) = ρ(g′), then by going slice-by-slice we obtain that ρ(f) = ρ(g).
Now we can further fix p and consider the functions

f ′′(p) = F |[0, ap]× {bq} ∗ F |{ap} × [bq, bq+1] ∗ F |[ap, 1]× bq+1

and
g′′(p) = F |[0, ap+1]× {bq} ∗ F |{ap+1} × [bq, bq+1] ∗ F |[ap+1, 1]× bq+1.

Then we can write f ′′ = f ′′1 ∗ f ′′2 ∗ · · · f ′′p ∗ · · · ∗ f ′′m and g′′ = f ′′1 ∗ f ′′2 ∗ · · · g′′p ∗ · · · ∗ fm. Then f ′′p
and g′′p are homotopic rel boundary inside the same Uk, and so ρ(f ′′) = ρ(g′′). Varying p we obtain
ρ(f ′) = ρ(g′), and ultimately ρ(f) = ρ(g).
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Finally, let us check condition (2). For f ∗ g we can consider a subdivision that contains the
endpoint of f and the starting point of g. Then

f ∗ g = f1 ∗ f2 ∗ · · · ∗ fm ∗ g1 ∗ g2 ∗ · · · ∗ gn

and using the definition we obtain that ρ(f ∗ g) = ρ(f) · ρ(g).
4. We now define for each loop in X based at x0,

Φ([f ]) = ρ(f).

Conditions (1) and (2) show that Φ is well defined and is a group homomorphism. Let us now show
that Φ ◦ jk∗ = φk, k = 1, 2. If f is a loop in Uk, then

Φ(jk∗([f ]Uk
)) = Φ([f ]) = ρ(f) = φk([f ]Uk

).

by definition. And we are done.

Proposition 4.5.2 implies the following classical version of this theorem.

Theorem 4.5.2. (Seifert-van Kampen Theorem, classical version) If X = U1∩U2 with U1, U2 open
and U1, U2, U1 ∩ U2 path connected, and if x0 ∈ U1 ∩ U2 then

π1(X,x0) = π1(U1, x0) ∗π1(U1∩U2,x0) π1(U2, x0),

where the amalgamation is defined via the maps induced by inclusions.

Corollary 4.5.1. Given the open subsets U1, U2 of X such that U1, U2, U1∩U2 are path connected,
if

π1(U1, x0) = 〈u1, . . . , uk |α1, . . . , αl〉
π1(U2, x0) = 〈v1, . . . , vm |β1, . . . , βn〉
π1(U1 ∩ U2, x0) = 〈w1, . . . , wp | γ1, . . . , γq〉

then

π1(X,x0) =
〈
u1, . . . , uk, v1, . . . , vm |α1, . . . , αl, β1, . . . , βn, i1∗(w1)(i2∗(w1)

−1, . . . , i1∗(wp)(i2∗(wp)
−1
〉

Corollary 4.5.2. Given the open subsets U1, U2 of X such that U1, U2, U1∩U2 are path connected,
if U1 ∩ U2 is simply connected then

π1(X,x0) = π1(U1, x0) ∗ π1(U2, x0).

Corollary 4.5.3. Given the open subsets U1, U2 of X such that U1, U2, U1∩U2 are path connected,
if U2 is simply connected then

π1(X,x0) = π1(U1, x0)/N

whereN is the smallest normal subgroup of π1(U1, x0) containing the image of i1∗ : π1(U1∩U2, x0) →
π1(U1, x0).
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4.5.3 Fundamental groups computed using the Seifert-van Kampen theorem

In the following we will be using Proposition 4.2.6, which asserts that if one space is a deformation
retract of another, then the two spaces have isomorphic fundamental groups.

Example 1. The fundamental group of a wedge of circles. The wedge of n circles is obtained by
taking the quotient of their disjoint union by the map that identifies the points of coordinate 1
from each of these circles. The standard notation is

∨n
i=1 S

1.
Let us first consider the case n = 2. Take as U1 and U2 open subsets of S1

∨
S1 such that Uk

contains the kth circle, k = 1, 2, and this circle is a deformation retract of it. Then U1 ∩ U2 is a
contractible space. Applying the Seifert-van Kampen theorem we conclude that

π1(S
1
∨
S1) = π1(S

1) ∗ π1(S1) = Z ∗ Z.

Proceeding by induction, and taking the set U1 to be an open neighborhood of
∨n−1
i=1 S

1 and U2

an open neighborhood of the last circle, which are both deformation retract of the corresponding
subsets, we deduce that

π1

(
n∨

i=1

S1

)
= ∗ni=1Z.

Example 2. The fundamental group of the complement in S3 (or R3) of the trefoil knot.

S3 = {(z1, z2) | |z1|2 + |z2|2 = 1} ⊂ C2.

The trefoil knot K2,3 can be thought of as the curve

φ(t) =

(
1√
2
e4πit,

1√
2
e6πit

)
.

This curve lies on the torus

S1 × S1 =

{(
1√
2
e2πit,

1√
2
e2πis

)
| t, s ∈ [0, 1]

}
.

The torus separates the solid tori T1 = {(z1, z2) | |z1| ≥ |z2|} and T2 = {(z1, z2) | |z1| ≤ |z2|}.
Consider two open sets U1 and U2 such that Tk\K3,2 is a deformation retract of Uk, k = 1, 2. Note
that the annulus (S1 × S1)\K3,2 is a deformation retract of U1 ∩ U2.

We have

π1(Uk) = π1(Tk\K3,2) = π1(Tk) = π1(S
1) = Z, k = 1, 2,

π1(U1 ∩ U2) = π1((S
1 × S1)\K3,2) = π1(annulus) = Z.

Note also that the inclusion U1 ∩ U2 →֒ U1 induces at the level of the fundamental group the map
Z → Z, m → 3m (this is because the generator of the fundamental group of the annulus “wraps”
three times around the torus in the direction of the generator of the fundamental group of T1).
Similarly the inclusion U1 ∩ U2 →֒ U2 induces at the level of the fundamental groups the map
Z → Z, m→ 2m.

We obtain for the fundamental group of the complement of the trefoil knot the presentation

π1(S
3\K3,2) =

〈
x, y |x3 = y2

〉
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Note that the complement of the unknot has a circle as a deformation retract. Consequently,
its fundamental group is Z. Let us check that π1(S

3\K3,2) 6= Z. Indeed, if we consider the group
G of symmetries of a regular hexagon generated by the rotation ρ about the center by 120◦ and
the reflection σ about one main diagonal (the dihedral group), then because

ρ3 = σ2 = identity

there is a group epimorphism of π1(S
3\K3,2) onto G. But G is non-commutative, hence so is

π1(S
3\K3,2), showing that this group is not Z. This proves that the trefoil knot is knotted.

Proposition 4.5.3. (The addition of a disk) Let X be a space, and g : S1 → X a continuous map.
Consider the space X ∪g B2 obtained by factoring the disjoint union of X with the unit disk by

the equivalence relation e2πit ∼ g(e2πit). Then the map i∗ : π1(X,x0) → π1(X ∪g B2, x0) induced
by inclusion is surjective and its kernel is the normal subgroup of π1(X,x0) containing the image
of g∗|S1.

Proof. The fact that i∗ is surjective follows from the fact that every loop is homotopic to one that
does not intersect the disk. The proof of this fact follows the idea from the proof of Theorem 4.2.3.
One approximates the loop by a piecewise linear one, which is homotopic to it and misses at least
one point p of the disk, then one pushes the loop away from p until it leaves the disk.

Let U be the open set X ∪g (B2\{0} and V = 1
2B

2. Then U and V are path connected, and
U ∩ V = 1

2B
2\{0} is also path connected. Moreover, X is a deformation retract of U (just push

the punctured disk towards the unit circle), V is simply connected, and U ∩ V is homotopically
equivalent to a circle. By the Seifert-van Kampen theorem we have

π1(X ∪g B2, x0) = π1(U, x0) ∗π1(U∩V,x0) π1(B
2, x0)

= π1(X,x0) ∗π1(S1,x0) {0}.

The amalgamation is defined by the relations g∗([f ]) = 0 for all [f ] ∈ π1(S
1, x0) because [f ] is

mapped to 0 by the inclusion of the circle into the disk.

Example 3. Given a group presentation with finitely many relators and finitely many generators,
there is a topological space that has this as its fundamental group.

Here is how to construct this space. Let

G = 〈g1, g2, . . . , gm |β1, β2, . . . , βn〉 .

Consider the wedge of n circles, and identify the generator of the jth circle with gj , j = 1, 2, . . . ,m.
Now for each relator βk, consider a loop fk in the wedge of circles that represents it. For each k,
take a closed unit disk and glue it to the wedge of circles by the equivalence relation e2πit = fk(t).
As a corollary of Proposition 4.5.3, the result of all these operations is a topological space whose
fundamental group is G.

4.5.4 The construction of closed oriented surfaces and the computation of their

fundamental groups

We will consider just the case of the surfaces shown in Figure 4.2, which, are all closed compact
orientable surfaces. These are the sphere with zero, one, two, three, etc. handles. The sphere with
g handles will be called the genus g (closed) surface and will be denoted by Σg. We will see later
that no two are homeomorphic, not even homotopy equivalent.
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...

Figure 4.2:

Figure 4.3:

The first two, the sphere and the torus, are well understood. For all the others the same
procedure will be applied: They will be obtained by adding a disk to a wedge of circles. We will do
this in detail for the third surface on the list, the sphere with two handles, the others being similar.

