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Abstract.
This is an introductory survey on applications of the Julia variation to problems in geometric function
theory. A short exposition is given which develops a method for treating extremal problems over
classes F of analytic functions on the unit disk D for which appropriate subsets Fn can be constructed
so that (i) F =

⋃
n Fn and (ii) for each f ∈ Fn a geometric constraint will hold that ∂f(D) will have at

most n “sides”. Applications of this method which have been made to problems in the literature are
reviewed, e.g., Netanyahu’s problems about the distortion theorems for starlike and convex functions
constrained to contain a fixed disk; Goodman’s problems about omitted values for classes of univalent
functions; integral means estimates for derivatives of convex functions; maximization problems for
functionals on linear fractional transforms of convex and starlike functions.

Key words. Julia variation, variational methods, geometric function theory

AMS subject classifications. 30C

This is a survey paper on the applications of a variational method introduced
by J. Krzyz in [29]. It is based on Julia’s modification of Hadamard’s variation of
the Green’s function. In the early 1900’s, in order to investigate the behavior of
Green’s function for slight deformations on the boundary of its domain, Hadamard
developed his variational formulas [23]. The validity of the formulas relied on the
domain having (at least) a continuously differentiable or smooth boundary. In the
1930’s Julia, modifying Hadamard’s procedure, derived a new variational formula
in terms of the Riemann mapping function for the domain. This also required the
boundary of the domain to be smooth. This requirement proved to be too restrictive
to solve most extremal problems since the corresponding extremal domains have non-
smooth, typically piece-wise smooth, boundaries. In particular, Schiffer suggested
in [39] that the requirement of a smooth boundary was too restrictive for extremal
problems for the general class of univalent functions; he then proceeded to develop
his method of interior variations to circumvent the issue.

The first author was introduced to the Hadamard and Julia variational formulas
during his graduate studies at the University of Maryland by J. Hummel. Hummel
had used results on the Julia variation, obtained in [38], to create in [27] a general
variational method for starlike functions. He gave a discussion of the Hadamard and
Julia formulas in his lecture notes in [26]. We note also that Julia’s formula was used
by M.S. Robertson in [37] to develop a variational method for analytic functions on
the unit disk with positive real part.

Aside from Schiffer’s and Hummel’s references, the Hadamard and Julia vari-
ational formulas remained generally dormant until Krzyz in [29] applied the Julia
variational formula to convex polygons. A rigorous proof that the formula is valid
when the boundary contains corners was provided by Barnard and Lewis in [10]. It
was found later that an independent proof had been given earlier by Warshawski in
[44]. Consequently, the initial condition of smoothness on the boundary of the domain
could be replaced by a piece-wise smooth condition. This allowed for the method to
be applied to a fairly large class of functions; in particular, to any class of functions
whose image domains could be approximated by domains bounded by a finite number
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of arcs with explicit geometric conditions. The extremal domains with their piece-wise
smooth boundaries are then among the approximating domains with a small number
of sides. Since the approach of using dense subclasses does not usually give uniqueness
of the extremal functions other methods are needed to obtain uniqueness.

For completeness, we will give a brief outline of the method. Let C denote the
complex plane and let

Dr = {z : |z| < r}, D = {z : |z| < 1} = D1,

Cr = {z : |z| = r}, γ = {z : |z| = 1} = C1,

A = {f : f is analytic on D, f(z) = z + ... },
S = {f : f ∈ A, f is 1-to-1 on D}

SX = {f : f ∈ A, f(D) is geometrically characterized by X}.

Two specific subclasses of S to which we will make frequent reference are S∗

and K, the subclasses of starlike functions (with respect to the origin) and convex
functions, respectively. Recall that a function f ∈ S is starlike if and only if

Re {zf ′(z)
f(z)

} > 0

for z ∈ D. Also, a function f ∈ S is convex if and only if

Re {1 +
zf ′′(z)
f ′(z)

} > 0

for z ∈ D.
Let E be a domain in C. Let r0 be the mapping radius or inner radius of the

domain E at z0. It is determined by the limit

lim
z→z0

g(z, z0) + log |z − z0| = log r0

where g(z, z0) is the Green’s function of E at z0. Alternately, the mapping radius
is given as the first order coefficient of the univalent mapping function f : D → E
such that f(0) = z0, i.e., let f(z) = a0 + a1z + a2z

2 + ..., then r0 = |a1|. Both the
mapping radius and the Green’s function depend on the domain (and z0), and as was
shown in [25], the mapping radius is monotonically, set theoretically and continuously
dependent on the size of the domain.

