
Notes for April 28 
 
Function 

A rule, usually given by formula or equation, for assigning or calculating values.  
Typically, represented in the form   )(xfy = .  Examples, 
 

36 −= xy   186 23 +−= xxy   29 2 += ty  
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In the form, )(xfy = , x  is the so called  independent variable and y is the 
dependent variable.  
 
 

y 
Dependent variable 

Output 
← 

Rule 
Formula 

Calculation 
← 

x 
Independent Variable 

Input 
 

For a function, )(xfy = , the set of all permissible x values is called the domain 
of the function.  E.g., 
 

36 −= xy   The domain is all real numbers x  or     or  ( , )−∞ ∞  
 

186 23 +−= xxy    The domain is all real numbers x  or     or  ( , )−∞ ∞  
 

21 xy −=   The domain is  { x  |  -1 < x < 1}  or  (-1,1) 
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xxy  The domain is the set of real numbers not equal to –2,3   or   

   ( , 2) ( 2,3) (3, )−∞ − ∪ − ∪ ∞  
 

Graph 
The graph of a function )(xfy =  is the set { (x,y) |  )(xfy =  }.  The graph is a 
subset of the Cartesian plane 2 .  Typically, one thinks of the graph as a curve in 

2  which lies “above” the domain, considered as a subset of the x-axis.  We look 
at graphs because we can visually interpret the graph to tell us about properties of 
the function. 
 
To create a graph for a function )(xfy = ,  
 
First, one creates a table of x,y values.   E.g. 



36 −= xy       
x y 
-3 
-2 
-1 
0 
1 
2 
3 

-21 
-15 
-9 
-3 
3 
9 
15 

 

186 23 +−= xxy  
x y 
-3 
-2 
-1 
0 
1 
2 
3 
4 
5 
6 
7 

-63 
-14 
11 
18 
13 
2 
-9 
-14 
-7 
18 
67 

 
 

Second, one plots the table points (x,y)  in the Cartesian plane 2 . 
 
Third, one connects the plotted (x,y) in 2 , as ordered by the first coordinate. 
 
For, 36 −= xy  
 

 

 
 
 



For 186 23 +−= xxy  
 

 
 
 
 
 
 
 
 
 
 

Plotting in Maple 
The command for generating plots in Maple is 
 

  plot( expr, x=a .. b,  [y=c .. d, opt1,...]) 
 

where expr  is a symbolic expression in the variable x.   E.g.,   
 



 
> f1 := 6*x - 3; 

:= f1  − 6 x 3  

> plot(f1,x = -3 .. 3); 

 
 
 
> f2 := x^3-6*x^2+18; 

 := f2  −  + x3 6 x2 18  

> plot(f2,x = -3 .. 7); 

 
 
 

 



Options include: 
 
 Restricting the vertical range in the plot:   

y = c . . d 
 
 Specifying the thickness of the curve: 
  thickness = n,   where  n = 1, 2, 3, 4 or 5 
 
 Specifying the color of the curve: 
  color =  value,   where value = red, green, blue, etc. 
 
 Plotting two curves on the same graph: 
 
  plot ( [ f1, f2], x = a .. b,  options); 
 

Note:  using brackets forces Maple to plot f1 as the “first” function and f2 
as the “second” function.  By default the first function is plotted in red and 
the second function is plotted in green.  E.g. 
 
 

¾ f1 := 6*x – 3; 
f2 := x^3-6*x^2+18; 

:= f1  − 6 x 3  

 := f2  −  + x3 6 x2 18  

¾ plot([f1,f2],x = -3 .. 7); 

 



Polynomials -  Intercepts and Sign: 
In graphing polynomials, the following quantities are standardly identified on the 

graph, to provide quantitative information about the behavior of the polynomial. 

 

x-intercepts Points on the x-axis where the graph 

crosses the axis 

Obtained by solving  f(x) = 0 

Maple:  > solve(f=0,x); 
      or 
Maple:  > fsolve(f=0,x);   

Positivity Intervals in the domain  (subsets of the 

real line)  where the graph of the 

polynomial lies above the x-axis 

Bounded by the x-intercepts and may 

stretch to ±∞  

Negativity Intervals in the domain  (subsets of the 

real line)  where the graph of the 

polynomial lies below the x-axis 

Bounded by the x-intercepts and may 

stretch to ±∞  

y-intercept Point on the y-axis where the graph 

crosses the axis 

Obtained by setting x=0 in the function 

Maple:  > subs(x=0,f); 

End Limits Behavior of the values of the function (y 

values) for large (positive or negative) 

values if the independent variable x. 