Consider the wedge of four circles embedded in the surface as shown in Figure 4.3. Exactly
how a wedge of two circles cuts the torus into a rectangle, this wedge of four circles, when removed
from the surfaces leaves an octagon. Said differently, the surface is made out of two tori glued
along a circle. The first torus is cut by two of the circles into a quadrilateral, the second is cut
into a quadrilateral as well. But there are also the holes in the tori, which when cut open become
segments. So there are two pentagons glued along a side, and the result is an octagon. The gluing
pattern on the boundary of the octagon that yields back the surface is shown in Figure 4.4 (note
the gluing patterns of the two tori placed one after the other).

Figure 4.4:

In this figure the four circles are marked with one black arrow, two black arrows, one white
arrow, respectively two white arrows. If the generators of the fundamental groups of the four
circles are a1, b1, a2, b2, then when gluing the disk (see Figure 4.4) we introduce the relation
a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 =identity. We obtain that the fundamental group of the sphere with two
handles Σ2 is

π1(Σ2) =
〈
a1, b1, a2, b2 | a1b1a−1

1 b−1
1 a2b2a

−1
2 b−1

2

〉

In algebra the expression xyx−1y−1 is called the commutator of x and y and is denoted by [x, y].
In this case the relator can be written as [a1, b1][a2, b2].

Let us now show a different approach for computing the fundamental group of the genus 3
surface. This can be obtained by gluing a genus 2 surface with one hole, Σ2,1 to a torus with
one hole Σ1,1 (see Figure 4.5). The two surfaces can be thought as being open (so the boundary
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Figure 4.5:

circle is missing), and the gluing is with an overlap along an annulus, so that the conditions of the
Seifert-van Kampen theorem are satisfied with U1 = Σ2,1 and U2 = Σ1,1.

The torus with one hole has a deformation retract which is the wedge of two circles. There
are two ways to see this, shown in Figure 4.6, either directly on the torus, where the hole can be
“inflated” to the point where the result is a regular neighborhood of the union of the meridian and
the longitude, or by looking at the planar representation of the torus with a hole in the middle.

Figure 4.6:

For a genus 2 surface the deformation retract consists of the wedge of four circles shown in
Figure 4.7. A way to see this is to recall Figure 4.4, this time with a hole in the middle, and to
increase continuously the size of the hole until only the boundary remains.

Figure 4.7:

Now we are in position to apply the Seifert-van Kampen theorem. Since U1 ∩U2 is an annulus,
its fundamental group is Z. In view of Example 1 in § 4.5.3, the fundamental group of the genus 3
surface Σ3 is

π1(Σ3) = (Z ∗ Z) ∗Z (Z ∗ Z ∗ Z ∗ Z).

Let the generators of these Z’s be respectively a1, b1, a2, b2, a3, b3.

Now let us understand how the amalgamation takes place. The generator of the fundamental
group of the annulus becomes the boundary of the square in the first case, and the boundary of
the octagon in the second. By choosing appropriately a1 and b1, we can make the boundary of
the square to correspond to the element b1a1b

−1
1 a−1

1 in the wedge of two circles. Similarly the
boundary of the octagon can be made to correspond to the element a2b2a

−1
2 b−1

2 a3b3a
−1
3 b−1

3 , and the
Seifert-van Kampen theorem sets these equal. As a result we obtain

π1(Σ3) = 〈a1, b1, a2, b2, a3, b3 | [a1, b1][a2, b2][a3, b3]〉 .

In fact, the genus g surface Σg, obtained by adding g handles to the sphere, can also be obtained
by a pairwise gluing of the sides of a 4g-gon, and hence by adding a disk to a wedge of 2g circles.
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As a result, we obtain

π1(Σg) = 〈a1, b1, a2, b2, . . . , ag, bg | [a1, b1][a2, b2] · · · [ag, bg]〉 .

The question is how to distinguish these groups. The trick is to abelianize them, that is
to factor them be the largest normal subgroups generated by all relations of the form [x, y]. We
obtain π1(Σg) = Z2g. The abelianizations of the fundamental groups are themselves very important
topological invariants; they are the first homology groups. These will be studies in the next chapter.



Chapter 5

Homology

The homotopy groups, namely the fundamental group and its higher dimensional generalizations
defined in the previous chapter, have the downsides that they are difficult to compute (as is the
case of the higher dimensional homotopy groups) or they are hard to distinguish from each other
(as is the case for the fundamental group obtained as a group presentation). The way around
these problems is to introduce a different family of groups, which are much easier to compute and
moreover which are abelian, thus very easily distinguishable. The idea behind this construction
goes back to H. Poincaré. While in the case of homotopy theory the objects where loops (i.e.
images of circles) or images of higher dimensional spheres inside the topological space and the
equivalence between them was defined by homotopy, in the new situation the objects are cycles,
which are images of manifolds of same dimension inside the same topological space, two cycles
being equivalent if between them runs the image of a manifold one dimension higher.

5.1 Simplicial homology

The above idea for constructing a homology theory can be formalized easily in a combinatorial
setting if we triangulate the topological space and all cycles. We follow the point of view of Allen
Hatcher’s book on Algebraic Topology and construct the simplicial homology based on ∆-complexes
(originally called semisimplicial complexes by their inventors Eilenberg and Zilber), mainly due to
the fact that for the classical simplicial complexes the computations are almost impossible.

In this chapter all spaces are assumed to be compact.

5.1.1 ∆-complexes

At the heart of homology theory lies the notion of a simplex.

Definition. Let v0, v1, . . . , vn be points in RN , N > n that do not lie in an affine subspace of
dimension n or less. The n-simplex with vertices v0, v1, . . . , vn is the set

σn = 〈v0, v1, . . . , vn〉 = {t0v0 + t1v1 + · · ·+ tnvn ∈ RN | ti ≥ 0, t0 + t1 + · · ·+ tn = 1}.

In other words an n-simplex is the convex hull of n+1 points that do not lie in an n-dimensional
subspace. The list of coefficients (t0, t1, . . . , tn) of a point t0v0+ t1v1+ · · ·+ tnvn in the simplex are
called barycentric coordinates.

Example 1. A 1-simplex is a line segment, a 2-simples is a triangle (together with its interior), a
three simplex is a solid tetrahedron.

79



80 CHAPTER 5. HOMOLOGY

We convene that the ordering of the vertices of the simplex defines an orientation, with two
orientations being the same if one gets from one to the other by an even permutation of the vertices,
and two orderings are of opposite orientations otherwise.

Example 2. 〈v0, v1, v2〉 = 〈v1, v2, v0〉 = −〈v0, v2, v1〉.
If we remove several vertices of a simplex, the remaining vertices determine a simplex of smaller

dimension, which we will call a sub-simplex of the original simplex. When removing one vertex, the
remaining n vertices determine a sub-simplex called face. The union of the faces is the boundary
of the simplex. More precisely, we make the following definition.

Definition. Given an n-simplex σn = 〈v0, v1, . . . , vn〉, its boundary is the formal sum

∂σn =

n∑

j=0

(−1)j 〈v0, v1, . . . , v̂j , . . . , vn〉

where the hat means that the respective vertex is removed.

Example 3. ∂ 〈v0, v1〉 = 〈v1〉 − 〈v0〉.
The points of σn with all barycentric coordinates positive form the interior of σn, denoted

Int(σn). When one coordinate is zero, the point is on a face. The zero dimensional simplex consists
only of its interior.

Definition. A ∆-complex K consists of a topological space X and a finite collection of continuous
maps φα : σnα → X from various simplices to X with the following properties:
(1) The restriction of φα to the interior of σnα is one-to-one, and each point of X is the image of
exactly one such restriction.
(2) Each restriction of a map φα to a face is another map φβ .
(3) A set U is open in X if and only if φ−1(U) is open for each α.

An alternative way of saying this is that X is the quotient of the disjoint union of several
simplices, with the equivalence relation defined by gluing maps homeomorphisms that identify one
simplex to another. We can assume, for convenience, that these maps are linear isometries (by
choosing simplices of the right size).

Given a ∆-complex K, the space X from the definition is usually denoted by |K| and is called
the realization of K. Conversely K is called a ∆-complex structure on X. Note that a topological
space can have many different ∆-complex structures.

Remark 5.1.1. The realization |K| of a ∆-complex is a metric space with the distance between two
points being the shortest length of a piece-wise linear path that connects the points.

In practice, one usually identifies the image of the map φα with the simplex σnα . This means that
a ∆-complex is a topological space obtained by gluing finitely many simplices by homeomorphisms
between some of their subsimplices. By contrast, in the older notion of a simplicial complex two
simplices can share at most one sub-simplex. As such, a ∆-structure on a topological space requires
fewer simplices than a simplicial structure, and consequently this concept is more useful for explicit
computations.

Example 4. The realization of the 2-dimensional torus, the projective plane, and the Klein bottle
as ∆-complexes are shown in Figure 5.1.

Example 4. An n-dimensional sphere can be realized as a ∆-complex by gluing two n-simplices
by a (orientation reversing) homeomorphism between their boundaries.
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Figure 5.1:

5.1.2 The definition of simplicial homology

For a ∆-complex X, let Cn(X) be the free abelian group with basis the n-dimensional simplices of
X. The elements of Cn(X) are called n-chains. For each simplex recall the boundary map,

∂ 〈v0, v1, . . . , vn〉 =
n∑

j=0

(−1)j 〈v0, v1, . . . , v̂j , . . . , vn〉 .

