Complex Variakles, 1986, Vol. 7, pp. 205-214

G278 1077 /86/0703-0205 $15.00/0

1 1986 Gordon and Breach, Scicnee Publishers, e,
Printed in United Stales of America

Mobius Transformations of Convex
Mappings |

ROGER W. BARNARD

Texas Tech University, Lubbock, Texas 79409
and

GLENN SCHOBER

Indiana University, Bloomington, Indiana 47405

Communicated by K. Habetha

Dedicated to Helmut Grunsky on the occasion of his 80th
birthday

tor the class of functions referred 1o in the title, this article finds the Kocbe disk, the radius
of convexity, and sharp estimates for the cocflicient lunctional |ty + w3] for 1 in a certain
interval,

AMS (MOS): 30045

1. INTRCDUCTION
Let 5 denote the class of anadytic univalent functions f defined in the unit
disk U = {z:|z] < 1} and normalized so that f(0) = f{0) — 1 = 0. The
convex subclass K consists of those lunctions e § such that f{U)is a
" convex sel.
If fe8 and w¢ (), then the function

=510 = fiw) (1)

belongs again to S, The transformation [ — f is a familiar one in the
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study of univalent functions. If F is a subset of §, let
F=1{f feFund we O\ (U

Since w = w0 belongs to C* = Cy {mj, it follows that Fc F e S
Other obvious properties are that £ = Fuand § = S. 1t is an interesting
question to ask which properties of Fare inherited by £. In this article we
shall consider the class K. The class K is compact, and simple examples
show that K # K.

In an earlier paper [ 1] we applied 2 variational procedure to a class of
extremal problems for K. I ;- K — R is a continuous functional that
satisfies certain admissibility criteria, we showed that the problem _ |

max A
K
has a relatively elementary extremal function f More specificaily, we
showed that [ either is a hall-plane mapping

Flzy = =/t = ¢™2) (1.2)

or is generated through (1.1} by a parallel strip mapping f€ K.

The class of functionals considered contained the second-coefficient
functional (f) = Rea, and the functionals AJ) = Redttog[ (2)/=])
where ® is entire and ze U is fixed. The latter functionals include the
problems of maximum and minimum modulus (®(w) = +w). Therefore,
for such problems it is necessary to test the functional only over Mobius
transformations (1.2) and over functions f generated through {1.1) by
strip mappings fe K. We remark that the extremal strip domains f)
need not be symmetric about the origin. This adds an interesting und
nontrivial character to the problems. In particular, in [1] an explicit
determination was made of such an extremal function for the sccond-
coefficient functional, and the sharp bound |u,| < 1.327...was obtained
for K.

In this paper similar techniques are used to find the Koebe disk for K,
that is, the largest domain centered at the origin always covered by fn
for fe K, the radius of convexity for the class &, and sharp bounds for
the functional

A0) = |tay + a3l (.3

for a certain range of (. A corollary is the solution of the third-coefficient
problem for the inverses of functions in K.
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2. PRELIMINARIES
Since K is compact, a continuous functional
Al l\; — R

will assume its maximum at some [unction & K. Wecall 2 admissible if it
has the following properties. (i) At an extremal function f 1t has an
expansion of the form

Af*)= 20+ cj a{{)d () + olr) as c— 0 (20}

Ki=1

under Julia varations

S =fiz) +e j 1 ENE Y =] = S ) + o). (22)
=1

within K. where di() = [ EN/1EN) dE/GC) and ¢ is a piecewise

smooth, real-valued function. We require the function ¢ to be

codtinuous and to vanish at no more than two points of thecircle |} = 1.

{it) In addition, we require that there is a constant ¢, # 0 such that

AL = fiw)) = A(f) + Refe,/w) + o(l/w) (2.3}

as w— oo in C\ f(U).
By choosing appropriate variations we proved the following theorem
in [1, Theorem 8.2].

Tueorem | If Aisanadmissible functional, then i assumes i1s maxinum
over. K ecither at a half-plune mapping (1.2} or at @ mapping generated
through (1.1) by a parallel strip mapping f& K with w a finite point

of éf{U).

The parallel strip mappings in K are rotations ¢ ~"f_{¢"z), x € R, of the
vertical strip mappings

L) = [1/@isin x)] log[(1 + ¢*2)/(t +e%2)], O<x<m (24)

3. KOEBE DISK AND RADIUS OF CONVEXITY

It is an interesting problem to compare properties of the transformed
class K with those of K. Of course, each f € K covers the disk |w| < 1/2
The following theorem determines the size of this Koebe disk for the
class K.




208 R, W. BARNARD AND G. SCHOBER

Turowrm 2 If fe K, then StU) covers the disk [w| < n/8. Furthermore,
mw\ U= {w:|wf < /8.

