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Oscillation of second-order dynamic equations
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Abstract: In this paper, we consider the second-order nonlinear dynamic
equations

(p(t)y∆(t))∆ + q(t)f(y(τ(t))) = 0 and (p(t)y∆(t))∆ + q(t)f(yσ(t)) = 0

on an isolated time scale T. Our first goal is to establish a relationship
between the oscillatory behaviour of these equations. Here we assume
that τ : T → T. We also give two results about the behaviour of the linear
form of the latter equation on a general time scale that is unbounded
above. We use the Riccati transformation technique to obtain our results.
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1 Introduction

Oscillation theory on the real numbers and the integers has drawn increasing
interest in recent years. Most of the results on the real numbers R have
corresponding results on the integers Z and conversely since there is a close
relationship between them. This connection, revealed by Hilger (1990), unifies
continuous and discrete analysis by a new theory called time scale theory. A book
on the subject of time scales by Bohner and Peterson (2001) summarises and
organises much of the time scale calculus.
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For completeness, we recall the following concepts related to the notion to
time scales. A time scale T is an arbitrary nonempty closed subset of the real
numbers and, since oscillation of solutions is our primary concern, we make
the blanket assumption that sup T = ∞. We assume throughout that T has the
topology it inherits for the standard topology on R. The forward and backward
jump operators are defined by

σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t},

where inf ∅ := sup T and sup ∅ := inf T. A point t ∈ T is said to be left-dense
if t > inf T and ρ(t) = t, right-dense if t < sup T and σ(t) = t, left-scattered if
ρ(t) < t, right-scattered if σ(t) > t, dense if ρ(t) = t = σ(t), and isolated if ρ(t) <
t < σ(t). A function g : T → R is said to be right-dense continuous provided g is
continuous at right-dense points, and at left-dense points in T, left-hand limits exist
and are finite. The set of all right-dense continuous functions is denoted by Crd(T).
The graininess function µ for a time scale T is defined by µ(t) := σ(t) − t, and for
any function f : T → R the notation fσ(t) denotes f(σ(t)).

The problem of obtaining conditions to ensure that all solutions of certain
classes of second-order dynamic equations are oscillatory has been studied by
several authors (see Agarwal et al., 2005; Akin et al., 2001; Bohner and Saker,
2004; Erbe, 2001; Erbe and Pererson, 2002; Erbe et al., 2002, 2003; Saker, 2004;
Zhang and Shanliang, 2005). Some of these results have been for the nonlinear
dynamic equation of the form

(p(t)y∆(t))∆ + q(t)f(yσ(t)) = 0 for t ∈ [a, b]T, (1.1.1)

where p(t) and q(t) are positive, real-valued, right-dense continuous functions
defined on [a, b]T and

∫ ∞
a

∆t
p(t) < ∞ and/or

∫ ∞
a

∆t
p(t) = ∞. Zhang and Shanliang

(2005) consider (1.1.1) in the case p(t) = 1 and

y∆∆(t) + q(t)f(y(t − τ)) = 0,

where τ ∈ R, and established some oscillation results for both equations.
In this paper, we consider the second-order nonlinear functional dynamic

equation

(p(t)y∆)∆ + q(t)f(y(τ(t))) = 0 (1.1.2)

and the second-order nonlinear dynamic equation

(p(t)y∆)∆ + q(t)f(yσ(t)) = 0 (1.1.3)

on a time scale T. We shall assume the following conditions hold:

(H1) p ∈ Crd(T, (0,∞)) satisfies
∫ ∞

t0

1
p(t)

∆t = ∞, t ∈ T;

(H2) q ∈ Crd(T, [0,∞));
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(H3) τ ∈ Crd(T, T) satisfies lim
t→∞

τ(t) = ∞ and there exists M > 0 such that

|P (t) − P (τ(t))| < M for all t ∈ T,

where P (t) =
∫ t

t0

1
p(s)

∆s

(H4) f : R → R is continuous, increasing, and f(−u) = −f(u) for u ∈ R.

By a solution of (1.1.2) we mean a nontrivial real-valued function y satisfying
(1.1.2) for t ≥ t0 ≥ a ∈ T, where a > 0. A solution y of (1.1.2) is said to be
oscillatory if it is neither eventually positive nor eventually negative; otherwise,
it is nonoscillatory. Equation (1.1.2) is said to be oscillatory if all its solutions
are oscillatory. Our attention is restricted to those solutions of (p(t)y∆)∆

+q(t)f(y(τ(t))) = 0 which exist on some half line [ty,∞)T and satisfy sup{|y(t)| :
t > t0} > 0 for any t0 ≥ ty .