Let X0 be a specific geometric characterization. We will suppose that there exist
compact subclasses

Sn = {f ∈ SX0 : ∂f(D) has at most n smooth “sides”}

such that for each f ∈ Sn, ∂f(D) is a bounded Jordan curve and⋃
n

Sn = SX0 .

The definition of “sides” will depend on the geometric characterization of X0.
For example, for the class of convex functions K the subclass Kn could be all of

the functions for which f(D) is a bounded convex polygon with at most n sides.
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Let X0 be a specific geometric characterization. Suppose L is a continuous linear
functional, L : A → C, and for the class SX0 we want to find supf∈SX0

Re L(f). Stan-
dard normal family arguments give the existence of an extremal function whenever
SX0 is a normal family.

The following proposition will now be proven.

Proposition 1. Let z = reiθ, |z| = r < 1, and let T (ζ) = L
(
zf ′(z) 1+ζz

1−ζz

)
, where

ζ = eiφ. If Re T (ζ) = c (for any constant c) has at most m solutions on |ζ| = 1, then
for n ≥ m

sup
f∈SX0

Re L(f) = sup
n

max
f∈Sn

Re L(f) = max
f∈Sm

Re L(f).

Proof. The compactness of the subfamilies Sn along with the density of
⋃

n Sn

in SX0 insures that, for n ≥ m,

sup
f∈SX0

Re L(f) = sup
n≥m

max
f∈Sn

Re L(f).

We will show that maxf∈Sn Re L(f) = maxf∈Sm Re L(f) for n ≥ m.
Let n be a fixed integer greater than m. Consider any function f in Sn where

∂f(D) has strictly more than m “sides”. By the assumption that ∂f(D) is a (bounded)
Jordan curve (where f(D) is a Jordan domain), we have, by applying Caratheodory’s
Extension Theorem [19], that f has a continuous extension to D̄ = D

⋃
γ.

Let Ω = f(D) and Γ = f(γ) = ∂Ω. Then Γ has m +1 or more “sides.” Call these
sides, Γ1,Γ2, ... and call the preimages γ1, γ2, ..., where f(γj) = Γj .

We will locally vary Γ by moving one “side” in the following manner (see Figure 1).
Pick a “side” of Γ, say Γj . For w ∈ Γj , w = f(z) for some z ∈ γj . Let n(w) = zf ′(z)

|zf ′(z)|
and let p(w) be the distance along the unit normal from w to a point w∗ on a new
“side” Γ∗j . The distance moved is controlled by εp(w), which is positive along the
outward pointing normal and negative along the inward pointing normal. That is, it
is positive if the “side” is moved out and negative if the “side” is moved in. (The
variational distances at the corners are shown to be o(ε) in [10].) Form a new polygonal
curve Γε containing the “side” Γ∗j . When the new curve Γε can be chosen so that it
still has n or more “sides,” the variation is allowable. Details can be found in Barnard
[6].

Figure 1
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We note here that our initial definition of “sides” will require a geometric condition
which allows the “sides” to be moved both in and out in the manner described above.

For a given z ∈ D (z = reiθ), the varied function fε which maps D onto the varied
domain Ωε for which ∂Ωε = Γε becomes by the Julia Variational Formula [6],

fε(z) = f(z) + εzf ′(z)
∫

Γ

1 + ζz

1− ζz
dΨ + o(ε)

where ζ = eiφ, o(ε) is uniform for z in compact subsets of D and, for w = f(ζ),

dΨ =
p(w)n(w)
i[ζf ′(ζ)]2

dw.

A change in variable

dΨ(φ) =
p(w)
|f ′(ζ)|

dφ

insures that dΨ(φ) is real and gives

fε(z) = f(z) + εzf ′(z)
∫

γ

1 + ζz

1− ζz
dΨ(φ) + o(ε).

We note for future reference that the change in mapping radius from f(D) to fε(D)
is given by

ε

∫
γ

dΨ(φ) + o(ε).

If the varied side is Γj , the integral need only be taken over γj since the value of
dΨ(φ) is defined to be zero over the rest of γ by construction.

If two “sides” of Γ are locally varied, say Γk was moved out and Γl was moved
in, the varied function becomes

fε(z) = f(z) + ε

[
zf ′(z)

∫
γk

1 + ζz

1− ζz
dΨ− zf ′(z)

∫
γl

1 + ζz

1− ζz
dΨ

]
+ o(ε).

