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1 Introduction

For d > 0 let Dd = {z : |z| < d} with D1 = D and let ∂Dd denote the
boundary of Dd. Let S be the standard class of analytic, univalent functions
f on D, normalized by f(0) = 0 and f ′(0) = 1. Let K denote the well known
class of convex functions in S and let

Kd = {f ∈ K : min
z∈D

∣∣∣∣f(z)

z

∣∣∣∣ = d}. (1)

We will frequently (verbally) identify an analytic, univalent function f
on D with normalization

f(0) = 0 and f ′(0) > 0 (∗)

with its range f(D) and conversely, since the Riemann mapping theorem
guarantees that we can do so without ambiguity. Specifically, we will refer
to convex domains which contain the origin and mean the convex functions
f which map onto those domains and satisfy (∗).

A problem which arose out the authors’ work in the early 80’s on omitted
value problems for univalent functions, see [1] and [3], is the following: Given
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d, 1
2
,≤ d ≤ 1, determine a sharp constant A = A(d) such that for any f ∈ Kd

I−1(f ′) =
1

2π

2π∫
0

∣∣∣∣ 1

f ′(eiθ)

∣∣∣∣ dθ ≤ A

d
. (2)

It follows fairly easily from subordination theory that A ≤ 4/π, but this is
not sharp for convex functions. For 0 ≤ α < 1 let S∗(α) denote the usual
subclass of S of starlike functions of order α, i.e., a function f ∈ S∗(α) if
and only if f satisfies Re zf ′(z)/f(z) > α on D, see [9]. We will show that
4/π is sharp for the class S∗(1

2
) which strictly contains K. In Theorem 3 we

determine for each α, 0 ≤ α < 1, A = A(α) in (2) for the class S∗(α) and
show that it is sharp.

Considerable numerical evidence suggested to the authors to make the
following conjecture:

Conjecture 1 For each d, 1
2
≤ d ≤ 1, A = A(d) = 1 in (2) for the class Kd

with equality holding for all domains which are bounded by regular polygons
centered at the origin.

This conjecture was announced at several talks and conferences over the
last decade including the first author’s talk on “Open problems in complex
analysis” given at the Symposium on the Occasion of the Proof of the Bieber-
bach Conjecture at Purdue University in March 1985. It also appeared as
Conjecture 8 in the first author’s “Open Problems and Conjectures in Com-
plex Analysis” in [1]. It was thought, by many function theorists, that the
conjecture would be easily settled, given the vast literature on convex func-
tions and the large research base for determining integral mean estimates,
see [6].

An initial difficulty was the non-applicability of Baernstein’s general cir-
cular symmetrization methods. The non-convexity of the circularly sym-
metrized square shows that convexity, unlike univalence and starlikeness, is
not preserved under circular symmetrization. Although Steiner symmetriza-
tion does preserve convexity, see [10], it did not appear to be helpful for the
problem and, indeed, we will show that an extremal domain need posses no
standard symmetry.

A confusing issue, which also arises, is that the integral means I−1(f ′n) for
the standard approximating functions fn in K, which map D onto n-sided
convex polygons and which are defined by f ′n(z) =

∏n
k=1(1 − zeiθk)−2αk ,
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0 < α ≤ 1,
∑n

k=1 αk = 1, decrease, as was recently shown in [13], when the
arbitrarily distributed θk are replaced by uniformly distributed tk = kπ/n.
The regular polygons, produced by the uniformly distributed tk, are the
conjectured extremal domains. The conjecture suggests that multiplication
by the minimum modulus d must overcome this decrease.

We shall verify the conjecture in Theorem 1. We also obtain, arising out
of the proof, a rather unexpected sufficient condition for equality to occur in
(2) for the classes Kd. Additionally, modifying the proof of Theorem 1, we
obtain in Theorem 1∗ and its corollary sharp upper and lower bounds for the
integrals means I−1(f ′).

2 Statements of the Main Theorems

Let Kd be defined as in (1). We will say that a convex curve Γ circumscribes
a circle C if the left- and right-hand tangents at each point of Γ are tangent
to C.

Theorem 1 Let d be given, 1
2
≤ d ≤ 1, and let f ∈ Kd. Then

1

2π

2π∫
0

∣∣∣∣ 1

f ′(eiθ)

∣∣∣∣ dθ ≤ 1

d
(3)

with equality holding in (3) if the boundary of f(D) circumscribes ∂Dd.