We note that (1.1.2) in its general form includes several types of difference
equations with delay arguments. In addition, different equations correspond to the
choice of the time scale T. For example, when T = Z, we have y∆ = ∆y and (1.1.2)
becomes the delay difference equation

∆[p(t)(y(t + 1) − y(t))] + q(t)f(y(τ(t))) = 0,

where ∆ denotes the forward difference operator. When T = {qk
0 : k ∈ N0} with

q0 > 1, (1.1.2) becomes the delay q0-difference equation

y(q2
0t) − (q0 + 1)y(q0t) + q0y(t)q0(q0 − 1)2t2 + q(t)f(y(τ(t))) = 0.

In the next section, we establish a relationship between the oscillatory behaviour
of (1.1.2) and (1.1.3). We present two lemmas necessary to prove our first main
result. In the last section, we present oscillation criteria for the linear form of
(1.1.3). We use the Riccati transformation to obtain these results and close with an
example.

2 The oscillatory correlation of (1.1.2) and (1.1.3)

Throughout this section, we assume T is isolated. We begin with the following
definition.

Definition 2.1: A nonempty closed subset K of a Banach space X is called a cone
if it possess the following properties:

i if α ∈ R
+ and x ∈ K, then αx ∈ K

ii if x, y ∈ K, then x + y ∈ K

iii if x ∈ K − {0}, then −x /∈ K.

Let X be a Banach space and K be a cone with nonempty interior. Then we define
a partial ordering ≤ on X by

x ≤ y if and only if y − x ∈ K.
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We will use the following theorem (Erbe et al., 1995) in order to prove some of our
results.

Theorem 2.2 (Knaster’s fixed-point theorem): Let X be a partially ordered
Banach space with ordering ≤. Let Ω be a subset of X with the following
properties: The infimum of Ω belongs to Ω and every nonempty subset of Ω has a
supremum which belongs to Ω. If S : Ω → Ω is an increasing mapping, then S has
a fixed point in Ω.

We continue with the following lemma.

Lemma 2.3: A necessary and sufficient condition for equation (1.1.3) to be
oscillatory is that the inequality

(p(t)y∆(t))∆ + q(t)f(yσ(t)) ≤ 0 (2.2.1)

has no eventually positive solutions.

Proof: NECESSITY. Suppose that (1.1.3) is oscillatory, and without loss of
generality, assume that (2.2.1) has an eventually positive solution y, namely, there
exists t0 ∈ T (t0 ≥ a) such that y(t) > 0 for t ≥ t0. As σ(t) ≥ t for all t, σ(t) ≥ t0
for all t ∈ [t0,∞)T. Then yσ(t) > 0 for t ≥ t0. Using this fact along with condition
(H4), we have (p(t)y∆(t))∆ ≤ 0 for t ≥ t0, and so p(t)y∆(t) decreases on [t0,∞)T.

We claim that y∆(t) > 0 for all large t. If not, then for some t1 ∈ [t0,∞)T, we
have y∆(t1) ≤ 0. It follows that p(t)y∆(t) ≤ 0, t ∈ [t1,∞). Now, if y∆(t2) < 0 for
some t2 ≥ t1, then

y(t) − y(t2) =
∫ t

t2

y∆(s)∆s

=
∫ t

t2

p(s)y∆(s)
p(s)

∆s

≤ p(t2)y∆(t2)
∫ t

t2

∆s

p(s)
→ −∞ as t → ∞,

which is a contradiction to our assumption that y(t) > 0 for t ≥ t0. Hence y∆(t) ≡
0 on [t1,∞), and so (p(t)y∆(t))∆ ≡ 0 and q(t)f(yσ(t)) > 0, which is contradictory.
Consequently, there exists T ∈ T (T ≥ t0) such that

y(t) > 0, y∆(t) > 0, and (p(t)y∆(t)t)∆ ≤ 0

for all t ≥ T . Integrating (p(t)y∆(t))∆ + q(t)f(yσ(t)) ≤ 0 from t to s yields

p(s)y∆(s) − p(t)y∆(t) +
∫ s

t

q(u)f(yσ(u))∆u ≤ 0, for s, t ∈ T and s ≥ t,

i.e.,

p(t)y∆(t) ≥ p(s)y∆(s) +
∫ s

t

q(u)f(yσ(u))∆u. (2.2.2)
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Since p(t)y∆(t) > 0 decreases for t ≥ T , lim
t→∞

p(t)y∆(t) = k ≥ 0 exists. Letting

s → ∞ in (2.2.2) we obtain

y∆(t) ≥ 1
p(t)