Extend this map to a group homomorphism ∂n : Cn(X) → Cn−1(X), for each n ≥ 1. We obtain
the sequence of group homomorphisms

· · · ∂n+1−→ Cn(X)
∂n−→ Cn−1(X)

∂n−1−→ · · · ∂2−→ C1(X)
∂1−→ C0(X) → 0.

Proposition 5.1.1. For each n, ∂n−1∂n = 0.

Proof. We have

∂n−1∂n 〈v0, v1, . . . , vn〉 =
n∑

j=1

(−1)j∂n−1 〈v0, v1, . . . , v̂j , . . . vn〉

=
∑

i<j

(−1)j(−1)i 〈v0, v1, . . . , v̂i, . . . , v̂j , . . . , vn〉+
∑

i>j

(−1)j(−1)i−1 〈v0, v1, . . . , v̂j , . . . , v̂i, . . . , vn〉 .

Note that when exchanging i and j in the second sum, we obtain the negative of the first sum.
Hence the result is zero, as desired.

As a corollary, we have what is called a chain complex

· · · ∂n+1−→ Cn(X)
∂n−→ Cn−1(X)

∂n−1−→ · · · ∂2−→ C1(X)
∂1−→ C0(X) → 0,

in which Im ∂n ⊂ Ker ∂n−1 for all n.

Definition. We let Bn(X) = Im ∂n+1 and Zn(X) = Ker ∂n. The elements of Bn(X) are called
boundaries, the elements of Zn(X) are called cycles. The group Hn(X) = Zn(X)/Bn(X) is called
the n-th simplicial homology group of X. The cosets of Bn(X) are called homology classes.

For finite ∆-complexes the chain groups Cn(X) are finitely generated free abelian groups, and
consequently Bn(X) and Zn(X) are finitely generated free abelian groups. It follows that Hn(X)
is a finitely generated abelian group; in fact the generators of Zn(X) yield generators for Hn(X),
and the generators of Bn(X) yield the relators of Hn(X). Thus in computations we are led again,
as for the fundamental group, to a presentation of Hn(X), but in this case to the presentation of an
abelian group. A little linear algebra allows us to compute this group precisely, as we will explain
in the next section.
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5.1.3 Some facts about abelian groups

The fundamental theorem of finitely generated abelian groups can be stated in two equivalent forms

Version A: Every finitely generated abelian group is of the form

G = Zn ⊕ Zpn1
1

⊕ Zpn2
2

⊕ · · · ⊕ Zpnk
k
,

where n, k ≥ 0, n1, n2, . . . , nk ≥ 1 and p1, p2, . . . , pk are prime numbers, these numbers are uniquely
defined (up to reordering) by G.

Version B: Every finitely generated abelian group is of the form

G = Zn ⊕ Zm1
⊕ Zm2

⊕ · · · ⊕ Zmk

where n, k ≥ 0, m1 dividesm2, m2 dividesm3, ..., mk−1 dividesmk, and these numbers are uniquely
defined by G.

Note that a finitely generated abelian group is the sum of a free abelian group and a finite
abelian group. The later is called the torsion. The number of copies of Z in the free part is called
the rank.

In what follows we will be interested in abelian groups that arise as kernels and images of
homomorphisms between free abelian groups and as quotients of such groups. The kernels, images,
and quotients can be computed as in the case of vector spaces, using row operations on matrices.
These operations are:

1. A row is multiplied by −1.

2. Two rows are exchanged.

3. A row is added to or subtracted from another row.

5.1.4 The computation of the homology groups for various spaces

In this section we will call zero-dimensional simplices vertices, one-dimensional simplices edges,
two-dimensional simplices faces, and 3-dimensional simplices (solid) tetrahedra. All computations
will be performed for a certain realization of the given space as a ∆-complex; we will prove in
§ 5.2.4 that the homology groups are independent of this realization.

Example 1. The circle. We can realize the circle as a ∆-complex by considering the circle itself
to be an edge E with the two endpoints at the vertex V = 1. The corresponding chain complex is

0 −→ ZE
∂1−→ ZV −→ 0,

with δ1E = V − V = 0. Hence
H1(S

1) = Z1(S
1) = Z

and
H0(S

1) = Z0(S
1)/B0(S

1) = ZV/{0} = Z.

Example 2. The projective plane. RP 2 can be obtained from the upper hemisphere of S2 by
gluing its boundary S1 by the antipodal map. Using this we can realize RP 2 as a ∆-complex as
shown in Figure 5.2. Here the orientation is given by the arrows, which specify the order of the
vertices (for example F1 =< V1, V2, V2 > with the first V2 being the one on the upper side.
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The chain complex is

0 −→ ZF1 ⊕ ZF2
∂2−→ ZE1 ⊕ ZE2 ⊕ ZE3

∂1−→ ZV1 ⊕ ZV2 −→ 0.

with the (nontrivial) boundary maps given by

∂2F1 = E1 + E2 + E3, ∂2F2 = E1 + E2 − E3

and

∂1E1 = V1 − V2, ∂1E2 = V2 − V1, ∂1E3 = V2 − V2 = 0.

Computation of H0(RP
2). The kernel of the zero map ∂0 is Z0(RP

2) = ZV1 ⊕ ZV2, with basis
V1, V2. The image of ∂1 is B0(RP

2) = Z(V1 − V2), with basis V1 − V2. The coordinates of the basis
vectors of B0(RP

2) in the basis of Z0(RP
2) form a matrix which should be brought in reduced

row-echelon form with operations over the integers. This matrix is the row matrix [1,−1], which
is already in row-echelon form. The structure of H0(RP 2) = Z0(RP 2)/B0(RP 2) is read in this
matrix. The leading 1 in this matrix says that one of the two Z in Z0(RP

2) = Z ⊕ Z is factored
out. Hence

H0(RP
2) = Z.

Computation of H1(RP 2). A little linear algebra shows that the kernel of ∂1, Z1(RP 2), is a free
abelian group with basis consisting of w1 = E1 + E2 and w2 = E3. On the other hand the image
of ∂2 is generated by E1 + E2 + E3 and E1 + E2 − E3. In the basis w1, w2, these generators are
w1 + w2 and w1 − w2. The coefficient matrix is

[
1 1
1 −1

]
.

In reduced row-echelon form this is
[
1 1
0 2

]
.

Thus from Z1(RP
2) = Z ⊕ Z, the first Z is factored out, while the second is factored by a 2Z.

Hence

H1(RP
2) = (Z/Z)⊕ (Z/2Z) = Z2.

Note that H1(RP
2) = π1(RP

2)!
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Computation of H2(RP
2). To find Z2(RP

2) we need to determine which linear combinations with
integer coefficients of F1 and F2 are mapped to zero by ∂2. This means that we should have

n1(E1 + E2 + E3) + n2(E1 + E2 − E3) = 0 ∈ ZE1 ⊕ ZE2 ⊕ ZE3.

This can be rewritten as

(n1 + n2)E1 + (n1 + n2)E2 + (n1 − n2)E3 = 0.

For this to happen, n1 +n2 and n1 −n2 should both be zero, hence n1 = n2 = 0. Thus Z2(RP
2) =

{0}, and consequently

H2(RP
2) = {0}.

In conclusion

Hn(RP
2) =





Z if n = 0
Z2 if n = 1
0 if n ≥ 2.

Example 3. The torus. A realization of the torus as a ∆-complex is shown in Figure 5.3.
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We have the chain complex

0 −→ ZF1 ⊕ ZF2
∂2−→ ZE1 ⊕ ZE2 ⊕ ZE3

∂1−→ ZV −→ 0.

The boundary maps are

∂2F1 = E1 + E2 + E3, ∂2F2 = −E1 − E2 − E3,

∂1E1 = ∂1E2 = ∂1E3 = V − V = 0.

Computation of H0(S
1 × S1). We have B0(S

1 × S1) = Im ∂1 = {0} and Z0(S
1 × S1) = ZV .

Hence

H0(S
1 × S1) = Z

Computation of H1(S
1 × S1). We have

B0(S
1 × S1) = Im ∂2 = Z(E1 + E2 + E3).

Also
Z0(S

1 × S1) = Ker ∂1 = ZE1 ⊕ ZE2 ⊕ ZE3.
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The matrix [1, 1, 1] is already in reduced row-echelon form, with leading term 1. Hence one of
the Z’s in Z⊕ Z⊕ Z is factored out. We thus obtain

H1(S
1 × S1) = Z⊕ Z

Note again that H1(S
1 × S1) = π1(S

1 × S1).

Computation of H2(S
1 × S1). If we write ∂2(n1F1 + n2F2) = 0 we obtain

(n1 − n2)(E1 + E2 + E3) = 0.

Hence n1 = n2. We obtain

H2(S
1 × S1) = Z2(S

1 × S1) = Z(F1 + F2) ≃ Z.

In conclusion

Hn(S
1 × S1) =





Z if n = 0, 2
Z⊕ Z if n = 1
0 if n > 2.

