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We apply the central difference method (utþ1 2 ut21)/(2Dt) ¼ f (ut) to an epidemic SIR model and show how
the local stability of the equilibria is changed after applying the numerical method. The above central
difference scheme can be used as a numerical method to produce a discrete-time model that possesses
interesting local dynamics which appears inconsistent with the continuous model. Any fixed point of a
differential equation will become an unstable saddle node after applying this method. Two other implicitly
defined central difference methods are also discussed here. These two methods are more efficient for
preserving the local stability of the fixed points for the continuous models. We apply conformal mapping
theory in complex analysis to verify the local stability results.
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1. Introduction

In some areas of mathematical biology, for example, insect population, it is reasonable to

consider discrete-time models (or difference equations) for the population growth. Recently, it

has become popular to obtain discrete-time systems using either standard or nonstandard

numerical methods. Also, local dynamics are compared between the continuous model and its

discrete counterparts [2,7–10].

The following is a basic epidemic SIR model [4] that includes vital dynamics:

S0ðtÞ ¼ 2lSI þ m2 mS; I 0ðtÞ ¼ lSI 2 gI 2 mI; Sð0Þ ¼ S0 . 0; Ið0Þ ¼ I0 $ 0; ð1Þ

and R(t) ¼ 1 2 S(t) 2 I(t) $ 0. This is an endemic model for which infection confers permanent

immunity and the disease goes through a population in a relatively long time. S(t), I(t), and R(t),

are the fractions of the total population of the susceptible, the infective, and the removed classes.

The results of this model are well-known [4]. If s ¼ l/(g þ m) # 1, the equilibrium point (S,

I) ¼ (1,0) is asymptotically stable. That is to say that the disease goes extinct. If s . 1, then the

positive equilibrium ðS*; I *Þ ¼ ð1=s;mðs2 1Þ=lÞ is asymptotically stable. Therefore, the

disease will stay in the population.
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If we apply the central difference method for a system of differential equations

dx

dt
¼ f ðxÞ; ð2Þ

where x ¼ (x1, x2, . . . , xn)
t is an n-vector, then we obtain

xtþ1 2 xt21

2h
¼ f ðxtÞ: ð3Þ

Many examples were shown in Refs. [5,6,11,12] that the central difference method (3)

produces a discrete-time system with local dynamics that are inconsistent with the

continuous-time system, and even produces chaos when used as a numerical method.

Mickens [6] applied the above method for the decay equation dx/dt ¼ 2x and showed that

the numerical scheme for the decay equation has numerical instabilities regardless of the

chosen step-size. Ushiki [11] applied the central difference method to the logistic equation

dx/dt ¼ x(1 2 x) and showed that the local dynamics of the logistic difference equation

xtþ1 ¼ xt21 þ 2hxtð12 xtÞ are inconsistent with this continuous-time equation, including

chaotic behaviors. He showed that the discrete dynamical system is chaotic. There exists

chaotic ghost solutions for any non-zero time step h. Yamaguti and Ushiki [12] also studied

the discretization of the logistic equation by the central difference scheme when the step size

h is fixed. In their numerical computation, the scheme produces some ghost solutions for

long-range calculations. They mentioned that one of the reasons for the ghost solution

phenomenon is that the central difference scheme is a second order difference scheme and

that the instability enters at x ¼ 1 and x ¼ 0, the two equilibria of the logistic equation.

If we apply the central difference method (3) to the SIR model (1), then we have the

following system of difference equations:

Stþ1 ¼ St21 þ 2hð2lStIt þ m2 mStÞ; Itþ1 ¼ It21 þ 2hðlStIt 2 gIt 2 mItÞ: ð4Þ

We will choose the initial conditions for this model to be S(0) ¼ S0, I(0) ¼ I0 and

S(1) ¼ S0 þ h(2lS0I0 þ m 2 mS0), I(1) ¼ I0 þ h(lS0I0 2 gI0 2 mI0) from Euler’s

scheme. System (4) is a second-order difference equation SIR model. Since the model is

derived from the continuous SIR model, we may also assume that 0 , S(t) þ I(t) # 1. If a

solution (I(t), S(t)) does not satisfy 0 , S(t) þ I(t) # 1, it is invalid. On the other hand, we

can always choose the step size h small enough so that the solutions are bounded.

