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Abstract. In this paper we describe a variational method, based on Julia’s
formula for the Hadamard variation, for hyperbolically convex polygons. We
use this variational method to prove a general theorem for solving extremal
problems for hyperbolically convex functions. Special cases of this theorem
provide independent proofs for controlling growth and distortion for hyperbol-
ically convex functions.

1. INTRODUCTION

A classical problem in Geometric Function Theory is to maximize the value of
a given functional over a given class of analytic functions. Recent papers have
extended this problem and its study to functionals on hyperbolically convex func-
tions. In particular, these functions were studied by Beardon in [3], Ma and Minda
in [4, 5] and Solynin in [12, 13]. More recently, they have been studied by Mej́ıa
and Pommerenke in [6, 7, 8, 9, 10] and Mej́ıa, Pommerenke, and Vasiliyev in [11].
There have been a number of open problems and conjectures in these papers. A
critical obstacle to these studies has been the lack of a suitable variational method
for this class.

In this paper, we develop a variational technique, based on Julia’s formula for
the Hadamard variation, that can be used to overcome this obstacle and to resolve
a number of these problems and conjectures. We will then use this variational
method to prove a general theorem, which includes as special cases a number of the
results refered to in the referenced papers in the introductory paragraph.

Let D = {z ∈ C : |z| < 1} denote the unit disk in C and let T = ∂D.
The hyperbolic plane can be viewed as D with the imposed hyperbolic metric
λ(z)|dz| = 2|dz|

1−|z|2 . Under this metric, hyperbolic geodesics in D are connected sub-
arcs of Euclidean circles which intersect T orthogonally. A set S ⊂ D is hyperboli-
cally convex if for any two points z1 and z2 in S, the hyperbolic geodesic connecting
z1 to z2 lies entirely inside of S.

We will say that a function f : D → D is hyperbolically convex if f is analytic and
univalent on D and if f(D) is hyperbolically convex. The set of all hyperbolically
convex functions f which satisfy f(0) = 0 will be denoted by H. Interesting
examples are the normal fundamental domains of Fuchsian groups in D.
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A hyperbolic polygon is a simply connected subset of D, which contains the origin
and which is bounded by a Jordan curve consisting of a finite collection of hyperbolic
segments and arcs of the unit circle. The hyperbolic segments internal to D will be
referred to as proper sides. We will let Hpoly denote the subset of H of all functions
mapping D onto hyperbolic polygons. Further, we will let Hn denote the subclass
of Hpoly of all functions mapping D onto polygons with at most n proper sides. It
is easily seen that Hpoly is dense in H. Furthermore, H ∪ {0} and Hn ∪ {0}, for
each n, are compact.

Our main theorem is, with <{z} = real part z,

Theorem 1.1. Let Φ be entire. For z ∈ D \ {0} and ak ∈ R, k = 0 . . . n, let

(1) F (f, z) =
n∑

k=0

ak log
f (k)(z)
f ′(0)

and let

(2) Q(ζ) =
n∑

k=0

ak

(
G(k)(ζ, z)
f (k)(z)

− 1
)

,

where

(3) G(k)(ζ, z) =
∂(k)

(
zf ′(z) ζ+z

ζ−z

)
∂z(k)

.

Let f ∈ H be extremal for

(4) L(f) = <{Φ ◦ F (f, z)}

over H such that

(1) Φ′ ◦ F (f, z) ∈ R \ {0},
(2) Q maps T to a curve Λ such that Λ traversely crosses the imaginary axis

at most twice.

Then, the extremal value for L over H can be obtained from a hyperbolically convex
f which maps D onto a hyperbolic polygon with at most one proper side.

The proofs of the following two corollaries will be discussed in Section 3.

Corollary 1.1. Let z ∈ D \ 0 and let f ∈ H be extremal for L(f) = | f(z)
f ′(0)

| over

H. Then, the extremal value for L over H can be obtained from a hyperbolically
convex f which maps D onto a hyperbolic polygon with exactly one proper side.