Using the linearity of L, we have

Re L(fε) = Re L(f) + ε

∫
γk

Re L

(
zf ′(z)

1 + ζz

1− ζz

)
dΨ

− ε

∫
γl

Re L

(
zf ′(z)

1 + ζz

1− ζz
dΨ

)
+ o(ε).

We have then

∂

∂ε
Re L(fε)|ε=0 =

∫
γk

Re L

(
zf ′(z)

1 + ζz

1− ζz

)
dΨ

−
∫

γl

Re L

(
zf ′(z)

1 + ζz

1− ζz
dΨ

)
.

Let T (ζ) = L(zf ′(z) 1+ζz
1−ζz ). Then,

∂

∂ε
Re L(fε)|ε=0 =

∫
γk

Re T (ζ)dΨ−
∫

γl

Re T (ζ)dΨ. (0.1)
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The function T (ζ) maps |ζ| = 1 onto a curve β. On this curve β, there are
m + 1 arcs resulting from T (γ1), T (γ2), ..., T (γm+1) (see Figure 2). The Mean Value
Theorem for integrals allows us to conclude that on each arc γj there exists a ζj such
that ∫

γj

Re T (ζ)dΨ(φ) = Re T (ζj)
∫

γj

dΨ(φ). (0.2)

Figure 2

This implies that for γk and γl there are ζk and ζl satisfying (0.2) which makes
(0.1) become

∂

∂ε
Re L(fε)|ε=0 = Re T (ζk)

∫
γk

dΨ− Re T (ζl)
∫

γl

dΨ.

By hypothesis , Re T (ζ) = c (for any constant c) has at most m solutions. Thus,
the most such points, T (ζj), any vertical line (Re T (ζ) = c) could intersect is m.
Since ∂f(D) has strictly more than m sides, there must exist two points T (ζk) and
T (ζl) in β such that the real part of one is greater than the real part of the other, say

Re T (ζk) > Re T (ζl).

Thus, if the two sides that are initially varied are Γk and Γl, then the partial in (0.1)
can be chosen so that

∂

∂ε
Re L(fε)|ε=0 > Re T (ζl)

[∫
γk

dΨ(φ)−
∫

γl

dΨ(φ)
]

.
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As noted earlier,
∫

γk
dΨ(φ) −

∫
γl

dΨ(φ) represents the change in the mapping
radius. From continuity Γ can be varied so that the resulting function fε is again in
Sn, i.e., if Ψ(φ) is chosen on γk and γl so that the resulting mapping radius of fε is
1, then

∫
γk

dΨ(φ)−
∫

γl
dΨ(φ) = 0. Hence,

∂

∂ε
Re L(fε)|ε=0 > [Re T (ζl)](0) = 0.

Recall that

∂

∂ε
Re L(fε)|ε=0 =

∫
γk

Re L

(
zf ′(z)

1 + ζz

1− ζz

)
dΨ

−
∫

γl

Re L

(
zf ′(z)

1 + ζz

1− ζz
dΨ

)
.

We have

Re L(fε) = Re L(f) + ε

[
∂

∂ε
Re L(fε)|ε=0

]
+ o(ε).

Thus, for any function f ∈ Sn such that ∂f(D) has strictly more than m “sides,”
each of which can be moved both in and out, a function can be found which increases
the real part of the functional L. Therefore, we have that the function f ∈ Sn which
maximizes the real part of the functional L is actually in Sm. Thus, for n ≥ m,

max
f∈Sn

Re L(f) = max
f∈Sm

Re L(f).

This proves Proposition 1.

Remark. In [8] it is shown that by combining this method with Loewner theory
on slit domains that this method may be applied to domains where ∂f(D) is not
a Jordan curve (where f(D) is a slit domain) with slight variations. Hence, this
variational method involving Proposition 1 may be used to solve extremal problems
over a much broader class of functions.

It is this basic idea that the authors have been able to apply to a variety of
extremal problems. The first arose in Barnard’s dissertation and answered a question
which arose out of Netanyahu’s work in [36]. Netanyahu had asked to determine the
extremal functions for the standard distortion theorems for the class of starlike or
convex functions whose image domains contain a fixed disk centered at the origin.
Netanyahu had done this [36] for the class NS(d) of univalent functions in S whose
image domains contain a fixed disk of radius d centered at the origin, but his methods
did not appear to work for the corresponding classes NS∗(d) or NK(d). The extremal
functions for the classes NS∗(d) and NK(d) were found by Barnard in [6], however, a
more general result containing resolutions for Netanyahu’s questions as special cases
was given in [10] by Barnard and Lewis.