(
k +

∫ ∞

t

q(u)f(yσ(u))∆u

)
≥ 1

p(t)

∫ ∞

t

q(u)f(yσ(u))∆u. (2.2.3)

Since
∫ ∞

t
q(u)f(yσ(u))∆u exists and is continuous, integrating (2.2.3) from T to t

yields

y(t) ≥ y(T ) +
∫ t

T

1
p(s)

∫ ∞

s

q(u)f(yσ(u))∆u∆s, t ≥ T. (2.2.4)

Let X be the set of all continuous functions on [t0,∞)T satisfying lim
t→∞

y(t) = 0 with

‖ · ‖ defined by ‖y‖ = sup{|y(t)| : t0 ≤ t < ∞}. Then X is a Banach space. Now,
define the set

Ω := {ω ∈ C([t0,∞)T, R+) : 0 ≤ ω(t) ≤ 1 for t ≥ t0},

which is endowed with the usual pointwise ordering ≤:

ω1 ≤ ω2 ⇔ ω1(t) ≤ ω2(t) for t ≥ t0.

Using the fact T is isolated, one can show that any nonempty subset A of Ω has a
supremum which belongs to Ω and inf Ω ∈ Ω. Define a mapping S on Ω by

(Sω)(t) =




1, if t ≤ T ,

1
y(t)

(
y(T ) +

∫ t

T

1
p(s)

∫ ∞

s

q(u)f(yσ(u)ωσ(u))∆u∆s

)
, if t ≥ T .

We claim that SΩ ⊂ Ω and S is nondecreasing. For any ω ∈ Ω, (Sω)(t) is certainly
continuous and for t ≥ T,

q(t)f(yσ(t)ωσ(t)) ≤ q(t)f(yσ(t))

since 0 ≤ ωσ(t) ≤ 1 and f is nondecreasing. This inequality along with (2.2.4)
yield 0 ≤ (Sω)(t) ≤ 1 for t ≥ T . Furthermore, if ω1 ≤ ω2, ω1, ω2 ∈ Ω, then, since
f is nondecreasing, f(yσ(u)ω1(u)) ≤ f(yσ(u)ω2(u)) and so (Sω1)(t) ≤ (Sω2)(t).
Therefore, by Knaster’s Fixed-Point Theorem, there is an ω̃ ∈ Ω such that Sω̃ = ω̃.
Hence,

ω̃(t) =
1

y(t)

(
y(T ) +

∫ t

T

1
p(u)

∫ ∞

u

q(v)f(yσ(v)ω̃σ(v))∆v∆u

)
, for t ≥ T.

Observe

ω̃(t) ≥ y(T )
y(t)

> 0 for t ≥ T.
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Set z(t) := ω̃(t)y(t). Then z(t) > 0 is continuous and

z(t) = y(T ) +
∫ t

T

1
p(u)

∫ ∞

u

q(v)f(zσ(v))∆v∆u, for t ≥ T.

As

z∆(t) =
1

p(t)

∫ ∞

t

q(u)f(zσ(u))∆u and (p(t)z∆(t))∆ = −q(t)f(zσ(t)),

(p(t)z∆(t))∆ + q(t)f(zσ(t)) = 0 has a positive solution, which is a contradiction to
the assumption that all solutions of (1.1.3) are oscillatory.

SUFFICIENCY. Assume (2.2.1) has no eventually positive solutions. Then neither
does (1.1.3), and so (p(t)y∆(t))∆ + q(t)f(yσ(t)) = 0 is oscillatory.

If y is an eventually negative solution of (1.1.3), then let x = −y. Then x is
eventually positive and

(px∆)∆ + qf(xσ) = −(py∆)∆ − qf(yσ) = −[(px∆)∆ + qf(xσ)] = 0

for t ≥ T sufficiently large by Condition (H4). Thus x is an eventually positive
solution of (2.2.1), which is a contradiction. Hence, (1.1.3) is oscillatory. This
completes the proof. �

Lemma 2.4: Every solution of the second-order nonlinear functional dynamic
equation (p(t)y∆(t))∆ + q(t)f(y(τ(t))) = 0 oscillates if and only if the inequality

(p(t)y∆(t))∆ + q(t)f(y(τ(t))) ≤ 0 (2.2.5)

has no eventually positive solutions.

The proof is similar to that of Lemma 2.3 and so we omit it. We continue with
our first main result which is an extension of Theorem 2.1 of Zhang and Shanliang
(2005).

