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1. Introduction

Let a,b denote the lengths of the semi-major and -minor axes of an el-
lipse with eccentricity e = (1/a)va? — b? and whose perimeter is L(a,b) .
The problem of approximating L(a,b) is an ancient one. An excellent ac-
count of this problem is found in a MONTHLY article by G. Almkvist and
B. Berndt [1]. In the article [1], several approximations that have been pro-
posed over a period of nearly 4 centuries are presented. The approximation
for L(a,b)/(m(a+ b))

A(a,b) =

9 a2 4+ p3/2 2/3
a+b ( 2 )

was given by Muir in 1883. In 1996, Matti Vuorinen in the paper “Hyperge-
ometric Functions in Geometric Function Theory” [6], raised the question,

Is it true that A(a,b) is an approximation to L(a,b)/(w(a +b)) (Q1)
from below throughout the entire range of eccentricity e?

As is often the case for a mathematical conjecture, the insights gained in
the course of its resolution and extended ramifications of the result supersede
the original question. In this paper we develop a technique to answer question
(Q1) that readily extends to a broader class of inequalities, all of which
are motivated by the problem of approximating elliptical perimeter. The
verification of each inequality is accomplished by showing the positivity of an
infinite series. The proof of the positivity of the infinite series is achieved by
utilizing a computer algebra system to execute a Sturm sequence argument.

In verifying (Q1) it will be shown that A(a,b) exhibits a monotonic de-
pendence on eccentricity. As a consequence of this property, bounds on the
error, E = L(a,b)/(m(a + b)) — A(a,b), are readily established. As pointed
out in [1], a primary motivation for calculating elliptical perimeter arose
from astronomical considerations. This article will illustrate how bounds on



the error £ may be utilized to determine the accuracy of approximations to
elliptical perimeter in calculating planetary orbits.

2. Approximations of Elliptic Perimeter

Recall that if an ellipse is described by the parametric equations r =
acosg and y = bsing, 0 < ¢ < 27, then the perimeter L of the ellipse is
given by

2w
L = L(a,b) = / \/(a2 sin? ¢ + b2 cos? ¢) de.
0

The perimeter of the ellipse can be expressed exactly in terms of Gauss’s
ordinary hypergeometric series

F(a,bjc:x) = Z (a)k(b)'kxk, lz] <1

where a, b, and ¢ denote arbitrary complex numbers and («); is defined by
(@) =ala+)(a+2) - (a+k—1).

The following expressions for the elliptical perimeter are due, respectively,
to Maclaurin (1742), Euler (1773), and Ivory (1796) (see [1] and references
therein) and illustrate the connection between elliptical perimeter and the
hypergeometric functions.

Proposition. Let x = acos¢ and y = bsing, 0 < ¢ < 27 and let e =
(1/a)va? — b2 be the eccentricity of the ellipse. Then
L(a,b) = 2raF (3,—3;1:¢?)
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2
= 2@ +0) F (—i,i;l: <—Z§IZ§> )
= 7m(a+b)F(—3,-11:2?)

3
where

a—>b

a+b

The approximations presented in [1] are reproduced in the list below. In

the second column of the table the approximation A(\) to the ‘normalized’
length L(a,b)/[m(a+b)] is given. The third column provides the first nonzero
term in the power series for the difference L(a,b)/[m(a + b)] — A(N).




Table 1.

L(a,b)
A —A(X
) m(a+0b) ()
Kepler (1609) 2vab =4/1- )2 §)\2
a+b 4
V2(a? + b2 1
Euler (1773) M =14 )2 22
a+b
. 2(a+10) 2 7 4
Sipos (1792 = _
pos (1792) (Va+vb)?2 14+v1-)2 64
3 Vab 3 1 - 3.,
Peano (1889) §—a+b7§—§\/1—)\ _a)\
. 2 (a¥? 452\ 1,
Muir (1883) s < 5 > 6—4)\
1 3 3.2
= (N 4 (-
1 b\* ’ 1
: a— 5
Lindner (1904) {1 + 3 <a—|— b) } ﬁ)\
1 \2
=(1+2N
(1+5)
. 3—/(a+3b)(Ba+0) 1 6
Ramanujan (1914 a) " ﬁ)\
—3-1- X
—b)(a+1b))°
Ramanujan (1914 b) 1+ 3la—b)a+?) %)\10
10+ /4= 3((a—b)/(a+1))’
3\
10 4+ v4 — 3)2
_2(1+\/1—>\2)2+>\2m
L+ VI )1+ Vo)
_ 1 64(a+b)* —3(a—b)? 9
B h 1964 — -
ronshtein (1964) 16 (a + b)2(3a + b)(a + 3b) 214/\

