Complex Analysis

Preliminary Examination

August 2003

Answer all questions completely. Calculators may not be used. Notation: $\mathbb{D} = \{z : |z| < 1\}$; for G a region in \mathbb{C} , let $H(G) = \{f : f \text{ is analytic on } G\}$.

1. Let z_1, z_2, \ldots, z_n be n points in \mathbb{C} and for $z \in \mathbb{C}$ let $d(z, z_k)$ denote the distance between z and

 z_k . If z is confined to the closure of a bounded domain Ω , show that $\prod_{k=1} d(z, z_k)$ attains its

maximum on the boundary of Ω .

- 2. Let f(z) be a one-to-one analytic map from \mathbb{D} into \mathbb{D} . Suppose $f(\frac{1}{2}) = 0$ and $f(0) = -\frac{1}{2}$. Find $f(-\frac{1}{2})$ and justify your answer.
- 3. Let $G = \{z : 1 < |z| < 2\}$. Suppose f is analytic in G and

$$\lim_{|z|\to 1,\,z\in G}f(z)=0.$$

Prove f is identically zero on G.

4. Let w_1, w_2, \ldots, w_n be *n* points in \mathbb{D} and let

$$f(z) = \prod_{j=1}^{n} \frac{(z - w_j)}{(1 - \overline{w_j}z)}$$

Prove that f maps \mathbb{D} onto \mathbb{D} exactly n times (according to multiplicity). HINT: Use the argument principle.

- 5. Let \mathbb{C}_{∞} denote the extended complex plane (Riemann sphere) and let D_1 and D_2 be disjoint closed circular discs in \mathbb{C} . Prove that $\mathbb{C}_{\infty} \setminus \{D_1 \cup D_2\}$ is conformally equivalent to an annulus.
- 6. Let f be an entire function such that f(z+1) = f(z+i) = f(z) for all z. Show that f is constant.
- 7. Let Ω be the shaded region bounded by the x-axis and the circular arcs pictured below:

Assume the circular arcs meet perpendicularly at i and -i. Find a conformal map of Ω onto \mathbb{D} sending i/2 to 0.

8. Let G be a region in \mathbb{C} . Suppose $f_n \to f$ in H(G). Show that for each k > 0, the derivatives $f_n^{(k)}$ converge to $f^{(k)}$ in H(G).