Theorem 2.5: Assume µ(t)
p(t) is bounded. Then the oscillation of the second-order

nonlinear dynamic equation

(p(t)y∆(t))∆ + q(t)f(yσ(t)) = 0 (1.1.3)

is equivalent to the oscillation of the second-order nonlinear functional dynamic
equation

(p(t)y∆(t))∆ + q(t)f(y(τ(t))) = 0 (1.1.2)

where either τ(t) ≤ t for all t or τ(t) ≥ σ(t) for all t.

Proof: Since µ
p is bounded, there exists N > 0 such that µ(t)

p(t) ≤ N for all t. Let
K := M + N , where M > 0 is such that

|P (t) − P (τ(t))| < M for all t ∈ T where P (t) =
∫ t

t0

1
p(s)

∆s.



Oscillation of second-order dynamic equations 195

NECESSITY. The oscillation of (1.1.2) implies that of equation (1.1.3). Suppose
that there is a nonoscillatory solution y(t) of (1.1.3). We will only consider the
case where there exists t0 ∈ T such that y(t) > 0 for t ≥ t0, since the other case is
similar.

From equation (1.1.3) and Conditions (H1)–(H4), there exists t1 ∈ T (t1 ≥ t0)
such that

y(t) > 0, (py∆)(t) > 0, (py∆)∆(t) ≤ 0, y(τ(t)) > 0, t ≥ t1

as in the proof of Lemma 2.3. Hence, since p(t)y∆(t) > 0 decreases for t ≥ t1,
limt→∞ p(t)y∆(t) = L ≥ 0 exists. We will distinguish several cases.

(I) Assume τ(t) ≤ t for all t. As y is increasing, yσ(t) ≥ y(τ(t)). Furthermore,
as f is increasing, we have

(p(t)y∆(t))∆ + q(t)f(y(τ(t))) ≤ (p(t)y∆(t))∆ + q(t)f(yσ(t)) = 0.

So y(t) is an eventually positive solution of (2.2.5). By Lemma 2.4,
equation (1.1.3) is nonoscillatory, which is a contradiction.

(II) Suppose τ(t) ≥ σ(t) for all t.

(a) Assume L > 0. It follows that there exists t2 ∈ T with t2 ≥ t1 such
that p(t)y∆(t) ≤ L + 1 for all t ≥ t2. Since limt→∞ τ(t) = ∞, there is
a t3 ≥ t2 such that τ(t) ≥ t2 for t ≥ t3. Therefore, if t ≥ t3, we have

y(τ(t)) − yσ(t) =
∫ τ(t)

σ(t)

p(s)y∆(s)
p(s)

∆s

≤ (L + 1)
∫ τ(t)

σ(t)

∆s

p(s)

= (L + 1)[P (τ(t)) − P (σ(t))]
≤ (L + 1)[|P (τ(t)) − P (t)| + |P (t) − P (σ(t))|]

= (L + 1)

[
|P (τ(t)) − P (t)| +

∣∣∣∣∣
∫ t

σ(t)

∆s

p(s)

∣∣∣∣∣
]

= (L + 1)
[
|P (τ(t)) − P (t)| +

µ(t)
p(t)

]
≤ (L + 1)[M + N ],

which leads to

yσ(t) ≥ y(τ(t)) − (L + 1)K, t ≥ t3.

Let z(t) := y(t) − (L + 1)K. Then for sufficiently large t, we have

z(t) > 0, z(τ(t)) ≤ yσ(t), and (p(t)z∆(t))∆ + q(t)f(z(τ(t))) ≤ 0.

This leads to a contradiction as in part (I) above.
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(b) Assume L = 0. Since y∆(t) > 0 and y(t) > 0, there is an ε0 > 0 and a
t2 ≥ t1 such that y(t) > Mε0 for all t ≥ t2. Corresponding to this ε0,
there exists t3 ≥ t1 such that p(t)y∆(t) ≤ ε0 for all t ≥ t3. Now, if
t ≥ T := max{t2, t3}, in the same manner as above we have

yσ(t) ≥ y(τ(t)) − ε0K for t ≥ T.

Now set z(t) := y(t) − ε0K. Then for sufficiently large t

z(t) > 0, z(τ(t)) ≤ yσ(t), and (p(t)z∆(t))∆ + q(t)f(zσ(t)) ≤ 0,

which again leads to a contradiction.