Using Theorem 1 and earlier work of the first author we also prove the
following result, which gives a bound for the convex case of Brennan’s con-
jecture [5] for arbitrary univalent functions. Let d be given, 1

2
≤ d ≤ 1, and

let Fd be the uniquely defined function in Kd which maps D onto the convex
domain having as its boundary an arc, Cd, on ∂Dd which is symmetric about
the positive real axis and also has as its boundary two lines, tangent to ∂Dd

at the endpoints of Cd. Note that F1(z) = z and F 1
2
(z) = z/(1 + z). Note,

also, the ∂Fd(D) circumscribes ∂Dd.

Theorem 2 Let d be given, 1
2
≤ d ≤ 1, and let f ∈ Kd. Then∫∫

D

|f ′(z)|−1dxdy ≤ 2π

∫ 1

0

r2dr

Fd(r)
. (4)
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Finally, we shall prove

Theorem 3 Let α be given, 0 ≤ α < 1. If f ∈ S∗(α) and min
z∈D
|f(z)/z| = d,

then

1

2π

2π∫
0

∣∣∣∣ 1

f ′(eiθ)

∣∣∣∣ dθ ≤ A(α)

d
(5)

where

A(α) =
4

π

arctan
√

2α− 1√
2α− 1

(6)

and A(α) is sharp for the class S∗(α).

3 Proofs of Main Theorems

Proof of Theorem 1.

Let d be given, 1
2
≤ d ≤ 1, and let f ∈ Kd. The major idea in proving

Theorem 1 is to produce, using the convexity of the domain Ω = f(D), two
varied domains Ω∗ and Ω∗∗ which will satisfy the inequality

Ω∗ ⊆ Ω∗∗. (7)

For any simply connected domain Λ which contains the origin let m.r.(Λ)
denote the mapping radius of Λ. Recall that if Λ = g(D), where g is analytic
and univalent on D and g satisfies the normalization (∗), then m.r.(Λ) =
g′(0). Let Λ+ be a varied domain of Λ which contains Λ. Denote the change
in the mapping radius from the domain Λ to Λ+ by ∆m.r.(Λ+,Λ).

The domain containment in (7) and subordination will imply that

∆m.r.(Ω∗,Ω) ≤ ∆m.r.(Ω∗∗,Ω) (8)

from which the conclusion of Theorem 1 will be obtained.
The varied domain Ω∗∗ is constructed as follows: Let ε > 0 be given

sufficiently small. Define f ∗∗ε by f ∗∗ε (z) = (1 + ε)f(z) and set Ω∗∗ = f ∗∗ε (D).
This has the effect of radially projecting each point ω ∈ ∂f(D) to the point
ω∗∗ = (1 + ε)ω. This gives that

[f ∗∗ε (z)]′|z=0 = m.r.(Ω∗∗) = 1 + ε
.

(9)
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∆m.r.(Ω∗∗,Ω) = ε

To construct Ω∗ we project each point ω ∈ ∂Ω outward in the direction
of the normal, where it exists, a distance εd. Let the extension of f to ∂D
also be denoted by f . It is well known that this extension maps ∂D onto
a Jordan curve (on the Riemann sphere if f is unbounded), Γ = f(∂D),
having one-sided tangents everywhere with the set of points having different
one-sided tangents being at most countable, see [8].

We define the curve Γ∗, which will be the boundary of Ω∗, as follows:
At each point where it exists, let n(ω) be the unit outward normal to Γ at
ω = f(eiθ). Since n(ω) = n[f(eiθ)] = eiθf ′(eiθ)/|f ′(eiθ)|, we will also define at
each finite point where the left- and right-hand tangents differ two limiting
normal vectors as n1[f(eiθ)] = n[f(ei(θ−0))] and n2[f(eiθ)] = n[f(ei(θ+0))].
We associate with each point ω ∈ Γ the point ω∗ = ω + εd[n(ω)] or, where
appropriate, the limiting points ω∗j = ω+εd[nj(ω)], j = 1 and 2. To complete
Γ∗ we extend the tangent line to Γ∗ at each ω∗j. Each such tangent line to Γ∗

at ω∗j is parallel to a one-sided tangent line to Γ at ω, so that the resulting
curve Γ∗ bounds a convex domain Ω∗. We let f ∗ε be the function which maps
D onto Ω∗ normalized by (∗).