Proof We begin by showing first that if fe K, then
L1212 LML = D/ fi2(= D] = /8. (3.1)

The minimum modulus principle will then imply that the disk [w] < /8
is contained in f{U). By considering rotations of fm it {follows that this
disk is the largest set covered by all functions in K.

In [t] we observed that for fixed ze U the functional i(f) =
—log| f(z}/z] is admissible. Thus, to obtain its maximum value, it is
sufficient by Theorem I to examine the functions (1.2) and transforms of
rotations of (2.4). A comparison with the functions [, eliminates (1.2),
Therefore

l2/f (@) < maxiz/le ™ e"2)] — =/[e it

afl.x

S max U fe) = 1716

by the maximum principle. For a fixed vertical strip, |1/, (¢") — 1/f.(¢")]
will be a maximum for y = Q and § = n. That is,

HLe™) = VLA™ < L) — 1/ f(= D) = 2nfsin x)/[xtz — x)].

Note that ¢(x) = (sin x)/[x(z — x)] is symmetric about x = r/2. In
addition, g¢'(x) = h(x)/[x(m ~ x)]* where h(x)= x{z — x)cos x —
(m — 2x}sin x. Since If'(x) = (2 — nx + x?}sin x, the function k increases
from A(0) = O to A((x ~ ,/x* — 8)/2) and then decreases to h(n/2) = 0,
That is, the only critical point of g in (0, 1) is at x = /2. It provides the
maximum of g since g”(n/2) < 0. Consequently, Iz f(=) < 2ngin/2) =

8/m and (3.1) is proved. [

To obtain the radius of convexity for the class K, we apply the Marty
transformation and use the sharp bound for the second coelficient in K.

Tueorem 3 If fe K then f(lz] < r)is conveXx forr < ro > 4547 where

ro=Ay — JA7 — 1, A; = (2/xg) sin X — €05 Xo = 1.3270, and x, =
2.0816 is the unigue solution of the equation cot x = (1/x) = (x/2) in the
interval (0, ). This result is sharp.
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Proof  For any function fe K and any ¢ U the function
FA2h= [t + QA0+ 820 = SOVL7OU =] = = + 4,022 +

belongs again Lo K since it is a Mobius transform of some function in K.
Therefore the coefficient

a )= (/20 = KA Q@ =

has the bound 4, in the statement of the theorem, by what was proved in
f1. Theorem 9.1]. Thus we have

L+ L OO — (L + [P — 155 < 2804,/ — 03
and .
Re{l + {7/ (O} = (1 = 20004, + (L2 = [EP). (3.2)

The latter will be positive for |[[ < ry = A, — \/A_§ -1

If {=—ry, and feK is chosen so that Fzy= f (-
F2) 1, )), where f is defined by (2.4), then «,({) = 4, and both
sides of (3.2) become zero Therefore rg is the sharp radius of convexity
for K.

4. THE FUNCTIONAL ([} = |ta; + o]

In this section we shalt apply Theorem 1 to give a sharp estimate for the
functional (1.3) for ¢ in a certain interval.

Fort = — 1 asharp bound for the functional is already known. In fact,
if f(z})=2z+a2" + a3z* +--- belongs to K and f(z) = z + d,2% +
dyz® + -+ is the transform (L.1), then G, — &2 = «y — a2 That is, for
t = — 1 the functional is invariant under our Mébius transformdt:ons
J. A. Hummel [2] proved that

lay — a3l <€ 1/3 4.1

is & sharp estimate in the class K, and so this sharp estimate persists for
the class K.

The tnitial coeflicients of the strip mapping (2.4) are a,(x) = —~cos x
and a;{x) = (4/3)cos® x — 1/3, and the initial coefficients of its
transform f, are

ay(x) = ay(x)+ l/w  and  @;(x) = ay(x) + 2a,(x)/w + L/wr.
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In tius case
|1d5(x) + (x| = 1—(r/3):;in2 x4+ (1 +0)f{—cosx + 1w

Points w on the boundary of the strip f,(U) satisfy Rew = )=
x/(2sin x}or Rew= [ (—1)= {x — m)/{2 sin x). In these cases 1/wis of
the form (1 + ") (sin x)/x or (1 + & ){sin x)/{x — n} for some real 0. H
hix, 0,1) = — (/3 sinZ v 4+ (1 + N[ —cosx+ {1+ " sin x)/x]?. (4.2)
then fdy{x) + a,{x)* = hix.0.1) or tas{x) + ay(xpP = hlmr — x, g,0) In
_ particular,

m(ty = max {hlx, 0,0 (4.3)

Qaxwd

g0 2a

i a lower bound for the maximum of our functional for each 1. The
following thecorem shows that m(r) actually is the maximum of our
functional for a certain range of 1.