SUFFICIENCY. The oscillation of (1.1.3) implies that of (1.1.2). Suppose, to the
contrary, that y is a nonoscillatory solution of (1.1.2) and without loss of generality,
we assume there exists t1 ∈ T such that

y(t) > 0, p(t)y∆(t) > 0, and (p(t)y∆(t))∆ ≤ 0, t ≥ t1.

Since p(t)y∆(t) > 0 is decreasing for t ≥ t1, limt→∞ p(t)y∆(t) = L ≥ 0 exists.
We distinguish several cases.

(I) Assume σ(t) ≤ τ(t) for all t. It follows that y(τ(t)) ≥ yσ(t) > 0 as y
is increasing. Consequently,

(p(t)y∆(t))∆ + q(t)f(yσ(t)) ≤ (p(t)y∆(t))∆ + q(t)f(y(τ(t))) = 0,

and so (2.2.1) has an eventually positive solution. By Lemma 2.3, equation
(1.1.3) has a nonoscillatory solution, which is a contradiction.

(II) Suppose next that τ(t) ≤ σ(t) for all t.

(a) Assume L > 0. Then there exists
t2 ∈ T with t2 ≥ t1 such that p(t)y∆(t) ≤ L + 1, for all t ≥ t2.
Since limt→∞ τ(t) = ∞, there is a t3 ≥ t2 such that τ(t) ≥ t2 for
t ≥ t3. Therefore, if t ≥ t3, we have

y(τ(t)) ≥ yσ(t) − (L + 1)K, t ≥ t3.

Let z(t) = y(t) − (L + 1)K. Note that for all t large enough,

p(t)y∆(t) ≥ L.

By integrating both sides from t0 to t we obtain

y(t) − y(t0) ≥ L

∫ t

t0

1
p(s)

∆s.

By letting t → ∞, we see that z(t) > 0 for large enough t. Hence, for
all sufficiently large t,

z(t) > 0, zσ(t) ≤ y(τ(t)), and (p(t)z∆(t))∆ + q(t)f(zσ(t)) ≤ 0.
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Hence, (2.2.1) has an eventually positive solution. By Lemma 2.3, we
have that (p(t)y∆(t))∆ + q(t)f(yσ(t)) = 0 is nonoscillatory, which is a
contradiction.

(b) Assume L = 0. Since both y∆(t) and y(t) are positive, there exists
ε0 > 0 and t2 ≥ t1 such that y(t) > Mε0 for all t ≥ t2. Corresponding
to this ε0, there exists t3 ≥ t1 such that p(t)y∆(t) ≤ ε0 for all t ≥ t3.
Now, if t ≥ T := max{t2, t3}, we have

y(τ(t)) ≥ yσ(t) − ε0K, t ≥ T.

Again, we set z(t) := y(t) − ε0K. Then for sufficiently large t

z(t) > 0, zσ(t) ≤ y(τ(t)), and (p(t)z∆(t))∆ + q(t)f(zσ(t)) ≤ 0.

Hence, 2.2.1 has an eventually positive solution. Again by Lemma
2.3, (p(t)y∆(t))∆ + q(t)f(yσ(t)) = 0 is nonoscillatory, which is a
contradiction.

This completes the proof. �

Remark 2.6: Under the assumptions Theorem 2.5 we see that oscillatory behaviour
of the more difficult functional equation can be established by considering the
dynamic equation that only involves the forward jump operator σ.

As an example of Theorem 2.5, we have the following:

Example 2.7: Let T = N and τ : T → T. Assume q, f, and τ satisfy conditions
(H2)–(H4). If we let

p(t) =
1√

t + 1
,

then condition (H1) holds. Therefore, the oscillation of the two equations

∆(p(t)∆y(t)) + q(t)f(y(t + 1)) = 0

and

∆(p(t)∆y(t)) + q(t)f(y(τ(t))) = 0

is equivalent.

Remark 2.8: One can prove analogous results when considering

(p(t)y∆(t))∆ +
n∑

i=1

qi(t)fi(y(τi(t))) = 0
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and

(p(t)y∆(t))∆ +
n∑

i=1

qi(t)fi(yσ(t)) = 0

and their corresponding inequalities.

We end this section with comparing (p(t)y∆)∆ + q(t)f(y(τ(t))) to

(p(t)y∆(t))∆ + q̃(t)g(y(τ̃(t))) = 0, (2.2.6)

on a time scale T where q̃, g, and τ̃ satisfy conditions (H1)–(H4) and µ
p is bounded.

From Theorem 2.5 we see that the oscillation of (2.2.6) is equivalent to that of

(p(t)y∆(t))∆ + q̃(t)g(yσ(t)) = 0. (2.2.7)

We get the following result.