To determine the change in the mapping radius from Ω to Ω∗ we apply
the Hadamard variational formula as developed in [2] and earlier in [12]. If
Γ is bounded, then we can apply the Hadamard variational formula, cast in
the form of the Julia variation, to obtain

∆m.r.(Ω∗,Ω) =
1

2π

2π∫
0

εd

|f ′(eiθ)|
dθ + o(ε). (10)

However, if Γ is unbounded, we need to show that we can obtain (10) as
a limiting argument. First, we define the varied domain Ω∗0 by identifying
its boundary Γ∗0. As in the definition of Γ∗, we associate with each point
ω ∈ Γ the point ω∗ = ω+ εd[n(ω)] or, where appropriate, the limiting points
ω∗j = ω + εd[nj(ω)], j = 1 and 2. To complete Γ∗0 we connect ω∗1 to ω∗2 by
the positively oriented circular arc of radius ε and center ω. We identify Ω∗0
as the interior of Γ∗0 and note that we have Ω ( Ω∗0 ( Ω∗.

Let 0 < r < 1 and define fr by fr(z) = f((1 − r)z). Then, for each
r we have fr(D) is bounded. Since fr is analytic on ∂D, there is for each
ωr = fr(e

iθ) ∈ fr(∂D) = Γr a well-defined outward normal, say, n(ωr). Let
ω∗r = ωr + εd[n(ωr)]. Let Ω∗r denote the interior of the curve Γ∗r = ∪ωrεΓrω∗r .
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Since Γr is bounded, we can apply the Julia variation to obtain

∆m.r.(Ω∗r,Ωr) =
1

2π

2π∫
0

εd

|f ′r(eiθ)|
dθ + o(ε).

As r → 0,Ωr → Ω and Ω∗r → Ω∗0 in the sense of kernel convergence. Further-

more,
1

|f ′r(eiθ)|
→ 1

|f ′(eiθ)|
as r → 0 except on a countable set, so we have

from the dominated convergence theorem that

lim
r→0

2π∫
0

1

|f ′r(eiθ)|
=

2π∫
0

1

|f ′(eiθ)|
dθ.

It follows then that

∆m.r.(Ω∗0,Ω) =
1

2π

2π∫
0

εd

|f ′(eiθ)|
dθ + o(ε). (11)

It follows from results of the first author in [2] that ∆m.r.(Ω∗,Ω∗0) = o(ε);
hence using (11) we have that (10) also holds in the case that Γ is unbounded.

To show that (7) holds, we will show that for each θ ∈ [0, 2π) the radial
extension ω∗∗ = (1 + ε)f(eiθ) of ω = f(eiθ) is at least as far from the origin
as the point ω∗, the point of intersection of Γ∗ = ∂Ω∗ and the ray Rt = tω :
t ≥ 1}. See Figure 1.
Let Tj, j = 1 and 2, denote the left- and right-hand tangent lines to Γ at ω,
possibly the same line, say T1. Let zj be the projection of the origin onto
Tj, lj the line segment joining the origin to zj, and dj the length of lj. Let θj
be the acute angle between the ray Rt and the outward normal nj(ω) to Γ
at ω. Note that the acute angle between Rt and lj at the origin is also equal
to θj. Let tj be the line parallel to Tj which passes through ω∗j ∈ Γ∗ and let
xj be the intersection of tj with Rt. From convexity we have

|ω − ω∗| ≤ min
j
|ω − xj|.

We note that when there is a corner at ω, i.e., when x1 6= x2, or when Γ
continues along the tangent line through ω, then |ω − ω∗| = minj |ω − xj|,
while if Γ does not continue along the tangent line through ω, then |ω−ω∗| <
|ω − x1|.
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Figure 1:

From the similarity of the triangles [ω, ω∗j, xj] and [0, zj, ω] we have

εd

|ω − ω∗|
≥ max

j

εd

|ω − xj|
= max

j
cos θj = max

j

dj
|ω|
≥ min

j

dj
|ω|
≥ d

|ω|
(12)

which gives
εd

|ω − ω∗|
≥ d

|ω|
. (13)

Thus, ε|ω| ≥ |ω − ω∗|. Since this is true for all ω = f(eiθ), θ ∈ [0, 2π), we
have that (7) holds. Combining (8), (9) and (10) yields

ε ≥ εd

2π

2π∫
0

1

|f ′(eiθ)|
dθ + o(ε). (14)
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Dividing (14) by εd and letting ε→ 0 yields the conclusion of the theorem.
We observe that if Γ circumscribes ∂Dd, then for each ω ∈ Γ we have

d = d1 = d2, θ1 = θ2 and |ω − ω∗| = |ω − x1| = |ω − x2|, so that equality
holds in (12) and (13). In fact, if Γ circumscribes ∂Dd, then Γ∗ = Γ∗∗ and
Ω∗ = Ω∗∗, so that equality holds in (14). �

Proof of Theorem 2.