 



E.g.,  for  3 22 6 18f x x= − =  

 

> f2 := x^3-6*x^2+18; 
 := f2  −  + x3 6 x2 18  

> fsolve(f2=0,x); 
, ,-1.544606815 2.167055173 5.377551642  

> plot(f2,x=-3..7,y=-50..50); 

 
> subs(x=0,f2); 

18  

>  
a.   x-intercepts:   , ,-1.544606815 2.167055173 5.377551642  
 
b.  Intervals on which f2 is positive:   ( -1.544606815 , 2.167055173 )  and  
( 5.377551642 , ∞ ) 
 
c.  Intervals on which f2 is negative:  (- ∞ , -1.544606815 )  and  
( 2.167055173 , 5.377551642 ) 
 
d.  y-intercept:  18  
 
e.  For large positive x,  f2 tends to + ∞  
     For large negative x,  f2  tends to - ∞            
      
 



Calculus -  Interpretation of the Derivative 

Consider the function )(xfy = .    Fix a base point 0x  in the domain and select a 

nearby point 1x .  Consider the secant line to the graph of )(xfy =  determined by the 

points  ( 0x , f ( 0x )) and  ( 1x , f ( 1x )).   See the figure below.    

 
 

There are two useful, specific ways to interpret the information represented in the 

above graph.   

 

1. Slope of the secant line.   The slope of the secant line to the  graph of 

)(xfy =  determined by the points  ( 0x , f ( 0x )) and  ( 1x , f ( 1x )) is given by 

1 0

1 0

y yslope
x x

−
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The slope measures the steepness of the secant line:  the larger the slope, the 

steeper the line.  The sign of the slope identifies whether the secant line is rising 

or falling.  If the slope is positive, then the secant line is rising (as you move from 



left to right).  If the slope is negative, then the secant line is falling (as you move 

from left to right).  If the slope is 0, then the secant line is flat or horizontal.   

 

2. Average rate of change of )(xfy = .  The difference 1 0y y y− = ∆ is the 

change in the values of the function )(xfy =  over the interval ( 0x , 1x ).    The 

difference 1 0x x x− = ∆  is the change in the values of x over the interval 

( 0x , 1x ).  Their ratio  

1 0

1 0

y yy
x x x

−∆
=

∆ −
 

is called the difference quotient and measures the average rate change of the 

function )(xfy =  over the interval ( 0x , 1x ).     

 

Of course, the calculated value in 1. above, the slope of the secant line to the  

graph of )(xfy =  determined by the points  ( 0x , f ( 0x )) and  ( 1x , f ( 1x )), and the 

calculated value in 2. above, the difference quotient measuring the average rate 

change of the function )(xfy =  over the interval ( 0x , 1x )., are the same. 

 

Limiting Process 

Suppose that we now let the nearby point 1x  approach the base point 0x .  Then, 

two things happen.  See figure below. 

 

First, the secant line shifts with 1x  and approaches the tangent line to the 

graph of )(xfy =  at the point ( 0x , f ( 0x )); consequently, the slope of the 

secant line shifts with 1x  and approaches the slope of the tangent line to 

the graph of )(xfy =  at the point ( 0x , f ( 0x )).    

 

Second, the interval ( 0x , 1x ) over which difference quotient was being 

computed, which measured the average rate change of the function 



)(xfy = , shrinks to the point 0x ;  consequently, the average rate change 

of the function )(xfy =  over the interval ( 0x , 1x ) approaches the 

instantaneous rate of change of the function )(xfy =  at the point 0x . 

 
 

It would be important, useful, advantageous, mathematically significant if there 

were a way to calculate the limiting value arising in the process above (which is 

the same in either case).  This limiting process, which is described above, is the 

basis for what is done in Calculus.  We call this limiting value the derivative of 

the function )(xfy =  at the point 0x .   There are two interpretations of what the 

derivative of the function )(xfy =  at the point 0x  means. 

 

A. The derivative of the function )(xfy =  at the point 0x  can be 

interpreted as the slope of the tangent line to the graph of )(xfy =  at 

the point ( 0x , f ( 0x )).    



B. The derivative of the function )(xfy =  at the point 0x  can be 

interpreted as approaches the instantaneous rate of change of the 

function )(xfy =  at the point 0x . 