Example 4. The 3-dimensional sphere. Like the 2-dimensional sphere can be obtained
by gluing together two disks along their boundaries, the 3-dimensional sphere can be obtained by
gluing two balls along their boundaries. The balls can be realized as two tetrahedra T1 and T2.
Thus S3 can be realized as a ∆-complex with two 3-dimensional simplices T1 and T2 that have the
same vertices, edges, and faces. Since a tetrahedron has four faces, six edges, and four vertices, we
have a chain complex

0 −→ ZT1 ⊕ ZT2
∂3−→ ZF1 ⊕ ZF2 ⊕ F3 ⊕ ZF4

∂2−→ ZE1 ⊕ ZE2 ⊕ ZE3 ⊕ ZE4 ⊕ ZE5 ⊕ ZE6

∂1−→ ZV1 ⊕ ZV2 ⊕ ZV3 ⊕ ZV4 −→ 0.

To exhibit the boundary maps we have to be a little bit more precise. As such we set

T1 = 〈V1, V2, V3, V4〉 , T2 = 〈V1, V3, V2, V4, 〉
F1 = 〈V2, V3, V4〉 , F2 = 〈V1, V3, V4〉 , F3 = 〈V1, V2, V4〉 , F4 = 〈V1, V2, V3〉
E1 = 〈V1, V2〉 , E2 = 〈V1, V3〉 , E3 = 〈V2, V3〉 , E4 = 〈V3, V4〉 , E5 = 〈V2, V4〉 , E6 = 〈V1, V4〉 .

The boundary maps are

∂3T1 = ∂3 〈V1, V2, V3, V4〉 = 〈V2, V3, V4〉 − 〈V1, V3, V4〉+ 〈V1, V2, V4〉 − 〈V1, V2, V3〉
= F1 − F2 + F3 − F4

∂3T2 = ∂3 〈V1, V3, V2, V4〉 = 〈V3, V2, V4〉 − 〈V1, V2, V4〉+ 〈V1, V3, V4〉 − 〈V1, V3, V2〉
= −F1 − F3 + F2 + F4,

∂2F1 = ∂2 〈V2, V3, V4〉 = 〈V3, V4〉 − 〈V2, V4〉+ 〈V2, V3〉 = E4 − E5 + E3

∂2F2 = ∂3 〈V1, V3, V4〉 = 〈V3, V4〉 − 〈V1, V4〉+ 〈V1, V3〉 = E4 − E6 + E2

∂2F3 = ∂3 〈V1, V2, V4〉 = 〈V2, V4〉 − 〈V1, V4〉+ 〈V1, V2〉 = E5 − E6 + E1

∂2F4 = ∂3 〈V1, V2, V3〉 = 〈V2, V3〉 − 〈V1, V3〉+ 〈V1, V2〉 = E3 − E2 + E1,
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and

∂1E1 = V2 − V1, ∂1E2 = V3 − V1, ∂1E3 = V3 − V2,

∂1E4 = V4 − V3, ∂1E5 = V4 − V2, ∂1E6 = V4 − V1.

The computation of H0(S
3). It is clear that Z0(S

3) = ZV1 ⊕ ZV2 ⊕ ZV3 ⊕ ZV4.
To find B0(S

3), we arrange the coefficients of the images of E1, E2, ..., E6 through ∂1 in a matrix,
then we bring this matrix in row-echelon form. This is the same as the transpose of the matrix of
∂1, namely




−1 1 0 0
−1 0 1 0
0 −1 1 0
0 0 −1 1
0 −1 0 1

−1 0 0 1



.

By performing row operations we obtain successively




−1 1 0 0
0 −1 1 0
0 −1 1 0
0 0 −1 1
0 0 −1 1
0 −1 0 1



→




−1 1 0 0
0 −1 1 0
0 0 0 0
0 0 −1 1
0 −1 0 0
0 0 −1 1



→




−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 −1 1
0 0 0 0
0 0 0 1



→




1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 0
0 0 0 0
0 0 0 0



.

This means that B0(S
3) = Z3, and that when factoring Z0(S

3) by B0(S
3) three of the Z are factored

out of Z4. We thus have

H0(S
3) = Z.

The computation of H1(S
3). Let us find the kernel of ∂1. The matrix of this transformation is




−1 −1 0 0 0 −1
1 0 −1 0 −1 0
0 1 1 −1 0 0
0 0 0 1 1 1


 ,

which after performing a number of row operations becomes




1 0 −1 0 −1 0
0 1 1 0 1 1
0 0 0 1 1 1
0 0 0 0 0 0


 .

The kernel of this matrix is a free abelian group with basis [1,−1, 1, 0, 0, 0], [1,−1, 0,−1, 1, 0], and
[0, 1, 0, 1, 0,−1], that is E1 − E2 + E3, E1 − E2 − E4 + E5, and E2 + E4 − E6.

On the other hand, the image of ∂2 is generated by E3+E4−E5, E2+E4−E6, E1+E5−E6, and
E1−E2+E3. Of course the standard approach is to write these four vectors in the basis of Z1(S

3) =
ker∂1, and then decide what subspace they span. But we can see right away that the first and the
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last basis elements appear in this list, while E1−E2−E4+E5 = (E1−E2+E3)− (E3+E4−E5).
Hence B1(S

3) = Z1(S
3), and hence

H1(S
3) = {0}.

The computation of H2(S
3). Let us find first the kernel of ∂2. The matrix of this transformation is




0 0 1 1
0 1 0 −1
1 0 0 1
1 1 0 0

−1 0 1 0
0 −1 −1 0



.

In row-echelon form this is the same as



1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0



.

The kernel of this homomorphism is a free group with basis [1,−1, 1,−1], namely F1−F2+F3−F4.
Note that this basis element equals ∂3T1, hence Z2(S

3) = B2(S
3) and consequently

H2(S
3) = {0}.

The computation of H3(S
3). The matrix of ∂3 is

[
1 −1 1 −1

−1 1 −1 1

]
.

The kernel of this matrix (viewed as a linear transformation between Z-modules) is [1, 1]T . So
Z3(S

3) = Z(T1 + T2) ∼= Z, and hence

H3(S
3) = Z/{0} = Z.

We conclude that

Hn(S
3) =

{
Z if n = 0, 3
0 if n 6= 0, 3.

These computations can be repeated for higher dimensional spheres, but they become more
complicated as the dimension grows. There is only one instance where level of dificulty is the same
in all dimensions, namely for the computation of Hn(S

n). Following the same procedure as above
we can obtain the following result.

Proposition 5.1.2. For every n ≥ 1, Hn(S
n) = Z.

Since for m > n, Hm(S
n) = {0}, we obtain that spheres of different dimensions have different

homology groups.
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5.1.5 Homology with real coefficients and the Euler characteristic

The same considerations apply if in § 5.1.2 we consider Cn(X) to consist of the R-vector space with
basis the n-dimensional simplices of X. To avoid confusion, we use the notation Cn(X;R). In this
new setting we obtain the homology with real coefficients Hn(X;R). What we have been computing
so far is the homology with integer coefficients, for which the standard notation is Hn(X;Z). From
now on we will always specify whether the coefficients are integer or real.

In the case of homology with real coefficients we are in the realm of vector spaces, and the
linear algebra is simpler. Quotients are easier to compute by just subtracting the dimensions. Let
us point out that there is no distinction between the homologies with real, rational or complex
coefficients when it comes to computations.

Example 1. The circle. The computations from the previous section apply mutatis mutandis
to show that

Hn(S
1;R) =

{
R if n = 0, 1
0 if n ≥ 2.

Example 2. The projective plane. Realizing RP 2 as a ∆-complex in the same manner as in
§ 5.1.4 we obtain the chain complex of vector spaces

0 −→ RF1 ⊕ RF2
∂−→ RE1 ⊕ RE2 ⊕ RE3

∂−→ RV1 ⊕ RV2 −→ 0.

with boundary maps

∂2F1 = E1 + E2 + E3, ∂2F2 = E1 + E2 − E3,

∂1E1 = V1 − V2, ∂1E2 = V2 − V1, ∂1E3 = V2 − V2 = 0.

We see that the image of ∂1 is the 1-dimensional space with basis V1 − V2, hence H0(RP
2;R) = R,

the quotient of a 2-dimensional space by a 1-dimensional subspace.
Also the kernel of ∂1 is the 2-dimensional space with basis E1 − E2 and E3. The image of ∂2

is also a 2-dimensional space, because the vectors E1 + E2 + E3 and E1 + E2 − E3 are linearly
independent. Hence H1(RP

2;R) = {0}.
Finally, H2(RP

2;R) = {0}.
As we have seen in this example, the homology with real coefficients is coarser then the homology

with integer coefficients. The ease of computation comes at a price! In fact, by standard linear
algebra, the homology with real coefficients can be computed directly from the one with integer
coefficients (but not vice-versa).

Proposition 5.1.3. Let X be a topological space that can be realized as a ∆-complex. If
Hi(X;Z) = Zn ⊕ T , where T is the torsion (i.e. a finite abelian group), then Hi(X;R) = Rn.

Definition. The number bi(X) = dimHn(X;R) is called the ith Betti number of X (after Enrico
Betti).

Putting together the Betti numbers, one can construct the oldest known topological invariant.

Definition. Let X be a topological space that can be realized as a ∆-complex. The number

χ(X) =
∑

i≥0

(−1)idimHi(X;R)

is called the Euler characteristic of X.
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Theorem 5.1.1. (Poincaré) Let X be a topological space that can be realized as a ∆-complex.
Then

χ(X) =
∑

i≥0

(−1)idimCi(X;R).