The results we develop in Section 2 show that in the discrete-time SIR model (4), the

positive equilibrium is no longer asymptotically stable when s . 1. Instead, the solution

oscillates near the equilibrium and never settles down since the positive equilibrium is now a

saddle point (figure 1).

The central-difference formula (3) is widely used to estimate the derivative of a function

[3]. The error in the central-difference method is smaller than that of Euler’s method.

Standard textbooks in numerical methods mention little about the local stability of the

central-difference method (see for example, [1,3]). In this paper, we will look at three central

difference schemes and show that the local numerical instability is a general property of

method (3) but not of the other two.

The other two methods are the mixed implicit, central difference scheme

xtþ1 2 xt21

2h
¼ f

xtþ1 þ xt21

2

� �
; ð5Þ
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and another implicit central difference scheme

xtþ1 2 xt21

2h
¼ f

xtþ1 þ xt þ xt21

3

� �
: ð6Þ

Methods (5) and (6) are briefly mentioned in Mickens [5] as possible ways to discretize a

differential equation.

In section 2, we explain the changing behavior of the local dynamics using the central

difference method (3): the stability of any fixed point will be unstable no matter what step-size

is chosen. This is the reason that the solution of the SIR model oscillates near the equilibrium

point. We discuss the other two implicit central difference schemes (5) and (6) in section 3. The

two implicit central difference schemes preserve the stability of the fixed points.

2. The central difference scheme

If we apply the central difference scheme to the differential equation (2), we have the second

order difference equation (3). We can rewrite equation (3) as

xtþ2 ¼ xt þ 2hf ðxtþ1Þ: ð7Þ

Figure 1. The SIR model (1) when s ¼ 4.7727 . 1. In these figures, the dotted line is the stable equilibrium of
I * ¼ m(s 2 1)/l ¼ 0.252 for the SIR model (1). The two darker curves describe the oscillation of the solution of I(t)
using the central difference method (3). The time evaluated is from 0 to 2000. (b) Is close-up of (a). (c) Is a closer
look of the results when the time is between 1600 and 1650. The parameter values are l ¼ 2.1, m ¼ 0.14, g ¼ 0.3.
The step-size is h ¼ 0.014 and the initial values, S0 ¼ 0.9, I0 ¼ 0.1.
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Let (ut, vt) ¼ (xt, xtþ1). Then the equation (7) is a system of first-order difference equations:

utþ1 ¼ vt; vtþ1 ¼ ut þ 2hf ðvtÞ: ð8Þ

Let g denote the right hand side function of equation (8). If p0 is a fixed point of the

differential equation (2), then (u, v)t ¼ (p0, p0)t is a fixed point of the difference equation (8).

The Jacobian matrix of the system (8) evaluated at (p0, p0)t is

Dgðp 0Þ ¼
0 I

I 2hDf ðp 0Þ

 !
:

The eigenvalue w of Dg(p0) and the eigenvalue z of Df(p0) are related. Let (x1, x2)t be an

eigenvector associated to w. Then we have

Dgðp 0Þ
x1

x2

 !
¼

0 I

I 2hDf ðp 0Þ

 !
x1

x2

 !
¼ w

x1

x2

 !
:

This is the same as

x2 ¼ wx1; x1 þ 2hDf ðp 0Þx2 ¼ wx2:

If we multiply the second equation by w, replace wx1 by x2, and rearrange the equation, we

have

Df ðp 0Þx2 ¼
1

2h
w2

1

w

� �
x2:

Therefore z ¼ 1/2h(w 2 (1/w)) is an eigenvalue of Df(p0).

In other words, if z is an eigenvalue for Df(p0), then w1;2 ¼ hz^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2z2 þ 1

p
are

eigenvalues for the matrix Dg(p0). We have jw1w2j ¼ 1, and neither jw1j ¼ 1 nor jw2j ¼ 1.

It follows that unless z ¼ 0, either jw1j . 1 and jw2j , 1 or jw1j , 1 and jw2j . 1.

We conclude that the fixed point (p0, p0) of the difference equation (7) is a saddle point and

unstable. Therefore, we have the following theorem.

Theorem 1. For h . 0, all of the fixed points of the differential equation dx/dt ¼ f(x)

become saddle points and unstable after applying the central difference scheme (3).