. 64—3)\
64— 16X2




Table 1. (continued)

L(a,b)
A(A — A\
W m(a +b) ()
4(a — b)* 3 6
1 1 1 -
Selmer (1975.2) 1+ o T hn) 515
B 416 — N2
1 a—b _2y/2(a® +6ab +b?) 5 .5
Selmer (1975,b) 3 <12 + p— ) ﬁA
3 1 1/
2 8)\ 2 )\
2 2 _ _ 4 1
Almkvist (1978) 2 (a+b)?—(Va—vh) i B
(a+b)[(vVa+ vb)?2 +2v2Va + bvab] 2
256 — 48\2 — 21\ 33 1o
Jacobsen (1985) 256 — 11202 1 30 2T8)\

Let us now reconsider question (Q1). If we utilize Maclaurin’s exact
expression for elliptical perimeter given in the Proposition, then Muir’s ap-
proximation amounts to the statement that

11 a2 4 2\ ¥
omal (=, —=i1:¢? ) mor [0
rar (it ) wan ()

Without loss of generality we may assume that the semi-major axis a = 1
and then set = 1 —b?, so that the entire range of eccentricity is represented
by 0 < & < 1. The explicit statement of (Q1) as posed by M. Vuorinen is
given by the problem:

Is it true for 0 < x < 1 that we have

1 1 1+ (1— )34\ 3

Let us denote the error between the normalized elliptical perimeter and
the algebraic approximation by

£(x) :F(%,—%;l :x) — Ax) (1)



where for Muir’s approximation,

3\ 2/3
Alz) = <#) |

In the course of answering (Q1) we will in fact show the stronger result that

E(x)

x4

.00006 < < £&(1) <.00666, O0<z<]l1. (2)
This bound on the error illustrates the surprising accuracy of Muir’s approx-
imation.

It is natural to ask whether an estimate of this type can be obtained
for each of the approximations in Table 1. The positivity of the first term
in the Taylor expansion of L(a,b)/(m(a + b)) — A()) is consistent with the
conjecture that Muir’s approximation to L(a, b) could indeed be an approxi-
mation from below. Furthermore, the power of the first nonzero term in the
Taylor expansion suggests that one consider £(z)/z* in proving the result
in (2). For those approximations in Table 1 for which the first term in the
Taylor expansion is positive, i.e., for the approximations of Kepler, Lindner,
Ramanujan(a,b), Bronshtein, Selmer(a,b) and Jacobsen, it is natural to ask
whether they are approximations from below and if a result analogous to (2)
can be obtained. What we will show in this article is that this is indeed the
case.

An obvious analogy would suggest that the results due to Euler, Sipos,
Peano, and Almkvist are approximations from above. Somewhat surpris-
ingly, the techniques developed in this article are not directly applicable to
these approximations. However, using deeper methods, it has been shown
by Barnard, Pearce,and Richards, [4], that even stronger results can be ob-
tained which imply that inequalities analogous to (2) hold, and hence the
approximations of Euler, Sipos, Peano, and Almkvist are indeed from above.

The verification of (2) is obtained by showing the positivity of an infinite
series in the form

E(x) = bul).

We first verify that there exists an N for which b,(x) > 0,n > N. Con-
sequently, the proof of (2), and hence the resolution of (Q1), is reduced to
examining the positivity of the polynomial



Because the coefficients of the polynomial p are integers, the positivity of
p may be verified by a Sturm sequence argument that involves only exact
arithmetic. In a subsequent section, we will elaborate on the details of this
approach but it should be emphasized at this point that these calculations,
though computationally formidable, are readily carried out using a computer
algebra system. Nevertheless, care must be exercised to ensure that only
exact arithmetic and algebra are performed.

3. Muir’s Approximation and Verification of Vuorinen’s Conjecture

In this section we will verify (2) and hence answer (Q1). The arguments
needed for Muir’s approximation turn out to be exceptional among the list
of approximations in Table 1. Nevertheless, the arguments used in this case
suggest a more general approach to the verification of inequalities of the type
(2) that are relevant to the other approximations.