Proof. Note that by the first isomorphism theorem, if f : V → W is a linear map between vector
spaces, then V/Kerf ∼= Imf , and so V ∼= Kerf ⊕ Imf . If V is finite dimensional, then

dimV = dim Kerf + dim Imf.

Using this fact we obtain
∑

i≥0

(−1)iβi(X) =
∑

n≥0

(−1)i(dimZi(X;R)− dimBi(X;R))

=
∑

i≥0

(−1)i(dimZi(X;R) + dimBi−1(X;R)) =
∑

i≥0

(−1)idimCi(X;R),

and we are done.

As a corollary we obtain

Theorem 5.1.2. (Euler) Given a connected planar graph, denote by v the number of vertices,
by e the number of edges, and by f the number of faces (including the face containing the point at
infinity). Then

v − e+ f = 2.

Proof. By Problem 1 in Homework 3 of this semester and Proposition 5.1.3,

Hi(S
2;R) =

{
R if i = 0, 2
0 otherwise.

It follows that χ(S2) = 1− 0 + 1 = 2.
Place the planar graph on S2. The faces might not be triangles, nevertheless we can triangulate

them. Adding an edge increases the number of edges by 1 and the number of faces by 1, and so
the sum v− f + s does not change. Once we reach a triangulation, we have a ∆-complex, and then
Theorem 5.1.1 applies. Hence the conclusion.

Example 1. As an application of Euler’s formula, let us determine the platonic solids. Recall
that a platonic solid (i.e. a regular polyhedron) is a polyhedron whose faces are congruent regular
polygons and such that each vertex belongs to the same number of edges.

Let m be the number of edges that meet at a vertex and let n be the number of edges of a face.
With the usual notations, when counting vertices by edges we obtain 2e = mv. When counting
faces by edges we obtain 2e = nf . Euler’s formula becomes

2

m
e− e+

2

n
e = 2,

or

e =

(
1

m
+

1

n
− 1

2

)−1

.

The right-hand side must be a positive integer positive. In particular 1
m + 1

n > 1
2 . The only

possibilities are:
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1. m = 3, n = 3, in which case e = 6, v = 4, f = 4; this is the regular tetrahedron.

2. m = 3, n = 4, in which case e = 12, v = 8, f = 6; this is the cube.

3. m = 3, n = 5, in which case e = 30, v = 20, f = 12; this is the regular dodecahedron.

4. m = 4, n = 3, in which case e = 12, v = 6, f = 8; this is the regular octahedron.

5. m = 5, n = 3, in which case e = 30, v = 12, f = 20; this is the regular icosahedron.

We proved the well known fact that there are five platonic solids.

A second example is the piecewise-linear version of the Gauss-Bonnet theorem.

Example 2. Let Σg be a sphere with g handles (i.e. a genus g surface) realized as a polyhedron
whose faces are convex polygons. At a point x ∈ Σg that is not a vertex, Σg is locally isometric
to the plane, so we say that the (Gaussian) curvature at that point is Kx = 0. If x is a vertex,
then the (Gaussian) curvature Kx is 2π minus the sum of the angles that meet at that vertex (this
measures how far the vertex is from being flat).

Theorem 5.1.3. (PL Gauss-Bonnet theorem)
∑

x∈Σg

Kx = 2πχ(Σg).

Proof. First, realize Σg as a ∆-complex by first describing it as a regular 2g-gon with sides identified
pairwise, then divide the regular 2g-gon into triangles. Now compute the Euler characteristic using
Poincaré’s Theorem (Theorem 5.1.1) to obtain χ(Σg) = 2− 2g. If in an arbitrary realization of Σg
as a polyhedron whose faces are convex polygons, we denote by v the number of vertices, by e the
number of edges, and by f the number of faces, then reasoning similarly as in the proof of Euler’s
theorem and using Theorem 5.1.1 we obtain

v − e+ f = χ(Σg).

Multiply this relation by 2π to obtain

2πv − 2πe+ 2πf = 2πχ(Σg).

If nk, k ≥ 3, denotes the number of faces which are k-gons, then f = n3 + n4 + n5 + · · · . Also,
counting edges by the faces, and using the fact that each edge belongs to two faces, we have
2e = 3n3 + 4n4 + 5n5 + · · · . The relation becomes

2πv − π(n3 + 2n4 + 3n5 + · · · ) = 2πχ(Σg).

Because the sum of the angles of a k-gon is (k − 2)π, the sum in the above relation is equal to the
sum of all angles of faces. The conclusion follows.

Remark. In the setting of differential geometry, the Gauss-Bonnet theorem is expressed as
∫

S
KdA = 2πχ(Σg),

or, in words, the integral of the Gaussian curvature over a closed surface Σg is equal to the Euler
characteristic of the surface multiplied by 2π.

We have seen above homology with coefficients in Z and R. One can generalize this to homology
with coefficients in other rings or fields. Of particular interest is homology with Z2 coefficients,
because on the one hand it is simple enough so that it is very easy to compute, and on the other
hand it is nontrivial enough so as to distinguish spaces. You might want to try to compute the
homology with Z2 coefficients for the spaces discussed above.
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5.2 Continuous maps between ∆-complexes

5.2.1 ∆-maps

So far we have talked about topological spaces that can be realized as ∆-complexes. What about
continuous functions between these spaces. It turns out that the appropriate continuous maps in
this situation are the ∆-maps, namely those that map simplices to simplices. Moreover, we will show
that any continuous map between topological spaces that are ∆-complexes can be approximated
by a ∆-map.

Definition. A ∆-map f : K → L is a continuous map |K| → |L| which lifts to a map from the
disjoint union of the simplices that comprise K to the disjoint union of the simplices that comprise
L such that its restriction to each simplex is a linear map onto a simplex.

Example 1. The inclusion of the Möbius band in the Klein bottle, as a ∆-map is shown in
Figure 5.4.

f

f

Figure 5.4:

Example 2. A ∆-map that projects the torus onto a circle is shown in Figure 5.5.

f
f

Figure 5.5:

The following result is obvious.

Proposition 5.2.1. The composition of two ∆-maps is a ∆-map.

Definition. Two ∆-complexes are called isomorphic if there are ∆-maps f : K → L, g : L → K
such that f ◦ g = 1L, g ◦ f = 1K .



92 CHAPTER 5. HOMOLOGY

Given a ∆-map f : K → L, it induces a group homomorphism (f#)n : Cn(K,Z) → Cn(L,Z)
defined on generators by (f#)n(σ

n) = f(σn) if the dimension of f(σn) is n and zero otherwise.
Note that there is one such map in each dimension. The maps (f#)n satisfy

(f#)n∂n = ∂n(f#)n+1.

Definition. A mapping φ∗ = (φn)n between chain complexes

· · · −−−−→ Cn+1(K)
∂n+1−−−−→ Cn(K)

∂n−−−−→ Cn−1(K) −−−−→ · · ·
φn+1

y φn

y φn−1

y

· · · −−−−→ Cn+1(L)
∂n+1−−−−→ Cn(L)

∂n−−−−→ Cn−1(L) −−−−→ · · ·

is called a chain map if for all n, ∂nφn = φn−1∂n.

Proposition 5.2.2. (f#)∗ is a chain map.

Proof. If the dimension of f(σn) is n or is less than or equal to n−2, then the equality (f#)n−1(∂nσ
n) =

∂n((f#)nσ
n), in the first case because this is the same as f(∂nσ

n) = ∂n(f(σn), and in the second
because both sides are zero.

The only interesting case is when the dimension of f(σn) is exactly n− 1. Because of linearity
the vertices of σn are mapped to the vertices of f(σn) and because the latter has dimension n− 1,
two of the vertices of σn are mapped to the same vertex. Set σn =< v0, v1, . . . , vn > and f(σn) =<
w0, w1, . . . , wn−1 >. By reordering the vertices (and maybe changing orientations) we may assume
that f(vj) = wj , j = 0, 1, . . . , n− 1, and f(vn) = wn−1. Then, eliminating the simplices that have
two equal vertices equal to wn−1 in the image of f and hence are zero, we have

(f#)n−1∂σn = (−1)n−1 < w0, w1, . . . , wn−1 > +(−1)n < w0, w1, . . . , wn−1 >= 0.

And this is of course equal to ∂n(f#)nσ
n because (f#)nσ

n = 0.

Theorem 5.2.1. Any chain map induces a sequence of homomorphisms

(φ∗)n : Hn(K) → Hn(L).

Proof. If ∂nz = 0 then ∂nφn(z) = φn−1(∂nz) = 0. If z = ∂n+1w then φnz = φn(∂w) = ∂n+1φn(w).
Hence we can define

(φ∗)n(γ + ∂n+1Cn+1(K,Z)) = φn(γ) + ∂n+1Cn+1(L,Z).

In particular, because f# is a chain map, for each n, (f#)n induces a map (f∗)n : Hn(K,Z) →
Hn(L,Z).

A short-hand writing is f∗ : H∗(K,Z) → H∗(L,Z) understanding that there is such a map in
each dimension.

Proposition 5.2.3. (a) If f : K → K is the identity map, then (f∗)n : Hn(K,Z) → Hn(K,Z) is
the identity isomorphism for each n.
(b) If f : K → L and g : L→M are ∆-maps between ∆-complexes, then ((g ◦ f)∗)n = (g∗)n(f∗)n,
for all n.
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Proof. The proof is easy and is left as an exercise.

