
Review Exam II
Complex Analysis

Underlined Definitions: May be asked for on exam
Underlined Propositions or Theorems: Proofs may be asked for on exam

Chapter 5.3

Definition.  Let G be a region.  A function  f  is meromorphic on G if  . . . 

Argument Principle Let G  be a region and let  f  be meromorphic on G with poles and zeros1 2{ , , , }mp p p"
, counted according to multiplicity.  Let be a closed rectifiable curve in G which does not pass1 2{ , , , }nz z z" γ

through any of the points and and let in G. Then,jp kz 0γ ≈

.
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Corollary  Let G  be a region and let f  be meromorphic on G with poles and zeros1 2{ , , , }mp p p"
, counted according to multiplicity.  Let  be a simple closed rectifiable curve in G which is1 2{ , , , }nz z z" γ

positively oriented which does not pass through any of the points and and let in G.  Letjp kz 0γ ≈

denote the bounded component of . Let and denote the cardinality ofint( )γ \ { }γ^ ,fP γ ,fZ γ

   and , respectively .  Then,1 2{ , , , } int( )mp p p γ∩" 1 2{ , , , } int( )nz z z γ∩"
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Corollary  Let G  be a region and let f  be analytic on G with zeros , counted according to1 2{ , , , }nz z z"
multiplicity.  Let  be a simple closed rectifiable curve in G which is positively oriented which does not passγ
through any of the points and let in G.  Let denote the bounded component of . Letkz 0γ ≈ int( )γ \ { }γ^

denote the cardinality of   .  Then, .,fZ γ 1 2{ , , , } int( )nz z z γ∩" ,
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Problems about counting the number of zeros of a given function in a given region using Argument Principle 

Rouche’s Theorem (Ver #1)  Let G  be a region and let  f and g be mereomorphic on G.  Let
such that f and g have no zeros or poles on .  Let  denote the cardinality( , )B a r G⊂ ( , )C a r , , ,f g f gZ Z P P

of the zeros of f and g and the cardinality of the poles of f and g inside , respectively.  If( , )C a r
 on , then .| ( ) ( ) | | ( ) | | ( ) |f z g z f z g z+ < + ( , )C a r f f g gZ P Z P− = −

Corollary  Let G  be a region and let  f and g be analytic on G.  Let such that f and g have no( , )B a r G⊂
zeros on .  Let  denote the cardinality of the zeros of f and g inside , respectively.  If( , )C a r ,f gZ Z ( , )C a r

 on , then .| ( ) ( ) | | ( ) | | ( ) |f z g z f z g z+ < + ( , )C a r f gZ Z=



Rouche’s Theorem (Ver #2)  Let G  be a region and let  f and g be mereomorphic on G.  Let
such that f and g have no zeros or poles on .  Let  denote the( , )B a r G⊂ ( , )C a r , , ,f f g f f gZ Z P P+ +

cardinality of the zeros of f and g and the cardinality of the poles of f and  f+g inside , respectively.  If( , )C a r
 on , then .0 | ( ) | | ( ) |g z f z< < < ∞ ( , )C a r f f f g f gZ P Z P+ +− = −

Corollary  Let G  be a region and let  f and g be analytic on G.  Let such that f and g have no( , )B a r G⊂
zeros on .  Let  denote the cardinality of the zeros of f and g inside , respectively. ( , )C a r ,f gZ Z ( , )C a r
If on , then .0 | ( ) | | ( ) |g z f z< < < ∞ ( , )C a r f f gZ Z +=

Problems about counting the number of zeros of a given function in a given region using Rouche’s Theorem

Chapter 6.1

Maximum Modulus Theorem (Ver #1) Let G  be a region and let .  If there exists such that( )f G∈ A a G∈
for all , then f  is constant.| ( ) | | ( ) |f a f z≥ z G∈

Maximum Modulus Theorem (Ver #2) Let G be a bounded region and let .  Then,( ) ( )f G G∈ ∩A C
.max | ( ) | max | ( ) |

z Gz G
f z f z

∈∂∈
=

Definition.  Let G  be a region and let .  Let .  Then, . . .:f G → \ ora G a∈∂ = ∞ lim sup ( )
z a

f z
→

=

Definition.  Let G  be a region.  Then, . . .G∞∂ =

Maximum Modulus Theorem (Ver #3) Let G  be a region and let .  Suppose there exists a constant( )f G∈ A

M such that .  Then, .lim sup | ( ) | for all
z a

f z M a G∞
→

≤ ∈∂ | ( ) | for allf z M z G≤ ∈



Supplement Maximum Modulus

Definition (for Supplement).  Let and for let { : | | 1}D z z= < 0 1r< ≤ { : | | }rD z z r= <

