Review Exam II

Complex Analysis

Underlined Definitions: May be asked for on exam

Underlined Propositions or Theorems: Proofs may be asked for on exam

Chapter 5.3

<u>Definition</u>. Let G be a region. A function f is meromorphic on G if . . .

Argument Principle Let G be a region and let f be meromorphic on G with poles $\{p_1, p_2, \cdots, p_m\}$ and zeros $\{z_1, z_2, \cdots, z_n\}$, counted according to multiplicity. Let γ be a closed rectifiable curve in G which does not pass through any of the points p_j and z_k and let $\gamma \approx 0$ in G. Then,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{n} n(\gamma; z_k) - \sum_{j=1}^{m} n(\gamma; p_j).$$

Corollary Let G be a region and let f be meromorphic on G with poles $\{p_1, p_2, \cdots, p_m\}$ and zeros $\{z_1, z_2, \cdots, z_n\}$, counted according to multiplicity. Let γ be a simple closed rectifiable curve in G which is positively oriented which does not pass through any of the points p_j and z_k and let $\gamma \approx 0$ in G. Let $\operatorname{int}(\gamma)$ denote the bounded component of $\mathbb{C}\setminus\{\gamma\}$. Let $P_{f,\gamma}$ and $Z_{f,\gamma}$ denote the cardinality of $\{p_1, p_2, \cdots, p_m\} \cap \operatorname{int}(\gamma)$ and $\{z_1, z_2, \cdots, z_n\} \cap \operatorname{int}(\gamma)$, respectively. Then, $\frac{1}{2\pi i} \int \frac{f'(z)}{f(z)} \, dz = Z_{f,\gamma} - P_{f,\gamma}.$

Corollary Let G be a region and let f be analytic on G with zeros $\{z_1, z_2, \cdots, z_n\}$, counted according to multiplicity. Let γ be a simple closed rectifiable curve in G which is positively oriented which does not pass through any of the points z_k and let $\gamma \approx 0$ in G. Let $\operatorname{int}(\gamma)$ denote the bounded component of $\mathbb{C} \setminus \{\gamma\}$. Let

$$Z_{f,\gamma}$$
 denote the cardinality of $\{z_1, z_2, \dots, z_n\} \cap \operatorname{int}(\gamma)$. Then, $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = Z_{f,\gamma}$.

<u>Problems</u> about counting the number of zeros of a given function in a given region using Argument Principle

Rouche's Theorem (Ver #1) Let G be a region and let f and g be mereomorphic on G. Let $\overline{B(a,r)} \subset G$ such that f and g have no zeros or poles on C(a,r). Let Z_f , Z_g , P_f , P_g denote the cardinality of the zeros of f and g and the cardinality of the poles of f and g inside C(a,r), respectively. If |f(z)+g(z)|<|f(z)|+|g(z)| on C(a,r), then $Z_f-P_f=Z_g-P_g$.

Corollary Let G be a region and let f and g be analytic on G. Let $\overline{B(a,r)} \subset G$ such that f and g have no zeros on C(a,r). Let Z_f , Z_g denote the cardinality of the zeros of f and g inside C(a,r), respectively. If |f(z)+g(z)|<|f(z)|+|g(z)| on C(a,r), then $Z_f=Z_g$.

Rouche's Theorem (Ver #2) Let G be a region and let f and g be mereomorphic on G. Let $\overline{B(a,r)} \subset G$ such that f and g have no zeros or poles on C(a,r). Let $Z_f, Z_{f+g}, P_f, P_{f+g}$ denote the cardinality of the zeros of f and g and the cardinality of the poles of f and f+g inside C(a,r), respectively. If $0 < |g(z)| < |f(z)| < \infty$ on C(a,r), then $Z_f - P_f = Z_{f+g} - P_{f+g}$.

Corollary Let G be a region and let f and g be analytic on G. Let $\overline{B(a,r)} \subset G$ such that f and g have no zeros on C(a,r). Let Z_f, Z_g denote the cardinality of the zeros of f and g inside C(a,r), respectively. If $0 < |g(z)| < |f(z)| < \infty$ on C(a,r), then $Z_f = Z_{f+g}$.

<u>Problems</u> about counting the number of zeros of a given function in a given region using Rouche's Theorem

Chapter 6.1

<u>Maximum Modulus Theorem (Ver #1)</u> Let G be a region and let $f \in A(G)$. If there exists $a \in G$ such that $|f(a)| \ge |f(z)|$ for all $z \in G$, then f is constant.