Example 3. Consider the projection of the torus onto a circle from Example 2 above. Clearly
(f∗)2 = 0, so we only need to be concerned with (f∗)0 and (f∗)1. The map (f#)0 maps the unique
vertex V of the torus, to the unique vertex V ′ of the circle. Since

H0(S
1 × S1,Z) = Z0(S

1 × S1,Z) = ZV

and

H0(S
1,Z) = Z0(S

1,Z) = ZV ′,

the map (f∗)0 : ZV → ZV ′ is an isomorphism.

In dimension 1 the torus has three edges, say E1, E2, E3, and the circle has just one edge, E. It
is not hard to see that (f#)1(E1) = (f#)1(E3) = E and (f#)1(E2) = 0 (the vertical edge is mapped
to V ′ by the ∆-map).

By the computations in § 5.1.4,

H1(S
1 × S1,Z) = Z(E1 +B1(S

1 × S1,Z))⊕ Z(E2 +B1(S
1 × S1,Z)) ∼= ZE1 ⊕ ZE2

and

H1(S
1,Z) = Z1(S

1,Z) = ZE.

Hence (f∗)1 : Z⊕ Z → Z is just the projection onto the first coordinate.

Example 4. Let us consider the map f : S1 → S1, f(z) = z2. For this to be a ∆-map, one can
realize the first circle as a ∆-complex with two vertices V1, V2 and two edges E1, E2 as shown in
Figure 5.6. The second circle as a ∆-complex with one edge E and one vertex V , as in § 5.1.4. Let
us examine the homology of the first ∆-complex.
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E

E

VV1 2

1

2

Figure 5.6:

The chain complex is

0 → ZE1 ⊕ ZE2
∂1−→ ZV1 ⊕ ZV2 → 0,

where ∂1(E1) = −∂1(E2) = V2 − V1.

Since

ZV1 ⊕ ZV2 = ZV1 ⊕ Z(V2 − V1),

it follows that H0(S
1,Z) is one-dimensional with basis (the equivalence class of) V1. And since

f#(V1) = V , we obtain that (f∗)0 : Z → Z is the identity map.

In dimension one, an easy computation shows that

H1(S
1,Z) = Z1(S

1,Z) = Z(E1 + E2).

Because f(#)1(E1 + E2) = 2E, we obtain that (f∗)1 : Z → Z is multiplication by 2.
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5.2.2 Simplicial complexes, simplicial maps, barycentric subdivision.

We will now focus on a more restrictive notion than that of a ∆-complex, that of a simplicial
complex.

Definition. A ∆-complex K for which every simplex is embedded in |K| is called a simplicial
complex. A ∆-map between simplicial complexes is called a simplicial map.

Example 1. In Figure 5.7 we see how the torus can be realized as a simplicial complex. It has 4
0-dimensional simplices, 12 1-dimensional simplices, and 8 2-dimensional simplices.

Figure 5.7:

Definition. The barycenter of a simplex σk = 〈v0, v1, . . . , vk〉 is the point

σ̇k =
1

k + 1
v0 +

1

k + 1
v1 + · · ·+ 1

k + 1
vk.

Definition. The barycentric subdivision of a symplex 〈v0, v1, · · · , vk〉 is the collection of the (k+1)!
simplices

〈
σ̇π(0), σ̇π(1), . . . , σ̇π(k)

〉

where π is a permutation of {0, 1, 2, . . . , k} and for each i = 0, 1, 2, . . . , k, σπ(i) =
〈
vπ(0), vπ(1), . . . , vπ(i)

〉
.

Example 2. The barycentric subdivisions for the one- and two-dimensional simplices are shown
in Figure 5.8.

Figure 5.8:

Proposition 5.2.4. If K is a ∆-complex, then K(1) is a simplicial complex.

The mth barycentric subdivision is obtained by applying this operation m times to each simplex
of a ∆-complex. The mth barycentric subdivision of a ∆-complex K is again a ∆-complex, denoted
by K(m).

Each vertex v induces a map v : Cn(K) → Cn+1(K), by v 〈v0, v1, . . . , vn〉 = 〈v, v0, v1, . . . , vn〉
when this makes sense, and 0 otherwise.
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Lemma 5.2.1. For any vertex v and n-chain c such that vc 6= 0, one has

∂n+1(vc) = c− v∂nc.

Proof. It suffices to check the equality on simplices. For c = 〈v0, v1, . . . , vn〉, we have

∂n+1v 〈v0, v1, . . . , vn〉 = ∂n+1 〈v, v0, v1, . . . , vn〉
= 〈v0, v1, . . . , vn〉 − 〈v, v1, v2, . . . , vn〉+ 〈v, v0, v2, . . . , vn〉 · · ·
= c− v(〈v1, v2, . . . , vn〉 − 〈v0, v2, . . . , vn〉+ · · · )

and this equals c− v∂nc, as desired.

Definition. The first chain derivation is defined inductively on the dimension of chains by

φ0(v) = v

φn(σ
n) = σ̇nφn−1(∂σ

n).

Example 3. Figure 5.9 shows the first chain derivations of a 1-simplex and a 2-simplex, where in
each case, the chain derivation of the simplex on the left is the sum of the simplices on the right
with specified orientations.
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Figure 5.9:

One can think of the chain derivation as replacing each simplex with the union of the pieces
obtained after applying a barycentric subdivision. By iterating this procedure m times we obtain
what is called the mth chain derivation.

Theorem 5.2.2. Each chain derivation is a chain mapping.

Proof. We have to prove that the following diagram is commutative:

· · · ∂n+1−−−−→ Cn(K)
∂n−−−−→ Cn−1(K)

∂n−1−−−−→ · · ·
φn

y φn−1

y

· · · ∂n+1−−−−→ Cn(K
(1))

∂n−−−−→ Cn−1(K
(1))

∂n−1−−−−→ · · ·

We induct on n. For n = 0 there is nothing to check. When n = 1 it is easy to check by hand that
∂1φ1 = φ0∂1.

Assuming that ∂n−1φn−1 = φn−2∂n−1 we can write

∂nφn(σ
n) = ∂n(σ̇

nφn−1∂nσ
n) = φn−1∂nσ

n − σ̇n∂n−1φn−1∂nσ
n

= φn−1∂nσ
n − σ̇nφn−2∂n−1∂nσ

n = φn−1∂nσ
n.
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Proposition 5.2.5. Let K be a ∆-complex with first chain derivation φ = (φn)n≥0. Then there
exists a chain mapping

ψ = {ψn : Cn(K
(1)) → Cn(K)}

such that ψn ◦ φn is the identity map on Cn(K), for all n ≥ 0.

Proof. Let f : K(1) → K be a ∆-map defined as follows. First we define f on vertices, by setting
f(v) = v if v is a vertex of K and f(σ̇n) is a vertex of the simplex σn of which σ̇n is the barycenter.
Extend the construction linearly over each simplex.

Let ψ be the chain map induced by f . Then ψ has the desired property.

Definition. Two chain maps (φn)n≥0 and (ψn)n≥0 are called chain homotopic if there exist linear
homomorphisms Dn : Cn(K) → Cn+1(L), n ≥ 0 (with D−1 = 0) such that

∂n+1Dn +Dn−1∂n = φn − ψn, for all n ≥ 0.

On a diagram this looks like

Cn+1(L) Cn(L)
∂n+1

//

Cn+1(K)

Cn+1(L)

φn+1−ψn+1

��

Cn+1(K) Cn(K)
∂n+1

// Cn(K)

Cn(L)

φn−ψn

��

Cn(L) Cn−1(L)
∂n

//

Cn(K)

Cn(L)

Cn(K) Cn−1(K)
∂n

// Cn−1(K)

Cn−1(L)

φn−1−ψn−1

��

Cn(K)

Cn+1(L)

Dn

⑧
⑧
⑧
⑧

��⑧⑧
⑧
⑧

Cn−1(K)

Cn(L)

Dn−1

⑧
⑧
⑧
⑧

��⑧⑧
⑧
⑧

The idea behind this definition comes from actual homotopies. If a homotopyH : σn×[0, 1] → L
is also a ∆-map, then its image is a prism. The map Dn associates to σn this prism, written as the
sum of the simplices that compose it. The 1- and 2-dimensional cases are shown in Figure 5.10.

Figure 5.10:

Theorem 5.2.3. If (φn)n≥0 and (ψn)n≥0 are chain homotopic, then for each n, (φ∗)n = (ψ∗)n,
where φ∗ and ψ∗ are the maps induced on homology.

Proof. For a cycle zn ∈ Cn(K) we have

(φ∗)n([zn])− (ψ∗)n([zn]) = ((φ∗)n − (ψ∗)n)([zn]) = [(φn − ψn)(zn)]

= [∂n+1Dn(zn) +Dn−1(∂nzn)] = [∂n+1Dn(zn)],

and this is zero because it is a boundary.

Definition. Two ∆-complexes K and L are called chain equivalent if there exist chain mappings
φ = {φn : Cn(K) → Cn(L)}n≥0 and ψ = {ψn : Cn(L) → Cn(K)}n≥0 such that φ ◦ ψ is chain
homotopic to the identity map of C∗(K) and ψ ◦φ is chain homotopic to the identity map of C∗(L).
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Corollary 5.2.1. Chain equivalent ∆-complexes have isomorphic homology groups in all dimen-
sions.

