Extra Credit Problems Let Prop_LUB be the proposition that in \mathbb{R} that every set S that is bounded above has a least upper bound. Let Prop_Cauchy be the proposition that in \mathbb{R} that every Cauchy sequence is convergent. Extra Credit Problem #1. Show that if Prop_Cauchy is taken as an axiom, then Prop_LUB follows as a theorem. Extra Credit Problem #2. Show that if Prop_LUB is taken as an axiom, then Prop_Cauchy follows as a theorem. Extra Credit Problem #3. In Cantor's Theorem (Thm II.3.7), there are three (Cantor) conditions on a family of sets $\{F_n\}$, n=1, 2, 3, ...: - 1. Each set F_n is non-empty and closed. - 2. The sets $\{F_n\}$ are nested, i.e., for each n we have $F_n \supset F_{n+1}$. - 3. $\operatorname{diam} F_n \to 0$ The conclusion of Cantor's Theorem is that in a complete metric space that if all of the Cantor conditions hold, then $$\bigcap_{n=1}^{\infty} F_n$$ is non-empty and consists of a single point. Give examples (in \mathbb{R} or \mathbb{C}), for each Cantor condition, which show that if the Cantor condition does not hold (but the other two Cantor conditions do hold), then either $\bigcap_{n=1}^{\infty} F_n$ will be empty or consist of more than one point. If possible give examples, for each Cantor condition, which show that both cases are possible.