Theorem For let( )f D∈ A
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(i) is a strictly increasing function of r on (0,1) unless f  is constant.( , )M r f
(i) is a strictly increasing function of r on (0,1) unless f  is constant.( , )A r f
(i) is a strictly increasing function of r on (0,1) unless f  is constant, for ( , )pI r f p∈`

Parseval’s Identity Let , .  For ,( )f D∈ A
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Chapter 6.2

Let D denote the open unit disk (centered at 0) and let denote open disk of radius r (centered at 0).rD

Schwarz’s Lemma   (Ver #1)  Let such that (a) and (b) .( )f D∈ A | ( ) | 1 for allf z z D≤ ∈ (0) 0f =
Then, (i) and (ii) .  Moreover, equality occurs in (i) or (ii) if and only| ( ) | | | for allf z z z D≤ ∈ | (0) | 1f ′ ≤
if .( ) for some , | | 1f z zζ ζ ζ= =

Schwarz’s Lemma   (Ver #2)  Let such that (a) and (b) .( )f D∈ A ( )f D D⊂ (0) 0f =
Then, (i) and (ii) .  Moreover,  equality occurs in (i) or (ii) if and only if( )r rf D D⊂ | (0) | 1f ′ ≤

.( ) for somef z z Dζ ζ= ∈ ∂

Proposition.  For let .  Then, and, is one-to-one and onto. a D∈ ( )
1a
z az

az
ϕ −

=
−

( ), :a aD D Dϕ ϕ∈ →A aϕ

Further, for ,  and .| | 1z = | ( ) | 1a zϕ = 2 2 1(0) 1 | | , ( ) (1 | | )a aa a aϕ ϕ −′ ′= − = −



Proposition Let .  For let .  Then, .  Equality( ), :f D f D D∈ →A a D∈ ( )f a α=
2
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a
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−
occurs if and only if .( ) ( ( ))af z z for some Dαϕ ζϕ ζ−= ∈ ∂

Theorem  Let such that f is one-to-one and onto.  Then, there exists( ), :f D f D D∈ →A

such that .anda D Dζ∈ ∈∂ af ζϕ=

Supplement Subordination

Definition (for Supplement).  Let and for let { : | | 1}D z z= < 0 1r< ≤ { : | | }rD z z r= <

Definition Let .  Then,  f  is subordinate to g   ( ) if  . . . , ( )f g D∈ A f g≺

Theorem.   Let , .  Then, f g≺
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i) (0) (0), | (0) | | (0) |f g f g′ ′= ≤
ii) ( ) ( )f D g D⊂
iii) ( ) ( )r rf D g D⊂
iv) ( , ) ( , )M r f M r g≤
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Proposition.  Let .  Suppose (a) , (b) , (c) g is one-to-one.  Then,, ( )f g D∈ A (0) (0)f g= ( ) ( )f D g D⊂
.f g≺

Example. Let .  Let .  Then,{ ( ) : Re ( ) 0 for all , (0) 1}f D f z z D f= ∈ > ∈ =P A
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+
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Chapter 10.1

Definition.  Let G  be a region and let .  f  is harmonic on G if  . . .:f G → \

Definition.  Let G  be a region and let .  f satisfies the Mean Value Property (MVP) on G if  . . .:f G → \

Proposition.  Let G  be a region.  Let f  be harmonic on G.   Then,  f satisfies the MVP on G.  



Maximum Principle (Ver. #1) Let G  be a region and let satisfy the MVP on G.  If there exists:u G R→
such that , then u is constant.a G∈ ( ) ( ) for allu a u z z G≥ ∈

Maximum Principle (Ver. #2) Let G  be a region and let be bounded functions satisfying the, :u v G → \
MVP on G.  Suppose for each  that , then eithera G∞∈ ∂ lim sup ( ) lim sup ( )

z a z a
u z v z

→ →
≤

or else .( ) ( ) for allu z v z z G< ∈ u v≡

Minimum Principle (Ver. #1) Let G  be a region and let satisfy the MVP on G.  If there exists:u G R→
such that , then u is constant.a G∈ ( ) ( ) for allu a u z z G≤ ∈

Chapter 10.2

Definition.  The Poisson kernel . . . ( )rP θ =

Proposition  
2
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Proposition.  The Poisson kernel satisfies

(i)
1 ( ) 1 , 0 1

2 rP d r
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(ii) ( ) 0 , ( ) ( )r r rP P Pθ θ θ> = −

(iii) , i.e., is strictly decreasing on ( ) ( ) for 0 | |r rP Pθ δ δ θ π< < < < ( )rP θ (0, )π