Proof. If φn : Cn(K) → Cn(L) and ψn : Cn(L) → Cn(K) are chain equivalences, then φn ◦ ψn is
chain homotopic to the identity on Cn(L) and ψn ◦φn is chain homotopic to the identity on Cn(K).
By Theorem 5.2.3, (φ∗)n ◦ (ψ∗)n = 1Hn(L) and (ψ∗)n ◦ (φ∗)n = 1Hn(K).

As a corollary, we compute the homology of a simplex.

Proposition 5.2.6. Let σm be an m-dimensional simplex. Then

Hn(σ
m) =

{
Z if n = 0
0 otherwise.

Proof. Pick a vertex v of σm and define Dn : Cn(σ
m) → Cn+1(σ

m) by

Dn(s
n) =

{
vsn if v does not belong to sn

0 otherwise.

One can check that for n ≥ 1,

idn = ∂n+1Dn +Dn−1∂n.

This means that idn : Hn(σ
m) → Hn(σ

m) is the zero map, and this can only happen if Hn(σ
m) = 0

for n ≥ 1.

On the other handH0(σ
m) = Z, because σm is path connected so any two points are homologous.

We are now in position to make the first advance towards the proof that homology groups are
topological invariants.

Theorem 5.2.4. The homology groups of a ∆-complex and its first barycentric subdivision are
isomorphic.

Proof. In view of Corollary 5.2.1, it suffices to show that the ∆-complex and its first barycentric
subdivision are chain equivalent.

So we have two ∆-complexes, K and its first barycentric subdivision K(1). Let φ = (φn)n≥0 be
the first chain derivation of K and let ψ = (ψn)n≥0 be the chain map defined in Proposition 5.2.5.
We already know that ψ ◦ φ is chain homotopic to the identity map of C∗(K), because it is the
identity. We need to show that ψ ◦ φ is chain homotopic to the identity map of C∗(K

(1)).
For a simplex σn = 〈v0, v1, . . . , vn〉 ∈ K(1) define

Dn(〈v0, v1, . . . , vn〉) = 〈v0, ψ(v0), ψ(v1), . . . , ψ(vn)〉 − 〈v0, v1, ψ(v1), . . . , ψ(vn)〉+ · · ·
± 〈v0, v1, . . . , vn, ψ(vn)〉 .

In this sum the convention is that degenerate simplices are equal to 0, while the other simplices
should be divided by barycenters into actual simplices of the barycentric subdivision.

A little algebra shows that

∂n+1Dn(σ
n) +Dn−1∂n(σ

n) = φnψn(σ
n)− σn,

and hence Dn, n ≥ 0 is a chain homotopy between φ ◦ψ and the identity map. This completes the
proof.
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It is important to notice that the homology groups are isomorphic in a canonical way, the
isomorphism being defined by the first chain derivation. As such a cycle in K gives the same cycle
in K(1) but with its simplices subdivided.

Theorem 5.2.5. If f : K → L is a ∆-map then f : K(1) → L(1) is a simplicial map, and the
following diagram commutes

Hn(K)
(f∗)n−−−−→ Hn(L)

∼=

y ∼=

y

Hn(K
(1))

(f∗)n−−−−→ Hn(L
(1))

Proof. The corresponding diagram for f# at the level of chains is commutative. The conclusion
follows.

5.2.3 The simplicial approximation theorem

In view of Theorem 5.2.4 for the formal proofs we can focus only on simplicial complexes. First,
some definitions.

Definition. The open simplex, open(σ), is the collection of all points in σ with positive barycentric
coordinates. The open star of a vertex ost(v), is the union of all open simplices containing v.

Note that ost(v) is an open neighborhood of v.

Lemma 5.2.2. If v0, v1, . . . , vn are vertices in a simplicial complex K, then they are the vertices
of a simplex if and only if

∩ni=0ost(vi) 6= ∅.

Proof. If they are the vertices of a simplex, then the intersection of the open stars contains the
interior of that simplex, so is nonempty.

Conversely, if the intersection is nonempty, let x be a point in this intersection. Then all the
vi, 0 ≤ i ≤ n, appear with positive barycentric coordinates in x. This can only happen if the vi,
1 ≤ i ≤ n, lie in a simplex. Consequently they are the vertices of a simplex.

Definition. Let K and L be simplicial complexes, and f : |K| → |L| be a continuous map. We
say that K is star related to L relative to f if for any vertex v in K there is a vertex w in L such
that f(ost(v)) ⊂ ost(w).

The following result was proved by Brouwer.

Theorem 5.2.6. (The simplicial approximation theorem) Let K and L be simplicial complexes,
and let f : |K| → |L| be a continuous function. Then there is a barycentric subdivision K(n) and
a continuous function f∆ : |K| → |L| such that
a) f∆ is a simplicial map from K(n) → L
b) f∆ is homotopic to f .

Proof. We need the following result.

Lemma 5.2.3. Let K and L be simplicial complexes, and let f : |K| → |L| be a continuous
function such that K is star related to L relative to f . Then there is a simplicial map f∆ : |K| → |L|
homotopic to f .
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Proof. Since K is star related to L relative to f , there is for each vertex v of a simplex of K a
vertex w of simplex of L such that f(ost(v)) ⊂ ost(w). Define f∆(v) = w. Let σ = 〈v0, . . . , vn〉 be
a simplex of K. Then ∩ni=1ost(vi) 6= ∅. It follows that ∩ni=0ost(f∆(vi)) 6= ∅. By Lemma 5.2.2, the
elements of the set

{f∆(vi) | i = 0, 1, 2, . . . , n}

are the vertices of a simplex σ′ in L (this simplex can have dimension less than n). Hence f∆ can
be extended linearly, to a simplicial map f∆ : K → L.

To see that the geometric realization f∆ : |K| → |L| is homotopic to f , note that with this
definition (f(ost(v)) ⊂ ost(w) = ost(f∆(v)). As such, whenever x ∈ |K| and f(x) belongs to a
simplex, then f∆(x) belongs to that simplex. Thus we can define a homotopy between f and f∆
by H(x, t) = tf(x) + (1− t)f∆(x). The lemma is proved.

Let us return to the theorem. The space |L| is compact and as explained in Remark 5.1.1, it
is also a metric space. The open cover {ost(v), v a vertex of L} has a Lebesgue number η > 0,
meaning that every ball of radius η in |L| is inside the open star of some vertex.

The function f is uniformly continuous so there is a δ such that for every x, f(B(x, δ)) subset
B(f(x), η). Consider a sufficiently small barycentric subdivision of K such that the open star of
each vertex lies inside a ball of radius δ. Then the image of this every open star lies inside the
open star of a vertex in L, and so K is star related to L relative to f . The conclusion follows by
applying Lemma 5.2.3.

Definition. A map f∆ satisfying the properties from the statement of the theorem is called a
simplicial approximation of f .

Definition. Two simplicial maps f, g : K → L are said to be contiguous if for every simplex σ ∈ K,
the vertices of f(σ) together with the vertices of g(σ) form a simplex in L.

Proposition 5.2.7. Suppose f : |K| → |L| is a continuous function that has simplicial approxi-
mations f∆ and f ′∆. Then f∆ and f ′∆ are contiguous.

Proof. Suppose σ = 〈v0, v1, . . . , vn〉 ∈ K. Then for x ∈ open(σ),

f(x) ∈ f (∩iost(vi)) ⊂ ∩if(ost(vi)) ⊂ ∩iost(f∆(vi)) ∩ ost(f ′∆(vi)).

Since this intersection is not empty, by Lemma 5.2.2 the vertices of f∆(σ) together with those of
f ′∆(σ) are the vertices of a simplex in L.

Theorem 5.2.7. (a) Contiguous simplicial maps have homotopic realizations.
(b) Conversely, if K and L are simplicial complexes and f, g : |K| → |L| are homotopic maps
with simplicial approximations f∆, g∆ : K(m) → L, then there is m > n and simplicial maps maps
f0 = f∆, f1, . . . , fm = g∆ from K(n) to L such that for each 0 ≤ i < n, fi is contiguous to fi+1.

Proof. (a) If f and g are contiguous, then H : |K| → |L|, H(x, t) = (1−t)f(x)+tg(x) is a homotopy
between f and g. Here the line segment (1− t)f(x) + tg(x) is taken in the simplex to which both
f(x) and g(x) belong by the condition of f and g to be contiguous.
(b) Let H : |K| × [0, 1] → |L| be a homotopy with H(·, 0) = f , H(·, 1) = g. Consider the open
cover of |K| given by

{H−1(ost(w)) |w vertex in L}.



100 CHAPTER 5. HOMOLOGY

Using the Lebesgue number lemma, we deduce that there is a partition of [0, 1], 0 = t1 < t2 < . . . <
tk−1 = 1 such that for any x ∈ |K| and i < m, H(x, ti) and H(x, ti+1) lie in the same ost(w) for
some w ∈ L. Define the functions hi : |K| → |L| by hi(x) = H(x, ti). Consider the (finitely many)
open sets h−1

i (ost(w)) ∪ h−1
i+1(ost(w)), w a vertex in L, 1 ≤ i ≤ k − 2. Subdivide K enough times

such that each of the simplices of K(n) lies entirely in one of these open sets. Let fi : K
(n) → L

be a simplicial map such that hi(ost(v)) ∪ hi+1(ost(v)) ⊂ ost(fi(v)) for each vertex v of K(n). By
definition, fi is a simplicial approximation to both hi and hi+1. Hence fi and fi+1 are contiguous.
Since h0 = f and hk = g, f1 and fk−1 are simplicial approximations to f respectively g. By
Proposition 5.2.7, f1 is contiguous to f0 = f∆ and fk−1 is contiguous to fk = g∆. The theorem is
proved.