To obtain the more general result, we first answered M. Reade’s question as
to determining a geometric characterization for the Mocanu class, MS∗(α), of α-
starlike functions. MS∗(α) was a continuously parametrized family of functions,
0 ≤ α ≤ ∞, defined analytically, which contained the class S∗ = MS∗(0) and the
class K = MS∗(1). In particular, Mocanu had defined in [35] the class MS∗(α) as
those functions in A for which

Re
{

(1− α)
(

zf ′(z)
f(z)

)
+ α

(
1 +

zf ′′(z)
f ′(z)

)}
> 0.
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We determined in [10] that by defining an α-arc for α > 0, loosely speaking, as a
translate of an arc of the αth power of the line x = 1 (see [10] for details), then a
domain f(D) is the image of an α-starlike function f if and only if any two points in
f(D) can be connected by an α-arc lying in f(D). (Note α = 1 gives 1-arcs as straight
line segments [hence, convexity], while the limiting case of α = 0 gives starlikeness
with respect to the origin.) By using as a dense subclass those domains bounded by
a finite number of α-arcs as “sides”, we proved the following result.

For a given d, 0 ≤ d < 1 and 1 < ρ ≤ ∞, let MS∗(α, d, ρ) be those functions
in MS∗(α) for which d ≤ |f(z)/z| ≤ ρ. Let F = F (·, α, d, ρ) be the function in
MS∗(α, d, M) whose image is the symmetric domain bounded by an arc γd ⊂ Cd,
which is symmetric about −d, an arc γρ ⊂ Cρ, which is symmetric about ρ and two
α-arcs connecting the endpoints of γd and γρ. We proved the following main theorem
and corollary.

Theorem 1. Let α, d and ρ be fixed nonnegative numbers satisfying 0 ≤ α ≤ ∞,
0 ≤ d < 1 and 1 < ρ ≤ ∞. Then,

(A) The function g(z) = log[F (z)/z], z ∈ D is univalent and convex in the direc-
tion of the imaginary axis.

(B) If f ∈ MS∗(α, d, ρ), then log[f(z)/z] is subordinate to g.

Corollary 1. Let α, d and ρ be as in Theorem 1. Let Φ be a given nonconstant
entire function. If f ∈ MS∗(α, d, ρ), then

(A) For given z ∈ D\{0}

Re
{

Φ
[
log

f(z)
z

]}
≤ max

0<θ≤2π
Re

{
Φ

[
log

F (z)
z

]}
,

(B) For given r, 0 < r < 1, and λ > 0,∫ π

−π

|f(reiθ)|λdθ ≤
∫ π

−π

|F (reiθ)|λdθ,

(C) For a given positive integer N ≥ 2,

N∑
k=2

|ak|2 ≤
N∑

k=2

|Ak|2,

where f(z) = z +
∑∞

k=2 akzk and F (z) = z +
∑∞

k=2 Akzk, z ∈ D.
Another application of this variational method was to show in [4] that any f ∈ S

for which ∂f(D) has an analytic slit which contains a point f(eiθ1) = f(eiθ2) where
the opposing normals exist and are of unequal modulus, i.e., |f ′(eiθ1)| 6= |f ′(eiθ2)|,
can always be varied locally on the boundary to produce a domain of strictly larger
mapping radius. For consequences of this result, see [4].

General applications of the variational method were used in a series of papers on
the omitted values problem of Goodman. The problem of omitted values was first
posed by Goodman [20] in 1949, restated by MacGregor [33] in his survey article in
1972, then reposed in a more general setting by Brannan [3] in 1977. It also appears
in Bernardi’s survey article [17] and has appeared in several open problem sets since
then, including [7], [18], [21] and [34].
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For a function f ∈ S, let A(f) denote the Lebesgue measure of the set D\f(D)
and for 0 < r < 1 let L(f, r) denote the Lebesgue measure of the set {D\f(D)}

⋂
Cr.

Two explicit problems posed by Goodman and by Brannan were to determine

A = sup
f∈S

A(f)

and

L(r) = sup
f∈S

L(f, r). (0.3)

Goodman [20] showed that 0.22π < A < 0.50π. The lower bound which he
obtained was generated by a domain of the type shown in Figure 3.