In order to avoid the complications associated with a choice of a branch
cut, we first make the substitution z — 1 — z* and define

(- )
g(l‘) - (1 . I4)4 (3)

The result is established by showing that G'(z) does not change sign and so
G is monotone. More precisely, we will show G'(z) < 0, 0 < z < 1. It is
convenient to calculate G’ using a computer algebra system (CAS) such as
Mathematica or Maple. Using Maple, we obtain

N1+ N2+ P
D

\/——I— x3K V1— 1)
\/ + 3:3E V1—zt)

P = 7T(1+7l‘ + 8x)

m (=144 /L 4 L3
D—

)
and K, E denote elliptical integrals of the first and second kind respectively.
It should be noted that the the above expression for G'(x) can be checked by
recalling the definitions of F' ( , %; 1: x) ,K and E.

g'(x) =

where
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Since D < 0, to verify that G'(z) < 0 it suffices to show

_ —N1-N2

H(x) = <1.

D <
Since H(1) = 1, we need only verify that H'(xz) > 0. After converting the

elliptical integrals to hypergeometric functions and simplifying, the problem
is reduced to showing

11

pi(z) F (5,5;1 1 —:1:4) +po(z) F (1,—1;1 o1 —3:4) >0 (4)

where
pi(x) = 25227 — 5042% + 75627 — 5022° + 2482° + 62 — 42® + 62 — 4x + 2,
po(r) = —2382° + 1962° — 1542 — 1122° + 942 — 527 + 10.

A crucial manipulation involves the conversion of the above expression to
series form. One may then express the left hand side of (4) as

Pi) ) ((%) (1= + pa() Y %(1 — 2k,

k=0
These series may be combined as

2

p@) 4+ 3 (B o) -t/ - la- 2 @

It is at this point that a Sturm sequence argument is applied in order to
verify the needed positivity. More precisely, we shall use this terminology to
refer to a generalized form of Descartes’ rule of signs which gives the precise
number of zeros of a polynomial in an interval. This is achieved by utilizing
the Euclidean algorithm and a notion of Sturm sequences ([5], [7]). In partic-
ular, given a polynomial P(x), and a real number a, define the function V'(a)
as the number of sign variations in the numbers {pg(a),pi(a), - ,pa(a)}.
The Sturm polynomials {pg,p1,- -, pn} are defined by

{ po(x) = P(x)
pi(x) = P'(x)

and for each k > 2, pi(z) is the unique polynomial of degree less than that
of pr_1(x) such that

Pr—2(7) = qr(z)pr—1(x) — pr(x)

7



where gx(z) is a polynomial. Sturm’s Theorem states that if P(a) # 0 and
P(b) # 0, then the number of distinct roots of P(x) = 0 in the interval [a, b] is
exactly V(a)—V (b). In applying Sturm’s theorem to an arbitrary polynomial,
rounding error may affect the sign of p;(a) and p;(b) and hence limit the
usefulness of the procedure. However, for our purposes, the polynomials to
which the method is always applied have integer coefficients and with the
exact arithmetic provided by a computer algebra system, accuracy is never
compromised. The method is implemented by calling the procedure sturm
within Maple. This procedure uses Sturm’s theorem to return the number
of real roots in the interval (a,b] of a polynomial P(z).

For the series given in (5), a Sturm sequence argument applied to p;(z) —
pa(x)/(2k — 1) shows that when k = 4 this polynomial has no zeros. It then
follows that

_ p2(7)
2k -1

() >0, k>4 (6)

The positivity of the infinite series will be confirmed if the 61 degree poly-
nomial with rational coefficients,

pi(@) + pala) +Z (D) oo - 29 4wy e

is positive. This is readily verified by another Sturm sequence argument.

Because of the topic in Vuorinen’s article [6], the question he posed re-
garding Muir’s approximation was expressed in terms of the eccentricity and
hence inequality (2) was given as a function of e. If the notation of [1] is
adopted, it is more natural to express the error in terms of A = (a—b)/(a+b).
What we shall show in the next section is that the methods that have been
utilized in verifying (2) can be generalized to obtain analogous results. As
argued above, the proof will ultimately reduce to verifying the positivity of
an infinite series as in (5), and subsequently, the positivity of a polynomial
analogous to (7).