Theorem 2.9: Assume µ
p is bounded on T. Further assume that q̃(t) ≤ q(t) for all

large t and |g(u)| ≤ |f(u)| for |u| > 0. Then, the oscillation of equation (2.2.6)
implies that of equation (1.1.2).

Proof: Otherwise, without loss of generality, we assume that (1.1.2) has an
eventually positive solution. From Theorem 2.5, equation (1.1.3) also has an
eventually positive solution y(t). Then

(p(t)y∆(t))∆ + q̃(t)g(yσ(t))) ≤ (p(t)y∆(t))∆ + q(t)f(yσ(t))) = 0,

which implies (2.2.7) has an eventually positive solution. Therefore, equation (2.2.6)
also has an eventually positive solution, which is a contradiction. �

3 Oscillation of a linear dynamic equation

In this section we give two theorems about the oscillatory behaviour of the
second-order dynamic equation

(p(t)y∆(t))∆ + q(t)yσ(t) = 0 (3.3.1)

on a time scale T where sup T = ∞, p ∈ Crd(T, (0,∞)) and q ∈ Crd(T, R). These
are Theorems 3.2 and 3.7. We impose the following condition∫ ∞

a

1
p(s)

∆s = ∞ and
∫ ∞

a

q(s)∆s < ∞ for some a ∈ T. (C1)

To prove our main result, we need the following lemma.

Lemma 3.1 (Erbe et al., 2002): Assume

lim inf
t→∞

∫ t

T

q(s)∆s ≥ 0 and �≡ 0 (C2)
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for all large T , and

∫ ∞

T

1
p(s)

∆s = ∞. (C3)

If y is a solution of (3.3.1) such that y(t) > 0, for t ∈ [T, ∞)T, then there exists
S ∈ [T, ∞)T such that y∆(t) > 0 for t ∈ [S, ∞)T .

Before we state Theorem 3.2, we need the following definitions.

A0(t) =
∫ ∞

t

q(s)∆s,

A1(t) = A0(t) +
∫ ∞

t

A2
0(s)

p(s) + µ(s)A0(s)
∆s,

...

An(t) = A0(t) +
∫ ∞

t

A2
n−1(s)

p(s) + µ(s)An−1(s)
∆s,

if the integrals on the right-hand side exist.
The following is a generalisation of Theorem 3.1 of Zhang and Shanliang (2005).

Theorem 3.2: Assume (C1) and (C2) hold, and one of the following two
conditions holds:

(i) there exists some positive integer m such that An is well defined for
n = 0, 1, 2, . . . , m − 1, and

lim
t→∞

∫ t

a

A2
m−1(s)

p(s) + µ(s)Am−1(s)
∆s = ∞.

(ii) An is well defined for n = 0, 1, 2, . . . , and there exists t∗ ∈ T (t∗ ≥ t0) such
that

lim
n→∞

An(t∗) = ∞.

Then the second-order dynamic equation

(p(t)y∆(t))∆ + q(t)yσ(t) = 0 (3.3.1)

is oscillatory.

Proof: If not, without loss of generality, we assume (3.3.1) has an eventually
positive solution y(t). From Lemma 3.1, we get that there exists t1 ∈ T (t1 ≥ t0)
such that

y(t) > 0 and y∆(t) > 0 for all t ≥ t1.
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Define the function z by

z(t) =
p(t)y∆(t)

y(t)
for t ≥ t1. (3.3.2)

Then z(t) > 0 and

p(t) + µ(t)z(t) = p(t) + µ(t)
p(t)y∆(t)

y(t)
=

p(t)y(t) + p(t)µ(t)y∆(t)
y(t)

> 0,

for t ≥ t1. From (3.3.2) we get that z is a solution of the Riccati equation

z∆(t) = −q(t) − z2(t)
p(t) + µ(t)z(t)

, t ≥ t1. (3.3.3)

Integrating both sides of (3.3.3) from t1 to t we get

z(t) − z(t1) +
∫ t

t1

z2(s)
p(s) + µ(s)z(s)

∆s = −
∫ t

t1

q(s) ∆s, t ≥ t1.

Then, as z(t) > 0,

∫ t

t1

z2(s)
p(s) + µ(s)z(s)

∆s ≤ z(t1) −
∫ t

t1

q(s)∆s ≤ z(t1), t ≥ t1.

Letting t → ∞ we have that

lim
t→∞

∫ t

t1

z2(s)
p(s) + µ(s)z(s)

∆s < ∞.