Figure 3

Later, Goodman and Reich [22] gave an improved upper bound of 0.38π for A.
Lewis had shown in [31] by applying some deep results of Alt and Caffarelli [2] in
partial differential equations for free boundary problems that the extremal domains
had to have piecewise analytic boundaries and that our methods developed in [10] for
these omitted value problems could be used to give a geometric description for the
boundaries of the extremal domains as follows. There is an f0 in S with A = A(f0)
such that f0(D) is circularly symmetric with respect to the positive real axis, i.e., it
has the property that for 0 < r < 1,

∂

∂θ
|f0(reiθ)| ≤ 0 and

∂

∂θ
|f0(re−iθ)| ≤ 0, for 0 < θ < π

(cf. Hayman [25]). Moreover, the ∂f0(D) consists of the negative real axis up to −1,
and arc σ of the unit circle that is symmetric about −1 and an arc λ lying in D, except
for its endpoints. The arc λ is symmetric about the reals, connects to the endpoints
of σ and has monotonically decreasing modulus in the closure of the upper half disc.
These results follow by standard symmetrization methods. Much deeper methods are
needed to show (as in [5] and [31]) that f0 has a piecewise analytic extension to λ
with f ′0 continuous on f−1

0 (λ) and |f ′0(f−1
0 (w))| ≡ c < 1 for all w ∈ λ

⋂
{D\(−1, 1)}.

Using these properties of f0 it was shown by the authors in [11] that by “rounding the
corners” of certain gearlike domains a close approximation for the extremal function
could be obtained. This gives the best known lower bound of

0.24π < A.



A Survey of Applications of the Julia Variation 9

The upper bound is conceptually harder since it requires an estimate on the
omitted area for each function in S. Indeed, it appears difficult to use the geometric
description of f0 to calculate A directly. However, an indirect proof was used by
Barnard and Lewis [9] to obtain the best known upper bound of

A < 0.31π.

Open Problem. Show that f0 is unique and determine A explicitly.

For the class S∗ of functions in S whose images are starlike with respect to the
origin, the problem of determining the corresponding

A∗ = sup
f∈S∗

A(f)

has been completely solved by Lewis in [31]. The extremal function f1 ∈ S∗ defined
by

A∗ = A(f1) ≈ 0.235π

is unique (up to rotation). The extremal domain ∂f(D) is a circularly symmetric
domain whose boundary ∂f1(D) has two radial rays projecting into D with their
endpoints connected by an arc λ1 that is symmetric about the reals and has |f ′1(ζ)| ≡
c1 for all ζ ∈ f−1

1 (λ1).
The problem of determining L(r) in (0.3) was solved by Jenkins in [28] where he

proved that for a fixed r, 1/4 ≤ r < 1,

L(r) = 2π arccos(8
√

r − 8r − 1).

The extremal domain in this case is the circularly symmetric domain (unique up to
rotation) having as its boundary the negative reals up to −r and a single arc of Cr

symmetric about the point −r.
The corresponding problem for starlike functions of determining

L∗(r) = sup
f∈S∗

L(f, r)

was solved by Lewandowski in [30] and by Stankiewicz in [40]. The extremal domain
in that case is the circularly symmetric domain (unique up to rotation) having as its
boundary two radial rays and the single arc of Cr connecting their endpoints. An
explicit formula for the mapping function in this case was first given by Suffridge in
[41].

However, for the class K of functions in S whose images are convex domains the
corresponding problems of determining

AK(r) = sup
f∈K

A(f, r)

and

LK(r) = sup
f∈K

L(f, r),

where A(f, r) denotes the Lebesgue measure of Dr\f(D), presents some interesting
difficulties. One particular difficulty is that the basic tool of circular symmetrization
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used in the solution of each of the previous determinations is no longer available.
The example of starting with the convex domain bounded by a square shows that
convexity is not alway preserved under circular symmetrization. However, Steiner
symmetrization (cf. Hayman [25]) can still be used in certain cases such as sectors.
Another difficulty is the introduction of distinctly different extremal domains for dif-
ferent ranges of r. Since every function in K covers a disk of radius 1/2 (cf. Duren
[19]) r needs only to be considered in the interval (1/2, 1). Waniurski has obtained
some partial results in [43]. He defined r1 and r2 to be the unique solutions to certain
transcendental equations where r1 ≈ 0.594 and r2 ≈ 0.673. If Fπ/2 is the map of D
onto the half plane {w : Re w > −1/2} and Fα maps D onto the sector{

w :
∣∣∣arg

(
w +

π

4α

)∣∣∣ < α
}

whose vertex, v = −π/4α, is located inside D, then

AK(r) = A(Fπ/2, r) for 1/2 < r < r1,

LK(r) = L(Fπ/2, r) for 1/2 < r < r1,

and

LK(r) = L(Fα, r) for r1 < r < r2.