4. Approximations of Elliptical Perimeter From Below

With the exception of Muir’s, the algebraic approximations from below
given in Table 1 may be denoted as A(\?). There is a polynomial ¢(z) so
that with the change of variable \> = ¢(x), we obtain a rational function
f(z) = A(é¢(z)). In particular, for the approximation of Kepler, ¢(x) =
1 —2?, for those of Lindner, Selmer(a), Bronshstein, and Jacobsen, ¢(z) = ,
for Ramanujan(a,b), ¢(x) = (4 — 2?) and ¢(z) = (4 — 2?)/3 respectively,

8



while for Selmer(b), ¢(x) = 2(1 — z?). Let N denote the power of the first
nonzero term in the Taylor series for the difference L(a,b)/(7(a+b)) — A(\?).
The result, analogous to (3), that will be verified is

4 (F(=1—11: 6(a)) - f(x)
d ( oL ) #0 ®)

Here M = N/2, and the interval on which (8) will hold, is determined by the
change of variable \* = ¢(z).

We begin by computing

4 F(-1-L51:6@)— f@@), 1 () — o) (e
4 e )= M@0 — 6@ @) +

= D1+ D2.
For D2 we have

L @
DQ_[cb(:r)]M“[ 1 MW%

s (4) [Ss) - S oy

= D21+ D22

A further computation shows that

D22 =




Combining these results gives us

i(F(—%,—%;l L o)) —f(l")> _
dx [p(z)]M

| (B (k= M)¢H()
M / _1 _ / / 2
B M@ - e +d@ Y () o
The necessary inequality that is analogous to (6) is trivially met if k& > M.
To verify (8), one need only determine K > M and apply a Sturm sequence
argument to show that the polynomial

has the same sign as

S ((,j) (k= M)¢*(x)

(2k — 1)?

k=1

From the monotonicity of [F (=1, —3;1: ¢(z)) — A(é(x))] /[¢(x)]™, one
readily obtains, analogous to inequahty ( ), bounds (a, 3) on
O F(—L—1i1:3) — a0
AN T AN '

In particular, a is obtained as the limit of E(A\)/AY as A — 0, while 3
is determined by evaluation at A = 1. The following table illustrates the
accuracy of the approximations from below by specify «, # where

a<%<8()<ﬂ, 0< A< 9)

10



Table 2.

(o, B)
Kepler (1609) (.75, 1.2732)
Lindner (1904) (.003906, .007614)
Ramanujan (1914 a) (.001953, .005290)
Ramanujan (1914 b) (.000022, .000512)
Bronshtein (1964) (.002929, .006572)
( )
( )
( )

Selmer (1975 a) 000549, .002406
Selmer (1975 b) 000305, .001792
Jacobsen (1978) 1000125, .001130

To illustrate the use of these bounds in obtaining error approximations

first note that
a—"b 1—+v1—¢2 )
a+b 1+4++1—¢? '

It follows that the error in elliptical perimeter approximation

BN = L(a,b) — m(a + b)F(%l, _71; 11 22)

satisfies

ara(1+vV1—=e2)\e)N < E(\) < anf(1+V1 = e2)[Me)]V (10)

5. Implications and Further Directions

It can be shown that the remaining approximations in Table 1 are from
above. To verify this requires considerably more sophisticated methods. In
fact, what has been shown by Barnard, Pearce and Richards [4] is that, with
the exception of Euler’s, the coefficients of the Taylor expansions of £(x) are
all of the same sign. As a consequence of their results one can deduce not
only that (8) holds, but more generally, for every integer n > 0,

d"E(x)
dx™

£0

Of course, the results of this paper are trivial consequences of this more
general result, but the methods that are presented here are of interest in their

11



own right. For instance, the results presented here, and in particular equation
(10), provides a relatively simple derivation of estimates that historically
appeared in the context of astronomical considerations and the application
of Landen’s transformation [1].

In addition, there is an obvious intriguing issue associated with the study
of these inequalities. Is there a geometrical significance to these algebraic ap-
proximations that accounts for the monotone properties that these approx-
imations possess? It has been suggested by Berndt [2] that Ramanujan’s
formulas have their origins in the representation of analytic functions as con-
tinued fractions. As for the other approximations, little is known as to their
motivation.
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