<u>Maximum Modulus Theorem (Ver #2)</u> Let G be a bounded region and let $f \in A(G) \cap C(\overline{G})$. Then, $\max_{z \in G} |f(z)| = \max_{z \in \partial G} |f(z)|$.

<u>Definition</u>. Let G be a region and let $f:G\to\mathbb{R}$. Let $a\in\partial G$ or $a=\infty$. Then, $\limsup_{z\to a}f(z)=\ldots$ Definition. Let G be a region. Then, $\partial_{\infty}G=\ldots$

Maximum Modulus Theorem (Ver #3) Let G be a region and let $f \in A(G)$. Suppose there exists a constant M such that $\limsup_{z \to a} |f(z)| \le M$ for all $a \in \partial_{\infty} G$. Then, $|f(z)| \le M$ for all $z \in G$.

Supplement Maximum Modulus

Definition (for Supplement). Let $D = \{z : |z| < 1\}$ and for $0 < r \le 1$ let $D_r = \{z : |z| < r\}$

Theorem For $f \in A(D)$ let

a)
$$M(r, f) = \max_{|z|=r} |f(z)|$$
 b) $A(r, f) = \max_{|z|=r} \operatorname{Re} f(z)$

c)
$$I_p(r,f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\theta})|^p d\theta$$

Then,

- (i) M(r, f) is a strictly increasing function of r on (0,1) unless f is constant.
- (i) A(r, f) is a strictly increasing function of r on (0,1) unless f is constant.
- (i) $I_p(r, f)$ is a strictly increasing function of r on (0,1) unless f is constant, for $p \in \mathbb{N}$

Parseval's Identity Let $f \in A(D)$, $f(z) = \sum_{n=0}^{\infty} a_n z^n$. For 0 < r < 1,

$$I_2(r,f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n=0}^{\infty} |a_n|^2 r^{2n}$$

Chapter 6.2

Let D denote the open unit disk (centered at 0) and let D_r denote open disk of radius r (centered at 0).

Schwarz's Lemma (Ver #1) Let $f \in A(D)$ such that (a) $|f(z)| \le 1$ for all $z \in D$ and (b) f(0) = 0. Then, (i) $|f(z)| \le |z|$ for all $z \in D$ and (ii) $|f'(0)| \le 1$. Moreover, equality occurs in (i) or (ii) if and only if $f(z) = \zeta z$ for some $\zeta, |\zeta| = 1$.

Schwarz's Lemma (Ver #2) Let $f \in A(D)$ such that (a) $f(D) \subset D$ and (b) f(0) = 0. Then, (i) $f(D_r) \subset D_r$ and (ii) $|f'(0)| \le 1$. Moreover, equality occurs in (i) or (ii) if and only if $f(z) = \zeta z$ for some $\zeta \in \partial D$.

Proposition. For $a \in D$ let $\varphi_a(z) = \frac{z-a}{1-az}$. Then, $\varphi_a \in A(D)$, $\varphi_a : D \to D$ and, φ_a is one-to-one and onto.

Further, for |z|=1, $|\varphi_a(z)|=1$ and $|\varphi_a(0)|=1-|a|^2$, $|\varphi_a(a)|=(1-|a|^2)^{-1}$.

Proposition Let $f \in A(D)$, $f: D \to D$. For $a \in D$ let $f(a) = \alpha$. Then, $|f'(a)| \le \frac{1 - |\alpha|^2}{1 - |a|^2}$. Equality occurs if and only if $f(z) = \varphi_{-\alpha}(\zeta \varphi_{\alpha}(z))$ for some $\zeta \in \partial D$.

Theorem Let $f \in A(D)$, $f: D \to D$ such that f is one-to-one and onto. Then, there exists $a \in D$ and $\zeta \in \partial D$ such that $f = \zeta \varphi_a$.

Supplement Subordination

Definition (for Supplement). Let $D = \{z : |z| < 1\}$ and for $0 < r \le 1$ let $D_r = \{z : |z| < r\}$

<u>Definition</u> Let $f, g \in A(D)$. Then, f is subordinate to g $(f \prec g)$ if ...

Theorem. Let $f \prec g$, $f(z) = \sum_{n=0}^{\infty} a_n z^n$, $g(z) = \sum_{n=0}^{\infty} b_n z^n$. Then,

- i) $f(0) = g(0), |f'(0)| \le |g'(0)|$
- ii) $f(D) \subset g(D)$
- iii) $f(D_r) \subset g(D_r)$
- iv) $M(r, f) \le M(r, g)$
- v) $I_p(r, f) \le I_p(r, g)$
- vi) $\sum_{k=0}^{m} |a_k|^2 \le \sum_{k=0}^{m} |b_k|^2, \ m = 0, 1, 2, 3, \dots$
- vii) $\max_{z \in \overline{D_r}} (1 |z|^2) |f'(z)| \le \max_{z \in \overline{D_r}} (1 |z|^2) |g'(z)|$

Proposition. Let $f, g \in A(D)$. Suppose (a) f(0) = g(0), (b) $f(D) \subset g(D)$, (c) g is one-to-one. Then, $f \prec g$.