Barnard had announced in his survey talk on open problems in complex analysis
at the 1985 Symposium on the Occasion of the Proof of the Bieberbach Conjecture the
following conjecture.

Conjecture 1. The extremal domains for determining AK(r) and LK(r) will
be half planes, symmetric sectors and domains bounded by single arcs of Cr along
with tangent lines to the endpoints of these arcs; the different domains will depend on
different ranges of r in (1/2, 1).

This conjecture was also made later, independently, by Waniurski at the end of
his paper in [43] in 1987.

In trying to determine the extremal domains for AK(r) and LK(r) via our vari-
ational method developed in [10] the following problem was investigated. For F ⊂ S
and 1/4 ≤ d ≤ 1 let Fd = {f ∈ F : minz∈D |f(z)/z| = d}. Then, determine the sharp
constant A = A(Fd) such that for any f ∈ Fd

I−1(f ′) = lim
r→1

1
2π

∫ π

−π

∣∣∣∣ 1
f ′(reiθ)

∣∣∣∣ dθ ≤ A

d
. (0.4)

For 0 ≤ α < 1 let S∗(α) denote the subclass of S of starlike functions of order α,
i.e., a function f ∈ S∗(α) if and only if f satisfies the condition Re zf ′(z)/f(z) > α for
z ∈ D. It is well known that K ⊂ S∗(1/2). It follows fairly easily from subordination
theory that A(S∗(1/2)) ≤ 4/π. Furthermore, this estimate is sharp for S∗(1/2) since
the functions fn(z) = z/(1− zn)1/n belong to S∗(1/2) for each n > 0. However, this
estimate is not sharp for the class K of convex functions which is a proper subset
of S∗(1/2). Considerable numerical evidence suggested to the authors to make the
following conjecture.

Conjecture 2. For each d, 1/2 ≤ d ≤ 1, A = A(Kd) = 1 in (0.4) with equality
holding for all domains which are bounded by regular polygons centered at the origin.
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This conjecture was announced in March 1985 at the Symposium on the Occasion
of the Proof of the Bieberbach Conjecture at Purdue University. It also appeared
as Conjecture 8 in the first author’s “Open Problems and Conjectures in Complex
Analysis” in [7]. It was thought, by many function theorists, that the conjecture
would be easily settled, given the vast literature on convex functions and the large
research base for determining integral mean estimates, see [19].

An initial difficulty was the non-applicability of Baernstein’s circular symmetriza-
tion methods, since convexity, unlike univalence and starlikeness, is not preserved un-
der circular symmetrization as noted above. Although Steiner symmetrization does
preserve convexity, see [42], it did not appear to be helpful for the problem and,
indeed, we found that extremal domains need possess no standard symmetry.

A confusing issue, which also arises, is that the integral means of the standard
approximating functions fn in K defined by

f ′n(z) =
n∏

k=1

(1− zeiθk)−2αk , 0 < αk ≤ 1,
n∑

k=1

αk = 1

decrease when the arbitrarily distributed θk are replaced by uniformly distributed
tk = kπ/n, as was shown in [45]. The conjecture suggests that multiplication by the
minimum modulus d must overcome this decrease.

We make the following definition.

Definition. Let Γ be a curve in C such that the left- and right-hand tangents
to the curve Γ exist at each point on Γ. The curve Γ will be said to circumscribe a
circle C if the left- and right-hand tangents to the curve Γ at each point on Γ lie on
tangent lines to the circle C.

We will employ the following notation.

Notation. Let f ∈ S and suppose that λ is a subarc of γ on which f is smooth.
For z = eiθ ∈ λ let dθ = < f(z), zf ′(z)

|zf ′(z)| >, i.e, dθ is the directed length of the
projection of f(z) onto the outward unit normal to the ∂f(D) at f(z).

In 1993 in [12], we proved the following theorem which verified Conjecture 2.

Theorem 2. Let f ∈ K, d = min
θ
|f(eiθ)| and d∗ = sup

θ
dθ. Then,

1
d∗
≤ 1

2π

∫ 2π

0

1
|f ′(eiθ)|

dθ ≤ 1
d

with equality holding if the ∂f(D) circumscribes Cd.