Let Fd be the particular convex function, described in the introduction,
which circumscribes ∂Dd and whose boundary consists of an arc Cd of ∂Dd

symmetric about the positive reals and two lines tangent to ∂Dd at the
endpoints of Cd. Applying Theorem 1 in [2], with α = 1, to convex functions
f which contain the disk Dd gives the subordination

log
f(z)

z
≺ log

Fd(z)

z
, (15)

where the subordination in (15) means there exists an analytic function w
on D with |w(z)| ≤ |z| such that

log
f(z)

z
= log

Fd(w(z))

w(z)
.

For dr = min
θ
|f(r(eiθ))/r| this gives

log dr ≥ log

∣∣∣∣Fd(r)r

∣∣∣∣ . (16)

Since, for each d, 1
2
≤ d ≤ 1, Fd is circular symmetric about the positive reals,

it takes is minimum modulus on |z| = r at z = r, 0 ≤ r ≤ 1. Thus, applying
Theorem 1 to f(rz)/r, using (16) and integrating gives

1

2π

2π∫
0

1∫
0

r dr dθ

|f ′(reiθ)|
≤

1∫
0

r dr

dr
≤

1∫
0

r2dr

Fd(r)
. (17)

From (17) Theorem 2 follows. �

The functions Fd have been shown to be extremal solutions for growth and
subordination problems for the classes Kd, which were studied by Bogucki
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and Waniurski [4] and by Barnard and Lewis [2], respectively. Also, in a
paper related to the authors’ earlier work [1] and [3], Waniurski [11] has
conjectured that the functions Fd are extremal solutions for an omitted val-
ues problem for the classes Kd. Although an explicit closed form for Fd
is not known, and appears to be difficult to obtain, the recently developed
conformal mapping package CONFPACK [7] can be used to numerically ap-
proximate Fd and, subsequently, the integral in the right-hand side of (17).
We include a table of values.
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Table 1

d β Integral

0.500 -0.50000 0.83333̄
0.525 -0.47473 0.80669
0.550 -0.44895 0.78113
0.575 -0.42268 0.75692
0.600 -0.39589 0.73411
0.625 -0.36855 0.71263
0.650 -0.34059 0.69241
0.675 -0.31192 0.67336
0.700 -0.28243 0.65540
0.725 -0.25200 0.63845
0.750 -0.22046 0.62242
0.775 -0.18757 0.60724
0.800 -0.15308 0.59286
0.825 -0.11658 0.57921
0.850 -0.07757 0.56796
0.875
0.900
0.925 0.06499
0.950 0.12922 0.52013
0.975 0.21574 0.50985
1.000 0.50000 0.50000

For ∂Fd(D), let ωd denote the endpoint of Cd in the upper half-plane.
The variable β,−1

2
≤ β ≤ 1

2
, in Table 1 parameterizes the family of functions

Fd, d = d(β). If β is positive, then the domain Fd(D) is bounded; otherwise
Fd(D) is unbounded. The argument of ωd is π/2 + βπ. Also, if β is positive,
then 2βπ is the interior angle for Fd(D) at the finite intersection point of the
lines which bound Fd(D), tangent to ∂Dd at the endpoints of Cd; otherwise
2βπ is the interior angle for Fd(D) at the point of infinity.

The conformal mapping package CONFPACK restricts its applications
to bounded domains. For β > 0, the domains Fd(β)(D) were computed
directly. For β < 0 the domains Fd(β)(D) were computed by applying a
bilinear transformation to Fd(−β). At β = 0 the domain Fd(0)(D), d(0) ≈
0.8941, is unbounded and its boundary is composed of an arc Cd(0) of the
circle ∂Dd(0) and two lines, parallel to the negative real axis and tangent to
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the circle ∂Dd(0) at the points of Cd(0), ±id(0). The gap in Table 1 occurs
because for β near 0 the elongation of Fd(β)(D) causes crowding on ∂D of the
pre-images of endpoints of the boundary segments defining Fd(β)(D), which
causes CONFPACK to fail to converge.