Example. Let $P = \{ f \in A(D) : \text{Re } f(z) > 0 \text{ for all } z \in D, \ f(0) = 1 \}$. Let $p(z) = \frac{1+z}{1-z}$. Then, $f \in P$ implies $f \prec p$.

Chapter 10.1

Definition. Let G be a region and let $f:G \to \mathbb{R}$. f is harmonic on G if . . .

Definition. Let G be a region and let $f:G\to\mathbb{R}$. f satisfies the Mean Value Property (MVP) on G if . . .

Proposition. Let G be a region. Let f be harmonic on G. Then, f satisfies the MVP on G.

<u>Maximum Principle (Ver. #1)</u> Let G be a region and let $u : G \to R$ satisfy the MVP on G. If there exists $a \in G$ such that $u(a) \ge u(z)$ for all $z \in G$, then u is constant.

Maximum Principle (Ver. #2) Let G be a region and let $u, v : G \to \mathbb{R}$ be bounded functions satisfying the MVP on G. Suppose for each $a \in \partial_{\infty}G$ that $\limsup_{z \to a} u(z) \le \limsup_{z \to a} v(z)$, then either u(z) < v(z) for all $z \in G$ or else $u \equiv v$.

Minimum Principle (Ver. #1) Let G be a region and let $u: G \to R$ satisfy the MVP on G. If there exists $a \in G$ such that $u(a) \le u(z)$ for all $z \in G$, then u is constant.

Chapter 10.2

<u>Definition</u>. The Poisson kernel $P_r(\theta) = \dots$

Proposition
$$P_r(\theta) = \operatorname{Re} \frac{1 + re^{i\theta}}{1 - re^{i\theta}} = \frac{1 - r^2}{1 - 2r\cos(\theta) + r^2} = \operatorname{Re} \frac{e^{i\theta} + r}{e^{i\theta} - r}$$

Proposition. The Poisson kernel satisfies

(i)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta) d\theta = 1, \ 0 < r < 1$$

(ii)
$$P_r(\theta) > 0$$
, $P_r(\theta) = P_r(-\theta)$

(iii)
$$P_r(\theta) < P_r(\delta)$$
 for $0 < \delta < |\theta| < \pi$, i.e., $P_r(\theta)$ is strictly decreasing on $(0, \pi)$

(iv)
$$\lim_{r \to 1^-} P_r(\delta) = 0$$
 for each $\delta, 0 < \delta \le \pi$

Theorem Let $f \in C(\partial D)$, $f : \partial D \to \mathbb{R}$. Then, there exists $u \in C(\overline{D}) \cap Har(D)$ such that

- (i) $u(e^{i\theta}) = f(e^{i\theta})$
- (ii) u is unique

Corollary Let
$$u \in C(\overline{D}) \cap Har(D)$$
. Then, $u(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) u(e^{it}) dt$, $0 < r < 1$

Corollary Let $h \in C(C(a,R))$, $h:C(a,R) \to \mathbb{R}$. Then, there exists $w \in C(\overline{B(a,R)}) \cap Har(B(a,R))$ such that w(z) = h(z) on C(a,R).

Corollary Let $u \in C(\overline{B(a,R)}) \cap Har(B(a,R))$. Then, $u(a+re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{r/R}(\theta-t)u(a+re^{it}) dt$, 0 < r < R

Harnack's Inequality Let $u \in C(\overline{B(a,R)}) \cap Har(B(a,R))$, $u(z) \ge 0$. Then,

$$\frac{R-r}{R+r}u(a) \le u(a+re^{i\theta}) \le \frac{R+r}{R-r}u(a)\;,\;\; 0 \le r < R$$

Chapter 7.1

<u>Definition</u>. Let G be a region and let (Ω, d) be a complete metric space. Then, $C(G, \Omega) = \dots$

Proposition. Let G be a region. Then there exists a sequence of subsets $\{K_n\}$ of G such that

- (i) $K_n \subset\subset G$
- (ii) $K_n \subset \operatorname{int}(K_{n+1})$
- (iii) $\bigcup_{n=1}^{\infty} K_n = G$
- (iv) $K \subset\subset G$ implies $K \subset K_n$ for some $n \in \mathbb{N}$

Lemma If (S,d) is a metric space, then (S,σ) is a metric space, where $\sigma(s,t) = \frac{d(s,t)}{1+d(s,t)}$. A set O is open in (S,d) if and only if O is open in (S,σ) .