Our original proof which was quite lengthy used as a major step the following idea
which has independent interest. For any domain Λ which contains the origin, let the
notation m.r.(Λ) denote the inner radius of Λ at the origin. Given a d and a convex
domain Ω = f(D) where f ∈ Kd, one can always construct two varied domains Ω∗

and Ω∗∗ which satisfy the containment relationship

Ω∗ ⊆ Ω∗∗, (0.5)

as follows.
The domain Ω∗∗ is constructed by multiplication by 1 + ε for ε sufficiently small

and positive. This produces a radial enlargement (1+ε)Ω = Ω∗∗ of Ω. The domain Ω∗



12 R.W. Barnard, C. Campbell, K. Pearce

is constructed by moving each smooth boundary point w = f(eiθ) a distance εd in the
direction of the outward pointing normal. An adjustment is made at the non-smooth
boundary points to produce the domain Ω∗ so that boundary of Ω∗ has the same
geometric restrictions as the boundary of Ω, e.g., same number of sides. Subordination
then shows that (0.5) implies that m.r.(Ω∗) ≤ m.r.(Ω∗∗). The variational formulas
can then be applied to yield that

∆m.r.(Ω∗,Ω) =
εd

2π

∫ π

−π

∣∣∣∣ 1
f ′(eiθ)

∣∣∣∣ dθ + o(ε) ≤ ε = ∆m.r.(Ω∗∗,Ω)

which give the result. Similar arguments are used for d∗.
We obtained, arising out of the proof, the rather unexpected sufficient condition

for equality to occur in (2) for the classes Kd. However, because the proof used a
scheme to approximate convex functions by polygonally convex functions, we did not
obtain a necessary condition for equality.

We devised in [13] a new, simpler proof for the conjecture which extends Theorem
2. The proof relaxes the convexity requirement and validates the necessity of the
sufficient condition.

Theorem 3. Let f ∈ S∗(α) for some 0 ≤ α < 1. Suppose f is smooth on
X ⊂ ∂D where X is a countable union of pairwise disjoint subarcs of γ such that the
complement of X in γ has measure zero. Let d∗ = inf

θ∈X
dθ, d∗ = sup

θ∈X
dθ. Then,

1
d∗
≤ 1

2π

∫ 2π

0

1
|f ′(eiθ)|

dθ ≤ 1
d∗

with equality holding if and only if ∂f(D) circumscribes Cd∗ .

Another application of the method originated from a question of Clunie and Sheil-
Small. If f ∈ S and w 6∈ f(D), then the function

f̂ = f/(1− f/w) (0.6)

belongs again to S. The transformation f → f̂ is an important tool in the study of
geometric function theory. If F is a subset of S, let

F̂ = {f̂ : f ∈ F,w ∈ C∗\f(D)}.

Here, C∗ = C
⋃
{∞}. Since we admit w = ∞, it is clear that F ⊂ F̂ ⊂ S.

If F is compact in the topology of local uniform convergence, then so is F̂ . If
F is rotationally invariant, that is, if fα(z) = e−iαf(eiαz) belongs to F whenever f
does, then F̂ is also rotationally invariant. It is an interesting question to ask which
properties of F are inherited by F̂ . Since Ŝ = S, this question is trivial for S.

In [14], [15] and [16] Barnard and Schober considered transforms of the class
K of convex mappings (and the class S∗ of starlike mappings). Simple examples
show that K̂ is strictly larger than K. Since the coefficients of functions in K are
uniformly bounded [by one (in modulus)], Clunie and Sheil-Small had asked whether
the coefficients of functions in K̂ have a uniform bound. The affirmative solution of
this problem was given by Hall [24].

Open Question. Find the best uniform coefficient bound as well as the individual
coefficient bounds for functions in K̂.
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In [14] the variational procedure developed in [10] is applied to a class of extremal
problems for K̂. If λ : K̂ → R is a continuous functional that satisfies certain
admissibility criteria, it was shown that the problem

max
K̂

λ

has a relatively elementary extremal function f̂1. More specifically, it was shown that
f̂1 is either a half-plane mapping f̂1(z) = z/(1 − eiαz) or is generated through (0.6)
by a parallel strip mapping f1 ∈ K.

The class of functionals considered in [14] contain the second-coefficient functional
λ(f̂) = Re a2 and the functionals λ(f̂) = Re Φ(log f̂(z)/z) where Φ is entire and z is
fixed. The latter functionals include the problems of maximum and minimum modulus
(Φ(w) = ±w). In general, the extremal strip domains f1(D) need not be symmetric
about the origin. This adds a nontrivial and interesting character to the problem.