(iv)
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Theorem Let .  Then, there exists such that ( ) , :f D f D∈ ∂ ∂ → \C ( ) ( )u D D∈ ∩C Har

(i) ( ) ( )i iu e f eθ θ=
(ii) u is unique

Corollary Let .  Then, ( ) ( )u D D∈ ∩C Har
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Corollary Let .  Then, there exists such that ( ( , )) , : ( , )h C a R h C a R∈ → \C ( ( , )) ( ( , ))w B a R B a R∈ ∩C Har
.( ) ( ) ( , )w z h z on C a R=



Corollary Let .  Then, ( ( , )) ( ( , ))u B a R B a R∈ ∩C Har /
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Harnack’s Inequality   Let , .  Then,( ( , )) ( ( , ))u B a R B a R∈ ∩C Har ( ) 0u z ≥
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Chapter 7.1

Definition.  Let G  be a region and let be a complete metric space.  Then, =  . . .  ( , )dΩ ( , )G ΩC

Proposition.  Let G  be a region.  Then there exists a sequence of subsets of G such that{ }nK

(i) nK G⊂⊂

(ii) 1int( )n nK K +⊂

(iii)
1

n
n

K G
∞

=

=∪
(iv) implies for somenK G K K n⊂⊂ ⊂ ∈`

Lemma If is a metric space, then is a metric space, where .  A set O is open( , )S d ( , )S σ ( , )( , )
1 ( , )

d s ts t
d s t

σ =
+

in  if and only if O is open in  .( , )S d ( , )S σ

Definition.  For and , let , , .K G⊂⊂ , ( , )f g G∈ ΩC ( , )K f gρ =" ( , )K f gσ =" ( , )
K

B fρ δ ="

Definition.  For  a compact exhaustion of a region G and for let . . . { }nK , ( , )f g G∈ ΩC ( , )f gρ =

Proposition.  is a metric space.( ( , ), )G ρΩC

Lemma 1.7 (i) Given there exists and such that for 0ε > 0δ > K G⊂⊂ , ( , )f g G∈ ΩC

( , ) ( , )K f g f gρ δ ρ ε< ⇒ <
   (ii) Given  and there exists such that 0δ > K G⊂⊂ 0ε >

( , ) ( , )Kf g f gρ ε ρ δ< ⇒ <
Lemma 1.10 (i) A set is open if and only if for each there exists and( , )O G⊂ ΩC f O∈ 0δ >

such that K G⊂⊂ ( , )
K

O B fρ δ⊃

(ii) A sequence converges to f  (in the  metric)  if and only if for each{ } ( , )nf G⊂ ΩC ρ
 converges to f in the metric.K G⊂⊂ { }nf Kρ

Proposition   is a complete metric space.( ( , ), )G ρΩC



Definition.  A set is normal  . . . ( , )F G⊂ ΩC

Proposition.  A set is normal if and only if is compact.( , )F G⊂ ΩC F

Proposition.  A set is normal if and only if for each and there exist functions( , )F G⊂ ΩC 0δ > K G⊂⊂

such that .1 2, , , nf f f F∈"
1

( , )
K
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k
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F B fρ δ
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⊂∪

Definition. A set is equicontinuous at a point if  . . .( , )F G⊂ ΩC 0z G∈

Definition.  A set is equicontinuous on a set  if  . . .( , )F G⊂ ΩC E G⊂

Proposition.  Suppose a set is equicontinuous at each point of G.  Then, F is equicontinuous( , )F G⊂ ΩC
on each .K G⊂⊂

Arzela-Ascoli Theorem A set is normal if and only if ( , )F G⊂ ΩC
(a) for each the orbit of  z under F, i.e., , has compact closure and z G∈ { ( ) : }f z f F∈
(b)  is equicontinuous at each point of G.( , )F G⊂ ΩC

Chapter 7.2

Theorem Let G be a region and let   denote the set of analytic functions on G.  Then,( )DA

1'. Let .  If  f  is a limit point of , then .( , )f G∈ ΩC ( )DA ( )f D∈ A

1. Let and let .  If  (in ), then .{ } ( )nf D⊂ A ( , )f G∈ ΩC nf f→ ( , )G ΩC ( )f D∈ A
2. Let and let .  If  (in ), then  (in{ } ( )nf D⊂ A ( , )f G∈ ΩC nf f→ ( , )G ΩC ( ) ( )k k

nf f→
) for each k > 0.( , )G ΩC

Corollary.  is closed in ( )DA ( , )G ΩC

Corollary.  is a complete metric space( )DA

Corollary.  Let and let .  If  (in ), then{ } ( )nf D⊂ A ( , )f G∈ ΩC
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