Definition. For $K \subset\subset G$ and $f,g \in C$ (G,Ω) , let $\rho_{\scriptscriptstyle K}(f,g) = \cdots$, $\sigma_{\scriptscriptstyle K}(f,g) = \cdots$, $B_{\rho_{\scriptscriptstyle K}}(f,\delta) = \cdots$.

<u>Definition</u>. For $\{K_n\}$ a compact exhaustion of a region G and for $f, g \in C(G, \Omega)$ let $\rho(f, g) = \dots$

Proposition. $(C(G,\Omega), \rho)$ is a metric space.

Lemma 1.7 (i) Given $\varepsilon > 0$ there exists $\delta > 0$ and $K \subset \subset G$ such that for $f, g \in C(G, \Omega)$

$$\rho_{\kappa}(f,g) < \delta \implies \rho(f,g) < \varepsilon$$

(ii) Given $\delta > 0$ and $K \subset\subset G$ there exists $\varepsilon > 0$ such that

$$\rho(f,g)\!<\!\varepsilon \ \Rightarrow \ \rho_{\scriptscriptstyle K}(f,g)\!<\!\delta$$

Lemma 1.10 (i) A set $O \subset C$ (G,Ω) is open if and only if for each $f \in O$ there exists $\delta > 0$ and $K \subset C$ such that $O \supset B_{\rho_K}(f,\delta)$

(ii) A sequence $\{f_n\} \subset C$ (G,Ω) converges to f (in the ρ metric) if and only if for each $K \subset G$ $\{f_n\}$ converges to f in the ρ_K metric.

Proposition $(C(G,\Omega), \rho)$ is a complete metric space.

<u>Definition</u>. A set $F \subset C(G,\Omega)$ is normal . . .

Proposition. A set $F \subset C(G,\Omega)$ is normal if and only if \overline{F} is compact.

Proposition. A set $F \subset C(G,\Omega)$ is normal if and only if for each $\delta > 0$ and $K \subset \subset G$ there exist functions $f_1, f_2, \cdots, f_n \in F$ such that $F \subset \bigcup_{k=1}^n B_{\rho_K}(f_k, \delta)$.

<u>Definition</u>. A set $F \subset C$ (G,Ω) is equicontinuous at a point $z_0 \in G$ if ...

<u>Definition</u>. A set $F \subset C$ (G,Ω) is equicontinuous on a set $E \subset G$ if ...

Proposition. Suppose a set $F \subset C$ (G,Ω) is equicontinuous at each point of G. Then, F is equicontinuous on each $K \subset \subset G$.

Arzela-Ascoli Theorem A set $F \subset C$ (G,Ω) is normal if and only if

- (a) for each $z \in G$ the orbit of z under F, i.e., $\{f(z): f \in F\}$, has compact closure and
- (b) $F \subset C(G,\Omega)$ is equicontinuous at each point of G.

Chapter 7.2

Theorem Let G be a region and let A(D) denote the set of analytic functions on G. Then,

- <u>1'.</u> Let $f \in C(G,\Omega)$. If f is a limit point of A(D), then $f \in A(D)$.
- $\underline{1.} \qquad \text{Let } \{f_n\} \subset \mathcal{A}(D) \text{ and let } f \in \mathcal{C}(G,\Omega) \text{ . If } f_n \to f \text{ (in } \mathcal{C}(G,\Omega) \text{), then } f \in \mathcal{A}(D) \text{ .}$
- 2. Let $\{f_n\} \subset A(D)$ and let $f \in C(G,\Omega)$. If $f_n \to f$ (in $C(G,\Omega)$), then $f_n^{(k)} \to f^{(k)}$ (in $C(G,\Omega)$) for each k > 0.

Corollary. A(D) is closed in $C(G,\Omega)$

Corollary. A(D) is a complete metric space

Corollary. Let $\{f_n\} \subset \mathcal{A}(D)$ and let $f \in \mathcal{C}(G,\Omega)$. If $\sum_{n=1}^{\infty} f_n(z) \to f(z)$ (in $\mathcal{C}(G,\Omega)$), then $f^{(k)}(z) = \sum_{n=1}^{\infty} f_n^{(k)}(z).$