Integrating (3.3.3) from t to s we obtain

z(t) = z(s) +
∫ s

t

q(τ)∆τ +
∫ s

t

z2(τ)
p(τ) + µ(τ)z(τ)

∆τ

>

∫ s

t

q(τ)∆τ +
∫ s

t

z2(τ)
p(τ) + µ(τ)z(τ)

∆τ

for s, t ∈ T and s ≥ t ≥ t1. Letting s → ∞ we have

z(t) ≥
∫ ∞

t

q(s)∆s +
∫ ∞

t

z2(s)
p(s) + µ(s)z(s)

∆s, t ≥ t1. (3.3.4)

Assume Condition (i) holds and m = 1. From (3.3.4) we obtain that z(t) ≥ A0(t)
for all t ≥ t1.

Observe that F (u) = u2

c1+c2u is increasing for u > 0, where c1, c2 ≥ 0 are
constants. It follows that∫ ∞

t

A2
0(s)

p(s) + µ(s)A0(s)
∆s ≤

∫ ∞

t

z2(s)
p(s) + µ(s)z(s)

∆s < ∞.
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This contradicts (i). If m > 1, we have

z(t) ≥
∫ ∞

t

q(s)∆s +
∫ ∞

t

A2
0(s)

p(s) + µ(s)A0(s)
∆s = A1(t), for t ≥ t1.

Repeating the above procedure, we get that z(t) ≥ Am−1(t) for all t ≥ t1, and∫ ∞

t

A2
m−1(s)

p(s) + µ(s)Am−1(s)
∆s ≤

∫ ∞

t

z2(s)
p(s) + µ(s)z(s)

∆s < ∞,

which contradicts Condition (i).
Assume that Condition (ii) holds. Similar to the above proof, we obtain

An(t) ≤ z(t) for n = 0, 1, 2, . . . Then, as y(t) > 0,

lim
n→∞

An(t∗) ≤ z(t∗) < ∞,

which gives a contradiction to Condition (ii). The proof is complete. �

Remark 3.3: It is well known that the Leighton–Wintner condition∫ ∞

a

1
p(t)

∆t =
∫ ∞

a

q(t)∆t = ∞

implies that every solution of (3.3.1) is oscillatory on [a,∞)T.

Remark 3.4: If T = R and p(t) = 1 for all t, then Theorem 3.2 is the same as Yan’s
result for second-order linear differential equations (Yan, 1987).

To prove the next result, we need the following lemmas:

Lemma 3.5 (Bohner and Peterson, 2001, Theorem 4.61): Assume a ∈ T, p > 0,
and let ω := sup T. If ω < ∞, then we assume ρ(ω) = ω. If (py∆)∆(t) +
q(t)yσ(t) = 0 has a positive solution on [a, ω), then there is a positive solution u,
called a recessive solution at ω, such that for any second linearly independent
solution v, called a dominant solution at ω,

lim
t→ω−

u(t)
v(t)

= 0,

∫ ω

a

∆t

p(t)u(t)uσ(t)
= ∞, and

∫ ω

b

∆t

p(t)v(t)vσ(t)
< ∞,

where b < ω is sufficiently close. Furthermore

p(t)v∆(t)
v(t)

>
p(t)u∆(t)

u(t)

for t < ω sufficiently close.

Lemma 3.6 (Bohner and Peterson, 2001, Theorem 4.55): Assume z is a solution of
the the Riccati equation

Rz = 0, where Rz(t) := z∆(t) + q(t) +
z2(t)

p(t) + µ(t)z(t)
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on [a, σ2(b)]T with p(t) + µ(t)z(t) > 0 on [a, σ2(b)]T. Let u be a continuous function
on [a, σ2(b)]T whose derivative is piecewise right-dense continuous with u(a) =
u(σ2(b)) = 0. Then we have for all t ∈ [a, σ2(b)]T,

(zu2)∆(t) = p(t)[u∆(t)]2 − q(t)u2(σ(t))

−
{

z(t)uσ(t)√
p(t) + µ(t)z(t)

−
√

p(t) + µ(t)z(t)u∆(t)

}2

.

Using the previous lemmas, we have the following theorem which was proven for
differential equations by Kelley and Peterson (2004).

Theorem 3.7: Assume I = [a,∞)T. If
∫ ∞

a
∆t
p(t) = ∞ and there is a t0 ≥ a and a

u ∈ C1
rd[t0,∞) such that u(t) > 0 on [t0,∞)T and

∫ ∞

t0

{q(t)[uσ(t)]2 − p(t)[u∆(t)]2}∆t = ∞,

then the second-order dynamic equation

(p(t)y∆(t))∆ + q(t)yσ(t) = 0 (3.3.1)

is oscillatory on I.