Corollary 1.2. Let z ∈ D \ 0 and let f ∈ H be extremal for L(f) = |f
′(z)

f ′(0)
| over

H. Then, the extremal value for L over H can be obtained from a hyperbolically
convex f which maps D onto a hyperbolic polygon with exactly one proper side.
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Remark The function f in Theorem 1.1 and Corollaries 1.1 and 1.2 is given by,
up to rotation,

f(z) = kα(z) ≡ 2αz

(1− z) +
√

(1− z)2 + 4α2z

We note that Corollary 1.1 gives the standard growth, covering and early coeffi-
cient theorems obtained by Ma and Minda [4, 5]. Corollary 1.2 gives a new inde-
pendent proof of the frequently stated open problem [5, 6, 8, 10] recently solved
by Mej́ıa, Pommerenke, and Vasileyev [11], which required deep methods from ex-
tremal length and reduced module theory.

Remark The scope of Theorem 1.1 can be extended in the following fashion: if the
second of the itemized hypotheses (the hypothesis which describes the geometry of
the image of T under the kernel Q) is generalized to

(2) Q maps T to a curve Λ such that Λ traversely crosses the imaginary axis at
most 2N times.
then the conclusion of theorem generalizes to

Then, the extremal value for L over H can be obtained from a hyperbolically
convex f which maps D onto a hyperbolic polygon with at most N proper sides.

2. Variations for Hpoly

Julia’s variational formula is developed as follows: Let f ∈ Hpoly map D → Ω ⊆
D such that ∂Ω is piecewise analytic with right and left tangents at all points. For
w ∈ ∂Ω, let n(w) be the outward unit normal where it exists and the zero vector
where it does not. We define a function, piecewise differentiable, φ:∂Ω → R with
φ(wj) = 0 where {wj} is the collection of points at which ∂Ω is not analytic. We
can define a new curve ∂Ω̂ε pointwise by letting ŵε = w + εφ(w)n(w). By choosing
ε sufficiently small, ∂Ω̂ε is a Jordan curve. We now define Ω̂ε to be the region
bounded by ∂Ω̂ε. We define f̂ε to be the Riemann map sending D onto Ω̂ε such
that f̂ε(0) = 0.

Julia’s result (which was really a generalization of Hadamard’s work with Green’s
functions) was that we can write f̂ε as a variation of our original f . In particular,

(5) f̂ε(z) = f(z) +
εzf ′(z)

2πi

∫
ζ + z

ζ − z

φ(w)n(w)
[ζf ′(ζ)]2

dw + o(ε),

where w = f(ζ) for ζ = eiθ, 0 ≤ θ < 2π,and o(ε) is analytic for z ∈ D.
Equation (5) can be rewritten as

(6) f̂ε(z) = f(z) + ε

∫
zf ′(z)

ζ + z

ζ − z
dΨ + o(ε).

where dΨ is a positive measure on T.
The problem encountered in using the method of Julia variations with hyper-

bolically convex functions is the difficulty in finding Julia variations on the sides
of the approximating polygons that leave the varied functions in the original class.
We will describe two basic types of variations which preserve the class Hpoly. One
of these will preserve the number of sides in the varied polygon. The other will
increase it by one.
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For each type of variation, there are three cases with which we will need to
consider, depending on the angles at the ends of the sides being varied. The first
case is when a single side meets the boundary of the unit circle at an angle of π/2.
The next case is the one in which two sides meet on the interior of the disk at an
angle lying beytween 0 and π. Finally, we deal with the case in which the two sides
meet on the boundary of the disk at a zero angle. This case must be subdivided
into two variations, one in which the side is pushed out thus turning the cusp into
two right angles and one in which the meeting of the two sides is moved into the
disk and the angle is increased to a positive angle.