3. Implicit central difference schemes

3.1 Mixed implicit, central difference scheme

The second central difference scheme is described as in the equation (5). Equation (5) is a

system of second order difference equations. We can rewrite equation (5) as the following

xtþ2 ¼ xt þ 2hf
xtþ2 þ xt

2

� �
;

or as a system of first-order difference equations:

utþ1 ¼ vt; vtþ1 ¼ ut þ 2hf
ut þ vtþ1

2

� �
: ð9Þ
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Let g denote the right hand side function of equation (9). If p 0 is a fixed point for the

differential equation (2), then (p 0, p 0) is a fixed point of equation (9). At the fixed point p 0,

implicit differentiation and solving for the partial derivative give us

›vtþ1

›ut

ðp 0Þ ¼ I 2 hDf ðp 0Þ
� �

I þ hDf ðp 0Þ
� �

provided h is small enough so that I 2 hDf (p 0) is invertible. Then the Jacobian matrix

Dg(p 0) of the difference equations (9) at (p 0, p 0) is

Dgðp 0Þ ¼
0 I

ðI 2 hDf ðp 0ÞÞ
21ðI þ hDf ðp 0ÞÞ 0

 !
:

We have similar results relating the eigenvalues z of Df(p 0) and w of Dg(p 0). Let (x1, x2)t be

an eigenvector associated to w. Then we have

Dgðp 0Þ
x1

x2

 !
¼

0 I

ðI 2 hDf ðp 0ÞÞ
21ðI þ hDf ðp 0ÞÞ 0

 !
x1

x2

 !
¼ w

x1

x2

 !
:

After some manipulation we are able to obtain

Df ðp 0Þx2 ¼
w2 2 1

hðw2 þ 1Þ
x2:

Therefore, if w is an eigenvalue of Dg(p 0), then z ¼ (w 2 2 1)/(hw 2 þ h) is an eigenvalue of

Df(p 0). Also, if z is an eigenvalue of Df(p 0), then w ¼ ^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ hzÞ=ð12 hzÞ

p
are

eigenvalues of Dg(p 0). We will show that all of the values of z on the left half planeR(z) , 0

will eventually be mapped into the unit disk jwj , 1. Similar arguments imply that all values

of z on the right half plane R(z) . 0 will be mapped to jwj . 1. That is, stable (unstable)

fixed points will remain stable (unstable) after the mixed implicit central difference scheme

(5). We have the following theorem.

Theorem 2. The implicit mixed, central difference scheme (5) preserves the local stability

of the fixed points of the differential equation dx/dt ¼ f(x).

Proof. We only need to show that the real part, R(z), of the map z ¼ (w 2 2 1)/h(w 2 þ 1) is

less than (greater than) zero if jwj , 1 (jwj . 1). Note that z is an analytic function inside the

unit disk jwj , 1 (and outside the unit disk jwj . 1). Therefore, R(z) is a harmonic function

inside and outside the unit disk and its behavior is determined by its boundary values.

Let w ¼ reiu. Then we have

RðzÞ ¼
1

hðjw2 þ 1j
2
Þ
Rððw2 2 1Þð �w2 þ 1ÞÞ ¼

1

hðjw2 þ 1j
2
Þ
ðr 4 2 1Þ

¼
1

hðjw2 þ 1j
2
Þ
ðr 2 þ 1Þðr þ 1Þðr 2 1Þ:

Since h . 0, jw 2 þ 1j . 0, and r . 0, we have R(z) , 0 if r , 1 and R(z) . 0 if r . 1,

where r ¼ jwj. A
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3.2 Another implicit central difference scheme

The other implicit central difference scheme is (6). We can rewrite the implicit central

difference scheme (6) as

xtþ2 ¼ xt þ 2hf
xtþ2 þ xtþ1 þ xt

3

� �
:

Let

ut

vt

 !
¼

xt

xtþ1

 !
:

Then we can rewrite this system into a system of first-order difference equations as follows

utþ1 ¼ vt; vtþ1 ¼ ut þ 2hf
vtþ1 þ ut þ vt

3

� �
: ð10Þ

Since

›vtþ1

›ut

¼ I þ 2hDf ·
1

3

›vtþ1

›ut

þ
1

3
I

� �
;

›vtþ1

›vt
¼ 2hDf ·

1

3

›vtþ1

›vt
þ

1

3
I

� �
;

we have

›vtþ1

›ut

¼ I 2
2h

3
Df

� �21

I þ
2h

3
Df

� �
;