TuroreM 4 If flz} == 4+ a,=" +ayt helongs o K and if
— 7652 <t < 1.682, then the estimare

lray + a3l < M)

holds where M) is the wrigue maxipum of the function — {t/3) sin? x +
(1 + t)[ 2Asin x)/x — cos x]* on the imerval 7/2 < x < 3n/4, and this
estimate is sharp.

The values of M(t) are easily obtained numerically; for example,

M(—.T) = 0.7356 M(1) = 19120 M{9) = 31321
M(— .6) = 0.8763 M(2) = 2.0636 M(1.0) = 3.2854
M{~.5) = 1.0197 M{3) = 22155 M(LT) = 3.4388
M(—4) = 1.1652 M(4) = 23677 M(1.2) = 3.5923
M(—3)= 13125 M(.5) = 2.5202 M{1.3) = 3.7458
M(—.2) = 14610 M(6) = 2.6729 M(1.4) = 3.8995
M{—.1) = 1.6106 M(7) = 28259 M(1.5) = 4.0531

M(0) = 17610 M(8) = 29789 M{L.6) = 4.2069.

An application  We postpone the proof of Theorem 4 for a moment
and consider an application of Theorem 4. Let g be the inverse of a
function fe K, thatis, g = /" ! Then |

glw) = w + o’ + aygw? 4o 4.4
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in some neighborhood of w = 0. In view of Theorem 2 the series
expansion {4.4) is valid at least for |w] < #/8. [n terms of the coefficients of
Joowe have oy = —a;, and ay = —ay + 2a}. Therefore the initial
coefficients of the inverse lunction have the sharp bounds |a,} < A,
where A, is defined in Theorem 3 and

foy] € 2M(—1/2) = 2.0393.

Proof of Theorem4  Since K is preserved under the rotations Sz} —
e “f{e":), it is sufficient to consider the functional

ALS) = Refta, + a2). (4.5)

in order to verily the admissibility condition i), we shall use the formulas

af =a, + ;;J (ay + 20y dy(C) + ole)
ki=1

af =ay + 25[ (uy + 2a,0 + ) dy(E) + ole)
=1

as £— O under the variations (2.2). Thus the functional (4.5} has the
expansion (2.1} with

a(l) = 2Redt{u; + 2azf+ Y+ ayfu; + 2(‘?)}.

We need to show that ¢ has at most two zeros on |£] = 1. It is equivalent
to show that the polynomial

o) = + 21 + )4y + 2Reltay + a2} + 21 + Oyl + 1

has at most two zeros on [{| = 1. If 1 = 0, this is obvious. Assume
therefore that s # 0. [Fmore than two zeros were on |{| = {, then all four
would be there since the product of the zeros equals one. In this case

L2/ + 0)a,]* — (4/0) Retra, + a2} < 4 " (4.6)

since A> — 2B is the sum of the squares of the zeros of the polynomial
{*+ ACY + BLE + CC + D, Substitute (1 + )i = (tay + a2) —
tldy — a3} into (4.6); then

(4/1*) Reftay + a3} — (4/0)(1 + 1) Rela, — ad! < 4.
Using the estimate (4.1), we can simplify this to

Re{tay + a} < 2 + [({l + 1)|/3. 4.7)
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Due to the extreme nature of Reftas + a3}, it would follow that
hix, 0,¢) < (2 + |t(1 + 1)]/3 for every choice of x. If we can choose xto
violate this inequality, then the admissibility condition (i) wiil be
satisfied. From a computer-assisted scarch, two good choices for x
appear to be x = 17422 and x = 2.2297. Then the inequality
h1.7422.0,0) > % + |t{l + 0)|/3 is satisfied at least for —.7652 <1 <0,
and the inequality 1(2.2297,0,1) > 12+ [t + 0}/3 is satisfied at least
for 0 < 1 < 1.682. Thercfore {i) is satisfied for — 7652 <1 < 1.682, and
this is assumed in the hypothesis.
In order to verify the admissibility condition (i), we compule

ALSIE — fiw)) — ASY=20+ 1) Refay/wl + otl/w) s w— 0.

Sincet # — 1, thecoefficient ¢, = 2{t + u, could be zeroonly if ay = 0.
If this were the case for an extremal function, then (4.1) would imply that
Reltay + a3} < |tl/3. However, this inequality is violated whenever (4.7)
is violated since e|/3 < 12 + (1 -+ 1)|/3. Thus (it} is satisfied.

Now Theorem | applies; thatis, [tay + | will bea maximum either at
a half-plane mapping or at 4 mapping gencrated through (1.1} by a
parallel strip mapping. Since this functional is invariant under rotations,
it is sulficient to consider the strip mappings (2.4). Consequently, the
maximum value of Yay + a3 ism(t), defined in (4.3), where the half-plane
mappings correspond to x = 0,7 and the strip mappings 1o 0 < x < .
The remainder of this proof concerns & more specific description of m{r).