We will first introduce the class preserving variations for Hn, i.e., variations
which for f in Hn will produce varied functions fε which again are in Hn. We
will use these in the proof of Theorem 1.1 to reduce the number of sides in the
extremal domain to at most two. After the class preserving variations, we define
the variations which increase the number of sides, i.e., variations which for f in
Hn will produce varied functions fε which are in Hn+1. These we will use, in
the manner described by Barnard, Cole, Pearce, and Williams [2], to reduce the
possible extremal domains from polygons with at most two sides to those having
at most one side.

The analysis of the first two cases is similar, so we will discuss those concurrently.
We will illustrate by varying a side meeting the boundary of the disk on one side
with an angle of π/2 and meeting internally another side with an angle of θ with 0 <
θ < π on the other (although the analysis works identically with any permutation
of the two sorts of corners). See Figure 1 below.

Figure 1. Variation at an Internal Angle
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We consider side ÂB of our hyperbolically convex polygon Ω. We label the point
on the geodesic continuation of ÂB to T as the point C, allowing for the possiblility
that B = C. To perform our variation we will take the midpoint of ÂC and call
it M . Our variation will consist of moving M radially by a fixed small distance
εφ(M) for constant φ(M). This φ(M) is chosen sufficiently small to assure that the
varied polygon retains the same number of sides as the original. This will give us
the new point M ′ = M + εφ(M)n(M). Having defined the variation at M , we now
define the variation φ(w) for all other w on ÂB.

For a given ε we will define a new curve Â′B′ which is the arc of the unique
hyperbolic geodesic through M ′ having M ′ as the midpoint of the extension Â′C ′

and connecting A′ to B′ the resulting endpoints on ∂Ωε in the interior variation or
the necessary extension of the original connecting sides of ∂Ω in the exterior case.
We then define the variation φ(w, ε) to be the distance to the point on Â′B′ which
is on the line extended along the normal n(w).

Lemma 2.1. For ε small, expanding φ(w, ε) as a power series about ε = 0 gives

φ(w, ε) =
∂φ(w, 0)

∂ε
ε + o(ε)

with ∂φ(w,0)
∂ε 6= 0.

Proof : Without loss of generality we will consider only the case when ε < 0. To
simplify constructions and descriptions we will also assume that M and M ′ are
both real and negative. We will start by considering the circle Λ0 in the plane
concentric with our original geodesic through the point M ′. We will define φ̃(w) to
be the radial distance from w to Λ0. Note that clearly we have

φ̃(w) = εφ(M).

Our strategy is to show that for each w ∈ ÂB, we have that φ(w) > φ̃(w). Since
φ(w) is sufficiently smooth, we may expand it in as a first order Taylor polynomial.
Suppose that ∂φ(w,0)

∂ε = 0. Then, on expanding as a function of ε we get that
φ(w, ε) = o(ε).

So if we divide φ(w, ε) by φ̃(w) and take the limit as ε goes to zero from below,
we get zero, by the definition of o(ε). However, as we will show φ(w) > φ̃(w), the
quotient must be greater than one for every sufficiently small ε. Thus, the limit,
if it exists at all, must be greater than or equal to one. Hence, we will have a
contradiction. The assumption that ∂φ(w,0)

∂ε = 0 must fail and we have our result.
Showing that φ̃(w) < φ(w) comes from a simple geometric construction. We

show that except at M ′, the curve Â′B′ will lie outside of Λ0. Since ÂB lies inside
of Λ0, the distance from w to Λ0 is less than the distance to Â′B′ and we are done.

The construction (see Figure 2) will illustrate this. Note first that Â′B′ and Λ0

both go through the point M ′. Also observe that Λ0 and ÂB have the same center,
m. The circle, Λ1, containing Â′B′ is normal to the unit circle at C ′. The tangent
line l′ to T at C ′ is therefore a radius of Λ1. Note that since M ′ > M , we have that
the center, m′ of Â′B′ lies to the left of the center of Λ0 and hence has a greater
radius. As the two circles are tangent at M ′, we have that the circle, Λ0, with the
smaller radius lies entirely inside the disk bounded by Â′B′. This gives us that
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Figure 2. Construction of ÂB, Λ0, and Â′B′

Â′B′ lies inside of the hyperbolic polygon whose internal boundary is the arc of Λ0

internal to D and we are done. �

With this, we can now write our variation at w as

w′ = w +
∂φ(w, 0)

∂ε
η(w)ε + o(ε).