Proof: We prove this theorem by contradiction. So assume (3.3.1) is nonoscillatory
on I . By Lemma 3.5, there is a dominant solution y at ∞ such that for t1 ≥ a,
sufficiently large,

∫ ∞

t1

∆t

p(t)y(t)yσ(t)
< ∞,

and we may assume y(t) > 0 on [t1,∞)T. Let t0 and u be as in the statement of
this theorem. Let T =max{t0, t1}; then let

z(t) :=
p(t)y∆(t)

y(t)
, t ≥ T.

It follows that

p(t) + µ(t)z(t) > 0 for all t ≥ T.

Then by Lemma 3.6, we have for t ≥ T

(zu2)∆(t) = p(t)[u∆(t)]2 − q(t)u2(σ(t))

−
{

z(t)u(σ(t))√
p(t) + µ(t)z(t)

−
√

p(t) + µ(t)z(t)u∆(t)

}2

≤ p(t)[u∆(t)]2 − q(t)u2(σ(t)).
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Integrating from T to t, we obtain

z(t)u2(t) ≤ z(T )u2(T ) −
∫ t

T

{q(t)u2(σ(t)) − p(t)[u∆(t)]2}∆t

which implies

lim
t→∞

z(t)u2(t) = −∞.

However, then there is a T1 ≥ T such that for t ≥ T1

z(t) =
p(t)y∆(t)

y(t)
< 0.

This implies that y∆(t) < 0 for t ≥ T1, and hence y is decreasing on [T1,∞)T.
However,

∫ ∞

T1

1
p(s)

∆s = y(T1)yσ(T1)
∫ ∞

T1

1
p(s)y(T1)yσ(T1)

∆s

≤ y(T1)yσ(T1)
∫ ∞

T1

1
p(s)y(s)yσ(s)

∆s

< ∞,

which is a contradiction. �

We conclude with an example that shows how Theorem 3.7 can be used to obtain
oscillation criteria.

Example 3.8: If a > 0 and

∫ ∞

a

σα(t)q(t)∆t = ∞,

where 0 < α < 1, then y∆∆ + q(t)yσ = 0 is oscillatory on [a,∞)T.
We will show that this follows from Theorem 3.7. In the Pötzsche Chain Rule

(Bohner and Peterson, 2001, Theorem 1.90), let g(t) = t and f(t) = t
α
2 , for 0 < α <

1. Then with u(t) = (f◦g)(t) = t
α
2 , we have

u∆(t) = (f◦g)∆(t) =
{∫ 1

0

α

2
[t + hµ(t) · 1]

α−2
2 dh

}
· 1

=
α

2

∫ 1

0
(t + hµ(t))

α−2
2 dh

≤ α

2

∫ 1

0
t

α−2
2 dh

=
α

2
t

α−2
2
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since α − 2 < 0. Therefore, it follows that (u∆(t))2 ≤ α2

4 tα−2 for all t. Hence,

∫ ∞

a

{q(t)[uσ(t)]2 − p(t)[u∆(t)]2}∆t

≥
∫ ∞

a

{
q(t)σα(t) − α2

4
tα−2

}
∆t

= ∞

since 0 < α < 1 implies

∫ ∞

a

tα−2∆t < ∞.

Thus y∆∆ + q(t)yσ = 0 is oscillatory on [a,∞)T by Theorem 3.7.

4 Conclusion and future directions

In this paper, we studied the oscillatory behaviour of the second-order functional
dynamic equation

(p(t)y∆(t))∆ + q(t)f(y(τ(t))) = 0

on an isolated time scale T. We showed that the oscillation of the functional
dynamic equation is equivalent to that of the dynamic equation

(p(t)y∆)∆ + q(t)f(yσ(t)) = 0.

This was accomplished by establishing a relationship between the oscillatory
solutions of the functional dynamic equation and the inequality (p(t)y∆(t))∆ +
q(t)f(y(τ(t))) ≤ 0 and a relationship between oscillatory solutions of the dynamic
equation and the inequality (p(t)y∆)∆ + q(t)f(yσ(t)) ≤ 0. On any time scale T,
we considered the dynamic equation with f(u) = u and established two sufficient
conditions for oscillation using the Riccati transformation technique.

Possibilities for further exploration include considering the case
∫ ∞

t0
∆t
p(t) < ∞

and a general time scale T as well as other generalisations of oscillations theorems
from differential equations.
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