Proof of Theorem 3

It is well known [9] that f ∈ S∗(α) if and only if

zf ′(z)

f(z)
≺ 1 + (1− 2α)z

1− z
. (18)

Thus, applying Littlewood’s subordination theorem [6], we have for z = eiθ

1

2π

2π∫
0

1

|f ′(z)|
dθ =

1

2π

∫
|z|=1

∣∣∣∣ f(z)

zf ′(z)
· z

f(z)

∣∣∣∣ |dz| ≤ 1

d

1

2π

2π∫
0

∣∣∣∣ f(z)

zf ′(z)

∣∣∣∣ dθ

≤ 1

d

1

2π

2π∫
0

∣∣∣∣ 1− z
1 + (1− 2α)z

∣∣∣∣ dθ =
1

d

4

π

arctan
√

2α− 1√
2α− 1

=
A(α)

d
.

Sharpness follows by using fn(z) = z(1 − zn)
2(α−1)
n and observing that for

dn = min
θ
|fn(eiθ)| = 2

2(α−1)
n we have

lim
n→∞

dn
2π

2π∫
0

∣∣∣∣ 1

f ′n(eiθ)

∣∣∣∣ dθ = A(α)

as claimed. We note A(1
2
) = 4/π. �

4 Note to Theorem 1

Alternately stated, Theorem 1 gives an upper bound for the integral mean
I−1(f ′) for f ∈ K in terms of the minimum distance to the envelope of
tangent lines to the boundary of f(D). An analogous theorem can be proved
which gives a lower bound for the integral mean I−1(f ′) for f ∈ K in terms
of the maximum distance to the envelope of tangent lines to the boundary
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of f(D). More precisely, in the notation of the proof of Theorem 1, for each
ω ∈ Γ, let Tj, j = 1 and 2, denote the left- and right-hand tangent lines to
Γ at ω, possibly the same line T1. Let zj be the projection of the origin on
Tj, lj the line segment joining the origin to zj, and dj the length of lj. Let
d∗ = d∗(f) = sup

ω∈Γ
dj.

We have

Theorem 1∗ Let f ∈ K. Then

1

d∗
≤ 1

2π

2π∫
0

∣∣∣∣ 1

f ′(eiθ)

∣∣∣∣ dθ (19)

with equality holding in (19) if the boundary of f(D) circumscribes ∂Dd∗.

Proof.
The major step in the proof is to show, using the convexity of the domain

Ω = f(D), there exist two varied domains Ω∗∗ and Ω∗∗∗ which satisfy the
inequality

Ω∗∗ ⊆ Ω∗∗∗. (20)

The domain Ω∗∗ is constructed exactly the same as in Theorem 1, i.e., it
is the (1 + ε) radial expansion of Ω. The domain Ω∗∗∗ is constructed as an
outward normal expansion of Ω, just as Ω∗ was, only we take the constant
normal distance to be εd∗ instead of εd. An analogous argument can be given
to show that an inequality similar to (12) holds, only the inequality senses
are all reversed. In this case, the first inequality in the analog of (12) is more
delicate, but it can be verified by considering a sequence of convex polygonal
domains which converge to Ω and verifying the inequality for the polygonal
domains. Then, (20) holds and a comparison of the mapping radii of Ω∗∗ and
Ω∗∗∗ yields

ε ≤ εd∗

2π

2π∫
0

1

|f ′(eiθ)|
dθ + o(ε)

from which Theorem 1∗ follows. �
If we let d∗ = d∗(f) = min

ω∈Γ
dj, then combining both (3) and (19) we have
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Corollary. Let f ∈ K. Then,

1

d∗
≤ 1

2π

2π∫
0

∣∣∣∣ 1

f ′(eiθ)

∣∣∣∣ dθ ≤ 1

d∗
. (21)

Equality holds across (21) if for some d, 1
2
≤ d ≤ 1, ∂f(D) circumscribes

∂Dd.

Remark. For f ∈ K let L = length ∂f(D) and let F denote the inverse
of f . The isoperimetric inequaltiy states

2πd∗
L
≤ 1.

Schwarz’s inequality, applied to the integral means in (21) – rewritten in
terms of F , yields

2π

L
≤ 1

2π

∫ 2π

0

∣∣∣∣ 1

f ′(eiθ)

∣∣∣∣ dθ. (22)

Thus, (21) combined with (22) gives an intermediate term to the isoperimet-
ric inequality.
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