We can then absorb the o(ε) term into the error term in the Julia Variation formula.
Although the variations necessary to produce domains that are in the original class
are not always strictly normal, it was shown by Barnard and Lewis [1], that the
error introduced for small ε is of order o(ε) and thus may also be absorbed into the
o(ε) term in the variational formula.

As the previous analysis dealt with both the first two cases, we are left only with
the case in which the two sides meet at a cusp. This in turn will be dealt with in
two steps. In the first case, we take ε > 0 and move the arc of the circle outwards.
The second case, of course, is that we take ε < 0 and move the arc of the circle
towards the middle of D (see Figure 3).

In the first case, ε > 0, we are actually removing the cusp and turning it into two
separate right angles at A and A1. Note that this does not increase the number of
new sides, as the new “side” lies on T and thus does not count as a proper side of
the polygon. Since this variation can be done normally without moving the vertex
at the cusp, the previous arguments hold. In the second case, we will pull the side



A Variational Method for Hyperbolically Convex Functions 7

Figure 3. Variations at a Cusp

slightly into the disk. The arguments of Barnard and Lewis for controlling the error
rates are valid in this case also (where we have a bounded cusp with zero opening).
Thus, we have a valid application of the Julia Variation Formula for all of our class
preserving variations of various angles in our polygons.

We end this section with a final variation we can apply with all three types of
intersection. We will add a new small side to our polygon “cutting off” a vertex
z0. This variation, unlike those previously described, will not preserve the class Hn

but will leave the varied function in Hn+1. We choose a point z1 on the side of
the polygon we are varying, some fixed small (Euclidean) distance δ from z0. (See
Figure 4). Then, choose a point z2 on either the next side (if the vertex occured at
a cusp or in the interior of D) or along the arc of T (if the vertex was a right angle
on the boundary). Choose z2 some small distance ε from z0 along the new side.
Finally join z1 with z2 with a hyperbolic geodesic. The variation will “pivot”the
new side ẑ1z2 about z1 into the polygonal domain. The analysis of the error for
these variations follows very much the same path as for the previous cases.

3. Proofs

Proof of Theorem 1.1 Suppose that f ∈ Hn is extremal for (4) over Hn for some
n ≥ 3 and that f(D) has at least 3 proper sides. Choose one of the proper sides of
f(D), say Γ, and let γ = f−1(Γ). We apply one of the class preserving variations
described in the previous section to Γ. From equations (3) and (6), we have for
each k, 0 ≤ k ≤ n,
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Figure 4. Side Adding Variation (Right Angle Illustrated)

f (k)
ε (z) = f (k)(z) + ε

∫
γ

G(k)(ζ, z)dΨ + o(ε)

which can be rewritten as

f (k)
ε (z) = f (k)(z)

{
1 + ε

∫
γ

G(k)(ζ, z)
f (k)(z)

dΨ
}

+ o(ε)

Using this last equation, we can write

(7) log
f

(k)
ε (z)
f ′

ε(0)
= log

f (k)(z)
f ′(0)

+ log
1 + ε

∫
γ

G(k)(ζ,z)
f(k)(z)

dΨ + o(ε)

1 + ε
∫

γ
dΨ + o(ε)

.