5.2.4 The independence of homology groups on the geometric realization of the

space as a ∆-complex

Lemma 5.2.4. Contiguous simplicial maps induce the same homomorphisms at the level of ho-
mology groups.

Proof. We will show that the simplicial maps are chain homotopic. Let φ, ψ : K → L be contiguous
simplicial maps. Define Dn : Cn(K) → Cn+1(L) by

Dn(〈v0, v1, . . . , vn〉 =
n∑

i=0

(−1)i 〈φ(v0), . . . , φ(vi), ψ(vi), . . . , ψ(vn)〉).

Here again we use the convention that degenerate simplices are mapped to zero. This map is well
defined, namely each summand is a simplex, precisely because φ and ψ are contiguous.

We compute

∂n+1Dn(〈v0, v1, . . . , vn〉) = ∂n+1

(
n∑

i=0

(−1)i 〈φ(v0), . . . , φ(vi), ψ(vi), . . . , ψ(vn)〉
)

=
∑

j≤i

(−1)i+j
〈
φ(v0), . . . , φ̂(vj), . . . , φ(vi), ψ(vi), . . . , ψ(vn)

〉

+
∑

i≤j

(−1)i+j+1
〈
φ(v0), . . . . . . , φ(vi), ψ(vi), . . . , ψ̂(vj), . . . , ψ(vn)

〉
.

Also

Dn−1∂n(〈v0, v1, . . . , vn〉) = Dn−1




n∑

j=0

(−1)j 〈v0, . . . , v̂j , . . . , vn〉




=
∑

j<i

(−1)i+j−1
〈
φ(v0), . . . , φ̂(vj), . . . , φ(vi), ψ(vi), . . . , ψ(vn)

〉

+
∑

j>i

(−1)i+j
〈
φ(v0), . . . , φ(vi), ψ(vi), . . . , ψ̂(vj), . . . , ψ(vn)

〉
.

When adding the two everything with i 6= j cancels, and we only have the i = j terms from the
first expression. Each of these appears twice, with opposite signs, except for i = 0 and i = n, one
of which appears with plus, and the other with minus. Hence

(∂n+1Dn +Dn−1∂n)(〈v0, v1, . . . , vn〉) = 〈φ(v0), φ(v1), . . . , φ(vn)〉 − 〈ψ(v0), ψ(v1), . . . , ψ(vn)〉 ,
showing that Dn, n ≥ 0, is a chain homotopy between φ and ψ. The conclusion follows.
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This result combined with Theorem 5.2.7 allows us to define, for each continuous map between
spaces that can be realized as simplicial complexes, a homomorphism between homology groups.

Definition. Let K and L be ∆-complexes and f : |K| → |L| a continuous map with simplicial
approximation f∆. Define (f∗)n : Hn(K) → Hn(L) by (f∗) = (f∆∗)n.

Theorem 5.2.8. Let K and L be ∆-complexes and f, g : |K| → |L| be continuous maps that are
homotopic. Then (f∗)n = (g∗)n, n ≥ 0. Consequently, if the underlying topological spaces of two
∆-complexes are homotopically equivalent, then their homology groups are isomorphic.

Proof. This is a corollary of Lemma 5.2.4 and Theorem 5.2.7.

Corollary 5.2.2. If two spaces are homeomorphic, then their homology groups are isomorphic.

In particular, let X be a topological spaces such that X = |K| = |L|, with K,L ∆-complexes
(or simplicial complexes). Then Hn(K) = Hn(L), for n ≥ 0. Indeed, if we let f = id : |K| → |L|
and g = id : |L| → |K|, with simplicial approximations f∆ and g∆, then f∆ ◦ g∆ is homotopic to
id : |L| → |L| and g∆ ◦ f∆ is homotopic to id : |K| → |K|, so by functoriality (f∆)∗ ◦ (g∆)∗ = id
and (g∆)∗ ◦ (f∆)∗ = id, which shows that (f∆)∗ and (g∆)∗ are isomorphisms. Thus the homology
groups do not depend on how X is realized as a ∆-complex.

Definition. A space is called contractible if it is homotopy equivalent to a point. An alternative
way to say this is that the identity map is null-homotopic.

Corollary 5.2.3. If X is a contractible topological space that can be realized as a ∆-complex,
then

Hn(X) =

{
Z if n = 0
0 otherwise.

Proof. If the space is contractible, it has the homology of a point. We realize the point as a
∆-complex with one 0-dimensional simplex. The corresponding simplicial complex is

· · · 0 → 0 → · · · → 0 → Z → 0.

Hence the conclusion.

5.3 Applications of homology

Theorem 5.3.1. If m and n are positive integers and m 6= n, then Rm and Rn are not homeomor-
phic.

Proof. Assume that for some m < n, there is a homeomorphism h : Rm → Rn. Consider the
restriction

h : Rm\{0} → Rn\{h(0)},
which is still a homeomorphism. Thus h should induce isomorphism at the level of homology
groups. If m = 1 this is impossible since the second space is connected, while the first is not.

For m > 1, Rm\{0} and Rn\{h(0)} are homotopically equivalent to Sm−1 respectively Sn−1.
This means thta Sm−1 and Sn−1 are homotopically equivalent. Consequently, they have isomorphic
homology groups.

But, by Proposition 5.1.2, Hn−1(S
n−1) = Z, while Hn−1(S

m−1) = 0 because Sm−1 can be
realized as a ∆-complex with no n− 1-dimensional simplex. The two groups cannot be isomorphic,
a contradiction. Hence our assumption was false, and the conclusion follows.
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We should remark that within the proof we also showed that Sn and Sm are not homotopically
equivalent if m 6= n. In view of the proof, we can extend homology to some spaces that are not
themselves realizable as ∆-complexes. If X is homotopy equivalent to Y and Y can be realized
as a ∆-complex then we set Hn(X) = Hn(Y ). The definition is independent of Y (up to an
isomorphism).

The following generalizes Theorem 4.3.6.

Theorem 5.3.2. (Brouwer fixed point theorem) Every continuous function from a closed ball of
Rn to itself has a fixed point.

Proof. This proof mimics that for the 2-dimensional situation given in § 4.3.3. Assume to the
contrary that there is f : B

n → B
n
which is continuous with no fixed points. For x ∈ B

n
, define

g(x) as the point where the ray from f(x) to x meets the boundary Sn−1 of the ball. The function
g : Bn → Sn−1 is continuous (prove it!). Furthermore, if i is the inclusion of Sn−1 into B

n
, then

g ◦ i is the identity map. Looking at the composition of isomorphisms

Hn−1(S
n−1)

i∗−→ Hn−1(B
n
)

g∗−→ Hn−1(S
n−1),

we notice that it must be equal to zero, because the homology group in the middle is the trivial
group, by Corollary 5.2.3. But (g ◦ i)∗ = 1Z. This is a contradiction. The conclusion follows.

The proof of Proposition 4.3.2 applies mutatis mutandis to the following general situation.

Proposition 5.3.1. Every square matrix with positive entries has an eigenvector with positive
entries.

Here is another application to game theory. First some terminology. Consider a game in which
two players, 1 and 2, have m respectively n strategies. Let A and B be the be the payoff matrices,
meaning that if player 1 chooses strategy i and player 2 strategy j then the payoffs of the two players
are Aij respectively Bij . A mixed strategy is a pair of points (x,y) ∈ Rn × Rm with nonnegative
entries, such that

∑n
i=1 xi =

∑m
j=1 yj = 1. As such they represent probability distributions for

the strategies of the two players. Consequently, the expectation values of the payoffs for the two
players are respectively xTAy and xTBy.

A Nash equilibrium (after John Nash) is a mixed strategy (x,y) such that for all x′,y′,

x′TAy ≤ xTAy and xTBy′ ≤ xTBy.

This means that if one of the players plays according to the Nash equilibrium, the other is obliged
to play according the the Nash equilibrium in order to maximize the payoff.

Theorem 5.3.3. (Nash) For all payoff matrices A and B there is a Nash equilibrium.

Proof. Assume that there are payoff matrices A and B for which this does not hold. Consider
the space of all mixed strategies. It is the product of an n − 1-dimensional simplex σn−1 with an
m− 1-dimensional simplex σm−1, hence it is homeomorphic to a closed m+n− 2-dimensional ball
B
n
. Let φ(x′) = x′TAy and ψ(y′) = xTBy′. Because of the fact that there are no Nash equlibria,

the vector ((∇φ)x, (∇ψ)y) is never zero. Define the function f : σn−1×σm−1 → ∂(σn−1×σm−1) by
associating to each point (x,y) the point at which the ray from (x,y) of direction ((∇φ)x, (∇ψ)y)
intersects the boundary of the space of all mixed strategies.

By Brouwer’s fixed point theorem, f has a fixed point. But this is impossible, since the ray
points away from (x,y). The contradiction proves that our assumption was false, and the conclusion
follows.

Remark 5.3.1. There is no known algorithm for finding the Nash equilibrium in polynomial time.