For { = —1, we may estimate

lh(x, 0.0] < (el/3) sin® x 4+ {1 + £)|(sin x)/x — cos x + ¢"(sin x)/x)?
< (f]/3)sin? x + (1 + [ 2sin x)/x — cos x}?

since (sin x)/x — cos x = 0. At least for 0 < x5 /4 this is a sum of
increasing functions, and so [f(x, 0,0] < 11/6 + (/21 + ) (8/n — 1P
whenever 0< x<s /4 One easily verifies that
[th/6 + (1721 + 1)(8/n — 12 < —1/6 + (/201 + 0)[8/Cn} + 11 =
h(3r/4,0, 1) Therefore, for fixed ¢ the maximum of th(x, f}, 1) occurs when
nfd<x s

As a function of @, the [unction (hix, 6.0} is of the form
(1 + r)alb + 2c¢® + ¢*¥| where a = [(sin x)/x]" and ¢ = 1 — xcot xare
nonncgative, b = —r.\'z/[3(l + 0]+ ¢tisreal,and —. 7652 €1 € 1.682.
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1t can be written as

(1 + a/4cT + (1 — b + 4c(l + b)cos O + dbcos® (.

We wish to show that the maximum occurs for @ = 0. This is obvious if
- —.7652 <t < 0; assume therefore that 0 <t < 1.682. H is suflicient to
show that 4¢(1 + h)(cos 0 — 1) + 4b{cos? 0 — 1) < Qorthate(l + b) +

2h = 0. After muitiplying by (1 4 1)/x*, we note that the latter inequality
becomes

(e/x i+ e + (1 + P =B -2/320.
Since

=3+ Y Bl QUKL
k=2

where the B,, are Bernoulli numbers, the function
(e/x2) 1 + e +f[(1 + ¢y — X3} —2/3

is increasing at least for n/4 € x < m. At x = /4 one verifies directly that
this expression is positive. As a result, for each fixed ¢ the maximum value
of ihix, 0, 1) occurs for m/4 < x < wand 0 = 0.

Using the notation of the previous paragraph, we observe that
hx, 0.0} = al(l + ) +[(1 + ¢)* — x*/3]} is positivefor /4 < x < m,
and so |/i(x, 0, 1)] = h(x, 0, 1) over this interval. Next, we shall show that
the maximum value of A(x, 0,1} over n/4 < x < n occurs in the smaller
interval n/2 < x < 3m/4.

The derivative H = (0h/0x)(x,0,) may be wriltten as H =
2xal —t{l ~ )3 + {1 + 01 +cHl = 2/x%)] where a = (sin® x)/x*
and ¢=1—xcotx as before. For mn/4<x<n/2, we have
1 — /4 < ¢ < 1 and ¢/x* € 4/x*. On this interval H is clearly positive
of —7652<t<0. I ¢>0, then —t{I—c}/3+{+1){l+c)
(1 = 2¢/x?) 2 —1rf12 + (1 + )2 — n/4)(1 — 8/x%), which is positive
for t < 1.682. Therefore h(x,0,f) does not assume a maximum
inm/4 < x<n/2

The derivative H may also be written as H = 4(1 + G/ x* where
G = (x/t2[18 — (3 + 40x}/(1 + 1)] sin 2x — (x* — )cos 2x — L
We shall show that H, or equivalently G, is negative for 3n/4 € x < n.
Since G is a monotone function of 1, it is sufficient to show that G is
negative fort = — 7652and ¢ = 1.682. First,ift = —.7652, then the first
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two ferms in G are at most zero and the third term is negative.
Second. if = 1682, then aG/ax = (1466x%/1341 — 1/2)sin 2x —
(24325274023 — 1)xcos 2x and both terms give negative contributions
on 3m/4 < x < m; in addition, G is negative at x = 3n/4. Thercfore
I{x, 0, () does not assume 4 maximum in3r/d < x <

With the notation of the previous paragraph, it is easy to show that
(1 + 1) 3*Gjox® = [1/2 + (3 + 4r)x?/3}xsin 2x + x? cos 2x is negative
for n/2 < x < 3m/4. Since G is concave downward, positive when
x = 1/2, and negative when x = 3n/4, it follows that G, and hence H, has
at most one zero on this interval. We conclude that fi(x, 0, 1) has a unique
maximum on the interval /2 < x < 3x/4 for each fixed 1.

In summary, the maximum m(t) occurs as the unigue maximum of the
function k(x, 0, t} on the interval n/2 < x < 3n/4, and it is the maximum
of our functional for the given range of t. |
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