Expanding the right hand side of (7) as a series in ε, for sufficiently small values of
ε, gives

log
f

(k)
ε (z)
f ′

ε(0)
= log

f (k)(z)
f ′(0)

+ ε

∫
γ

(
G(k)(ζ, z)
f (k)(z)

− 1
)

dΨ + o(ε)

Hence, we can write using (1), (2) and (4)

L(fε) = <
{

Φ ◦
(

F (f, z) + ε

∫
γ

Q(ζ)dΨ + o(ε)
)}

If ∂L(fε)
∂ε |ε=0 is non-zero, then the value of L(fε) can be made larger than the

value of L(f), which will imply that f cannot be extremal for (4) in Hn. Using the
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above representation for L(fε) and the fact that Φ is entire, we can differentiate
L(fε) as a function of ε and obtain

∂L(fε)
∂ε

|ε=0 = <
{

(Φ′ ◦ F (f, z))
∫

γ

Q(ζ)dΨ
}

.

By hypothesis we have that the first term, Φ′ ◦ F (f, z) is real and nonzero. So we
can pass the < operator through to the integral and through the integral as dΨ is
a real measure. Thus, for the derivative to be zero, we must have

∫
γ
<{Q(ζ)} dΨ

to be zero. As dΨ is real valued, we have a real-valued integrand and a real-valued
measure.

We are assuming that f is extremal for (4) in Hn and considering the case where
f has at least three proper sides, say Γj , j = 1, 2, 3. We now observe that we can
vary each side Γj separately. Let γj be the arc

[
eiαj , eiβj

]
, the preimage of Γj under

f , j = 1, 2, 3. Applying the class preserving variation to each side Γj yields the
requirement, under the supposition that f is extremal in Hn,∫

γj

<{Q(ζ)}dΨ =
∫
[eiαj ,eiβj ]

<{Q(ζ)}dΨ(eiθ) = 0, j = 1, 2, 3.

Applying the mean value theorem for integrals we obtain∫
[eiαj ,eiβj ]

<{Q(ζ)} dΨ(eiθ) = <{Q(ζ(θ)}) |θ=θj

∫
[eiαj ,eiβj ]

dΨ

where αj < θj < βj . Note that as αj 6= βj , we have
∫
[eiαj ,eiβj ] dΨ > 0. Thus, the

only way our integral can be zero is for <{Q(ζ(θ))} |θ=θj
to be zero.

Since we can perform the appropriate class preserving variation described above
on each proper side Γj , j = 1, 2, 3, we must have

(8)
∂L(fε)

∂ε
|ε=0 = <{Φ′ ◦ F (f, z){<{Q(eiθj )}

∫
[eiαj ,eiβj ]

dΨ = 0, j = 1, 2, 3

where θj lies in the interval (αj , βj). Thus, ∂L(fε)
∂ε |ε=0 can only be zero at a root

of <{Q(ζ)} = 0. By hypothesis the kernel Q of our integral maps T to a curve Λ
such that Λ intersects the imaginary axis only twice. Since <{Q(eiθj )} can equal 0
for only two our our three sides, there exists a third side we can push either in or
out and increase the value of L for some function fε near f , using our variational
argument. Thus, f is not extremal for L, i.e., if f is extremal in Hn, n ≥ 3, then
f ∈ H2 ⊂ Hn.

We now have that the extremal f can have at most two proper sides. We will
now argue that f can actually have at most one, using an argument from Barnard
et al. [2]. Consider Hn, n ≥ 3, and let f be extremal in Hn for (4). By the above
argument, f(D) can have at most two sides. Suppose f(D) has exactly two proper
sides. If the image under the kernel Q of the preimage of either side is entirely
on one side or the other of the imaginary axis, then by our previous arguments,
we can increase the value achieved by L(fε) and hence f is not extremal. So we
conclude that both images intersect the imaginary axis. Thus, for each proper side
Γ of f(D), we must have that the image under the kernel Q of the preimage of one
endpoint of Γ lies in the left-half plane and the image under the kernel Q of the
preimage of other endpoint Γ lies right-half plane.
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Suppose Φ′ ◦ F (f, z) is positive. We consider a vertex z0 whose image under
Q ◦ f−1 is in the left half plane. Apply the variation at the vertex z0 described
above which adds another side to f(D), making sure to keep the entire image of
the new side in the left half-plane. We now have the derivative (8) taken over our
newly created side is positive. By our basic variational argument, the newly varied
function has a greater value for L. But this means f cannot be extremal. A similar
argument works if Φ′

(
log f ′(r)

f ′(0)

)
is negative. Thus, the extremal function for L in

Hn, n ≥ 3, cannot have two proper sides. It follows therefore that the extremal
function in Hn can have at most one proper side.