 

In a regular Calculus course, students learn a suite of rules for computing the 

derivative of a function )(xfy = .  Then, having mastered those rules they go on 

to interpreting them in applications.   Maple has built into it a function for 

computing derivatives.  If  f is a symbolic expression in  x, then the syntax for 

computing the derivative of  f with respect to  x is: 

  
� diff(f,x); 

 
Consider the following example: 
 

> f1 := x^3 - 6*x^2 + 18; 
 := f1  −  + x3 6 x2 18  

> g1 := diff(f1,x); 
 := g1  − 3 x2 12 x  

> plot([f1,g1],x=-3..7); 

 



In the above graph,  f1 is plotted in red and its derivative g1 is plotted in green. 
At each point x the value of g1, tells about the slope of the tangent line to the 
graph of f1.  Where g1 is positive, then the slope to the tangent line to the graph of 
f1 is positive or alternately the graph of  f1 is locally increasing.  Where g1 is 
negative, then the slope to the tangent line to the graph of f1 is negative or 
alternately the graph of  f1 is locally decreasing.  Where g1 is 0 (where g1 crosses 
the x-axis), the slope of the tangent line to the graph of f1 is 0 (the tangent line to 
the graph of f1 is horizontal or flat). 
 
In general, we can use the derivative of a function )(xfy =  to tell us information 

about the function )(xfy = .  Specifically, we can deduce the following three 

points:   

 

 1.  Let (a,b) be an interval in the domain of  )(xfy =  on which the 

derivative of )(xfy =  is positive, then the function )(xfy =  is 

increasing on that interval (a,b)  [rising as you move from left to right]. 

 

2.  Let (a,b) be an interval in the domain of )(xfy =  on which the 

derivative of )(xfy =  is negative, then the function )(xfy =  is 

decreasing on that interval (a,b)  [falling as you move from left to right]. 

 

3.  Let *x  be a point in the domain of )(xfy =  at which the derivative of 

)(xfy =  is 0.  We will call such a point a critical point of )(xfy = .  

Then, at *x there is a horizontal tangent line to the graph of )(xfy = . 

 

Critical Points and Local Extreme Values and Monotonicity 

 We say that a point ( *x , f ( *x )) is a local maximum point on the graph of 

)(xfy =  if the value  f ( *x ) ≥  f (x)  for all x  near *x , i.e., the value  f ( *x ) is the 

largest (or highest) value of y = f (x)  for nearby x.    We say that a point ( *x , f 

( *x )) is a local minimum point on the graph of )(xfy =  if the value  f ( *x ) ≤   f 



(x)  for all x  near *x , i.e., the value  f ( *x ) is the smallest (or lowest)  value of y =  

f (x)  for nearby x.     

 

 Suppose that a function )(xfy =  has a derivative on an interval (a,b).   If  

)(xfy =  has a local extreme value (local maximum or local minimum)  on the 

interval (a,b), then because of the three points deduced above, the local extreme 

value must occur at a critical point, i.e., at a local extreme point the derivative of 

the function must be 0.   

 

In graphing polynomials, we can, using the information from their derivatives, 

add the following quantities to our standard list of identified characteristics of the 

graph, to provide quantitative information about the behavior of the polynomial. 

 

Critical Points Points on the x-axis where the graph of the 

derivative crosses the axis. 

If g  is the derivative of  f , then the critical 

points are obtained by solving g(x) = 0 

Maple:  > solve(g=0,x); 
      or 
Maple:  > fsolve(g=0,x);   

Local Maximums Points ( *x , *y ) on the graph of )(xfy =  

which are locally the highest points. 

If *x  is a critical point (obtained above), 

then the value *y  is obtained by 

substituting  *x  into  the formula for the 

function )(xfy =  

Maple:  > subs(x= *x ,f); 
 



Local Minimums Points ( *x , *y ) on the graph of )(xfy =  

which are locally the lowest points. 

If *x  is a critical point (obtained above), 

then the value *y  is obtained by 

substituting  *x  into  the formula for the 

function )(xfy =  

Maple:  > subs(x= *x ,f); 

Increasing Intervals in the domain  (subsets of the 

real line)  where the graph of the 

polynomial is increasing which can be 

identified by finding intervals in the 

domain  where the graph of the derivative 

of the polynomial is positive.  

Bounded by the critical points of the 
function and may stretch to ±∞  

Decreasing Intervals in the domain  (subsets of the 

real line)  where the graph of the 

polynomial is decreasing which can be 

identified by finding intervals in the 

domain  where the graph of the derivative 

of the polynomial is negative.  

Bounded by the critical points of the 

function and may stretch to ±∞  

 

 



E.g.,  for  3 22 6 18f x x= − =  

 

> f2 := x^3 - 6*x^2 + 18; 
 := f2  −  + x3 6 x2 18  

> g2 := diff(f1,x); 
 := g2  − 3 x2 12 x  

> plot([f2,g2],x=-3..7); 

 
> fsolve(g2,x); 

,0. 4.  

> subs(x=0,f2); 
18  

> subs(x=4,f2); 
-14  

A.  critical points :  ,0. 4.  
B.  local maximum:   (0,18)  
C.  local minimum:   (4,-14) 
D.  increasing:  (- ∞ ,0)  and  (4, ∞ ) 
E.  decreasing:  (0,4)   
   