›vtþ1

›vt
¼ I 2

2h

3
Df

� �21
2h

3
Df

� �
:

Then at the fixed points p0 and (p0, p0), we obtain the Jacobian matrix Dg(p 0) of the system

of difference equation (10) to be

Dgðp 0Þ ¼

0 I

I 2 2h
3
Df ðp 0Þ

� �21
I þ 2h

3
Df ðp 0Þ

� �
I 2 2h

3
Df ðp 0Þ

� �21 2h
3
Df ðp 0Þ

� �
0
@

1
A:

We can show that if w is an eigenvalue of Dg(p0), then 3ðw2 2 1Þ=2hðw2 þ wþ 1Þ is an

eigenvalue of Df(p0).

Let (x1, x2)t be an eigenvector associated to the eigenvalue w. Then we have

x2 ¼ wx1; I 2
2h

3
Df ðp 0Þ

� �21

I þ
2h

3
Df ðp 0Þ

� �
x1 þ

2h

3
Df ðp 0Þ

� �
x2

� �
¼ wx2:

After some manipulation, we are able to obtain

Df ðp 0Þx2 ¼
3ðw2 2 1Þ

2hðw2 þ wþ 1Þ
x2:

Also, if z is an eigenvalue for Df(p0), then w ¼ hz^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
92 3h2z2

p
=ð32 2hzÞ are eigenvalues

for the matrix Dg(p0). Similarly, we have the following theorem.

Theorem 3. The implicit central difference scheme (6) preserves the local stability of the

fixed points of the differential equation dx/dt ¼ f(x).
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Proof. We only need to show that the real part, R(z), of the map z ¼ 3ðw2 2 1Þ=2hðw2 þ

wþ 1Þ is less than (greater than) zero if jwj , 1 (jwj . 1). Since the roots of

w 2 þ w þ 1 ¼ 0 lie on jwj ¼ 1 we have that z is an analytic function inside the unit disk,

jwj , 1 (and outside the unit disk, jwj . 1). Therefore, R(z) is a harmonic function inside

and outside the unit disk. Let w ¼ reiu. Then we have

RðzÞ ¼
3

2hðjw2 þ wþ 1j
2
Þ
Rððw2 2 1Þð �w2 þ �wþ 1ÞÞ

¼
3

2hðjw2 þ wþ 1j
2
Þ
ðr 4 þ r 3cos u2 rcos u2 1Þ

¼
3

2hðjw2 þ wþ 1j
2
Þ
ðr 2 þ rcos uþ 1Þðr þ 1Þðr 2 1Þ:

Since h . 0, jw 2 þ w þ 1j . 0, r . 0, and r 2 þ r cos uþ 1 ¼ ðr þ ðcos u=2ÞÞ2þ

ð1 2 ðcos2u=4ÞÞ $ 1 2 ðcos2u=4Þ . 0, we have R(z) , 0 if r , 1 and R(z) . 0 if r . 1,

where r ¼ jwj. A

4. Conclusions

We have applied the central difference method to the SIR model and showed in Theorem 1

that the positive equilibrium is now a saddle point instead of a stable node as in the

continuous SIR model. The central difference method (3) does not preserve local stability of

the fixed points of differential equations. Applying the central difference scheme (3) to

differential equations will produce difference equations with interesting results that show

local dynamics inconsistent with the continuous-time systems. Three different central

difference methods are discussed with two of them preserving the local stability of the

equilibria of differential equations.

Most of the standard numerical methods, for example, the Euler’s method and the Runge–

Kutta method, preserve the local stability of fixed points if the step-size is sufficiently small.

However, the central difference scheme (3) alters the local stability no matter how small the

step size. The two implicit schemes (5) and (6) seem to neutralize the bad behavior of the

central difference scheme. They preserve local stability of fixed points. In the literature

[1,5,11,12], examples are shown that the central difference scheme (3) does not preserve

local stability. However, we have not seen similar arguments on the other two implicit

schemes (5) and (6).

There is no unique way to discretize a differential equation. So, there are many ways to

construct discrete-time models. If we want to build more traditional discrete-time epidemic

models, we can choose the numerical methods that preserve local stability. If we want

something different, we might want to try the central difference method.
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