Since H2 ⊂ Hn for all n ≥ 3, if f is extremal in Hn and is an element of H2, it
must be extremal in H2 as well. Thus, the extremal element in H2 has at most one
proper side. Thus, the extremal value for L in each Hn is achieved by the region
with at most one proper side and hence the extremal value for H = ∪n∈NHn is
achieved by a region with at most one proper side. This proves Theorem 1.1. �

Proof of Corollary 1.1 In this case, L(f) = exp(log(f(z)/f ′(0))) and Q is a
bilinear mapping. Hence, the hypotheses of Theorem 1.1 are satisfied. �

Proof of Corollary 1.2 In this case, L(f) = exp(log(f ′(z)/f ′(0))). Since we are
finding an extremal value for |f ′(z)|, then condition (1) of Theorem 1.1 is satisfied.
Now consider

Q(ζ) = A
ζ + z

ζ − z
+

(
ζ + z

ζ − z

)′

− 1

=
A(ζ2 − z2) + 2ζz − (ζ − z)2

(ζ − z)2
.

where A =
z(zf ′(z))′

zf ′(z)
.

By a variant of Jack’s lemma, we have that A is real. Next we multiply through

by 1 =
(

ζ̄

ζ̄

)2

to obtain

Q(ζ) =
A(|ζ|4 − (ζ̄z)2) + 2|ζ|2ζ̄z − (|ζ|2 − ζ̄z)2

(|ζ|2 − ζ̄z)2
.

Then, we set w = ζ̄z to produce

Q̃(w) =
A(1− w2) + 2w − (1− w)2

(1− w)2
.

Continuing we substitute w = reiθinto Q̃ and obtain

A
(
1− r2

(
eiθ

)2
)

+ 2 reiθ −
(
1− reiθ

)2

(1− reiθ)2
.

We then expand the above rational function, multiply through by the conjugate
of the denominator, make the substitution reiθ = r (cos(θ) + i sin(θ)), and collect
the real parts. What is left in the numerator when all this is done is:
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R (cos(θ)) =− 4 r2 (cos (θ))2 +
(
−2 rA + 2 r3A + 6 r3 + 6 r

)
cos (θ)

− 1− r4A− r4 + A− 6 r2.

Lemma 3.1. The polynomial R(x) has at most one real root smaller than one for
A ∈ R.

Proof: We begin by solving the polynomial using the quadratic formula. This
yields the following roots:

3 r2 + Ar2 + 3−A +
√

5 r4 + 2 Ar4 − 6 r2 + A2r4 − 2 A2r2 + 5− 2 A + A2

4r

and

3 r2 + Ar2 + 3−A−
√

5 r4 + 2 Ar4 − 6 r2 + A2r4 − 2 A2r2 + 5− 2 A + A2

4r

Since r, A, and θ are all real, we have that the roots of the polynomial occur in
conjugate pairs. Hence, if the term under the radical is negative, both roots are
complex and we are done. So we can assume the radicand is non-negative. If the
radical is real, the lemma will hold if:

3 r2 + Ar2 + 3−A +
√

5 r4 + 2 Ar4 − 6 r2 + A2r4 − 2 A2r2 + 5− 2 A + A2

4r
> 1

We multiply through by 4r. Next we subtract 4r from both sides to obtain

3 r2 + Ar2 − 4r + 3−A

+
√

5 r4 + 2 Ar4 − 6 r2 + A2r4 − 2 A2r2 + 5− 2 A + A2 > 0(9)

Since the radical is non-negative, if 3r2 + Ar2 − 4r + 3 − A > 0, we will be
done. Observe that if we take the left hand side as a linear function in A we have(
r2 − 1

)
A + 3r2 − 4r + 3 which is decreasing in A. Thus, for a given r ∈ (0, 1)

the expression will have its minimal value on (−∞, 1] at A = 1. Substituting
gives: 4r2 − 4r + 2, which is positive for all 0 < r < 1. Hence for A ≤ 1 we have
3r2 + Ar2 − 4r + 3−A > 0.