A sharp estimate for the second coefficient of functions in K̂ is given explicitly in
the following result. Surprisingly, the answer is not an obvious one.

Theorem 4. If f̂(z) = z + a2z
2 + ... belongs to K̂, then

|a2| ≤
2
x0

sinx0 − cos x0 ≈ 1.3270

where x0 ≈ 2.0816 is the unique solution of the equation

cot x =
1
x
− 1

2
x

in the interval (0, π). Equality occurs for the functions e−iαf̂1(eiαz), α ∈ R, where
f̂1(z) = f1(z)/[1− f1(z)/f1(1)] and f1 is the vertical strip mapping defined by

f1(z) =
1

2i sinx0
log

1 + eix0z

1− eix0z
. (0.7)

We make the following conjecture.

Conjecture 3. The extremal functions for maximizing |an| over K̂ are the ver-
tical strip mappings defined by (0.7) where a different x0 is needed for each n.

In [15] the Koebe disk, radius of convexity and sharp estimates for the coefficient
functional|ta3 + a2

2| were found for functions in the class K̂. Also, in [1] R.M. Ali
found sharp upper and lower bounds for |f(z)| for f̂ ∈ K̂.

A key lemma in the proofs of the above was the determination of the geometric
characterization of the “sides” to be varied in the images of the functions in a dense
subclass of the transformed convex domains. The variations of the functions in Kn

whose image domains are convex polygons with at most n sides did not reduce the
problem for K̂ to examining domains with a sufficiently small enough number of sides.
We observed that functions f̂ in K̂n map D onto curvilinear polygons with at most
n sides and with interior angles at π. Furthermore, if f̂ = f/(1 − f/w), then the
sides of the ∂f̂(D) all lie on circles or lines through the point w1 = −w (see Figure
4). In fact, these two properties characterize functions in K̂n. That is, if g ∈ S and
the ∂g(D) is a curvilinear n-gon with interior angles at most π and if the sides of the
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∂g(D) all lie on circles or lines through a point −w 6∈ g(D), then f = g/(1 − g/w)
belongs to Kn and so f̂ = g belongs to K̂n.

Figure 4

These observations thus produced the domains whose boundaries were character-
ized in a geometric fashion so that our methods could be applied.

In a more recent application of the Julia variational method J. MA [32] has proved,
in his dissertation under Ruscheweyh, the following results.

Let points zj ∈ D with zj 6= 0, j = 1, 2, ...,m and positive integers lj , j =
0, 1, 2, ...,m be given. Define N = l0 + l1 + l2 + ... + lm. For g ∈ A consider the
complex N vector v(g) with components

ak (k = 2, 3, ..., l0 + 1), g(k)(zj) (k = 0, 1, ..., lj − 1; j = 1, 2, ...,m).

Denote by VN (K) the set {v(g) : g ∈ K}.
Let Λ(v) be a real-valued function that is differentiable on some open neighbor-

hood of VN (K). Define a continuous functional Ψ on K by

Ψ(g) := Λ(v(g)) = Λ(a2, a3, ..., al0+1,g(z1), g′(z1), ..., g(l1−1)(z1), ...,

g(zm), g′(zm), ..., g(lm−1)(zm))

A functional of this form will be called a functional of finite degree and the number
N is call the degree of the functional.

Let us denote

Λv :=
(

∂Λ
∂w1

, ...,
∂Λ

∂wN

)
,

where

∂Λ
∂wk

=
1
2

(
∂Λ
∂xk

− i
∂Λ
∂yk

)
, k = 1, 2, 3, ..., N.

The main results are the following theorems.

Theorem 5. Let Ψ be a functional of degree N on the class K and for f0 ∈ K
let

Ψ(f0) = max(min){Ψ(g) : g ∈ K}.

Suppose that Λv(v(f0)) 6= 0. Then,

f0(z) =
∫ z

0

dη
N∏

k=1

(1− zkη)2λk

, (0.8)
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where |xk| = 1, λk >= 0, k = 1, ..., N and
∑N

k=1 λk = 1.

Theorem 6. Let H(w1, w2, ..., wN ) be an analytic function on a neighborhood of
the set VN (K). If for f0 ∈ K,

Re {H(v(f0))} = max(min){Ψ(g) : g ∈ K}

then f0 has the form (0.8).

We note that extremal functions with the form (0.8) map D onto convex polygons
with at most N sides.
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