Now we consider the case where A > 1. If 3r2 + Ar2 − 4r + 3−A > 0, then we
are done anyway. So assume the contrary. Subtracting 3r2 +Ar2−4r +3−A from
both sides of (9) gives

√
5 r4 + 2 Ar4 − 6 r2 + A2r4 − 2 A2r2 + 5− 2 A + A2

> −
(
3r2 + Ar2 − 4r + 3−A

)
(10)

As the term inside the parenthesis is by hypothesis negative, the right hand side
of (10) is positive. This gives that the inequality will be preserved if we square both
sides. This gives
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5 r4 + 2 Ar4 − 6 r2 + A2r4 − 2 A2r2 + 5− 2 A + A2

>
(
A2 + 6 A + 9

)
r4 + (−8 A− 24) r3

+
(
−2 A2 + 34

)
r2 + (−24 + 8 A) r + 9 + A2 − 6 A.

Subtracting the right hand side to the left hand side and collecting the result as
a function of A gives:

(11)
(
−4 r4 + 4 + 8 r3 − 8 r

)
A− 4 r4 − 40 r2 − 4 + 24 r3 + 24 r > 0.

We note first that the right hand side is linear in A. Furthermore, for r ∈ (0, 1)
the coefficient of A is positive. (There is a triple root at r = 1, a single root at
r = −1, and the polynomial evaluates to 4 at r = 0.) This gives us that for any
value of r between 0 and 1, the left hand side of (11) is an increasing function of
A. If we substitute A = 1 into the left hand side, we obtain

−8 r4 + 32 r3 + 16 r − 40 r2

which is easily seen to be positive on r ∈ (0, 1). This gives us, for the case A > 1
that for all r in the open unit interval (10) is satisfied and thus we have a root
bigger than one. �

The above lemma gives us that for any real A, we will always have at most one
real root less than one. As −1 ≤ cos(θ) ≤ 1 for real θ, we have that at most one
value of cos(θ) will give a root for Q̃ and hence at most 2 values of θ will be roots
for Q̃. Geometrically, this means the “dimple” in the graph of Q(ζ) will always lie
to the left of the imaginary axis (see Figure 5). Hence, Q maps T to a curve Λ
which intersects the imaginary axis at most twice. �

Remark The techniques introduced in this paper have been used in [2] to determine
the sharp bound for the Schwarzian derivative for functions in H.

References

[1] Roger W. Barnard and John L. Lewis. Subordination theorems for some classes of starlike
functions. Pacific J. Math., 56(2):333-366, 1975.

[2] Roger W. Barnard, Leah B. Cole, Kent Pearce, and G. Brock Williams. Sharp bounds for
the Schwarzian derivative for hyperbolically convex functions. Preprint, 2003.

[3] A. Beardon, Geometry of discrete groups, Springer-Verlag, Berlin, 1983.

[4] William Ma and David Minda, Hyperbolically convex functions, Ann. Polon. Math. 60
(1994), no. 1, 81–100. MR95k:30037

[5] William Ma and David Minda, Hyperbolically convex functions. II, Ann. Polon. Math. 71

(1999), no. 3, 273–285. MR2000j:30020
[6] Diego Mej́ıa and Christian Pommerenke, On hyperbolically convex functions, J. Geom.

Anal. 10 (2000), no. 2, 365–378.

[7] Diego Mej́ıa and Christian Pommerenke, On spherically convex univalent functions, Michi-
gan Math. J. 47 (2000), no. 1, 163–172. MR2001a:30013

[8] Diego Mej́ıa and Christian Pommerenke, Sobre la derivada Schawarziana de aplicaciones
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