Review Exam III

Complex Analysis

Underlined Definitions: May be asked for on exam

Underlined Propositions or Theorems: Proofs may be asked for on exam Underlined Homework Exercises: Problems may be asked for on exam

Double Underlined Homework Exercises: Similar problems will be asked for on exam Double Underlined Named Theorems/Results: Statements may be asked for on exam

Chapter 7.2

Homework 7.2 Page 154 <u>4</u>, 6, <u>8</u>, 10, 13

<u>Definition</u> Let G be a region. A $(G) = \cdots$

Theorem Let G be a region. Let $\{f_n\} \subset \mathcal{A}$ (G) and let $f \in \mathcal{C}$ (G,\mathbb{C}) . If $f_n \to f$, then $f \in \mathcal{A}$ (G) and $f_n^{(k)} \to f^{(k)}$ for each $k \ge 1$.

Hurwitz's Theorem

<u>Corollary</u> Let G be a region. Let $\{f_n\} \subset A$ (G) and $f \in A$ (G) be such that $f_n \to f$. If each f_n is non-vanishing on G, then either f is non-vanishing on G or else $f \equiv 0$.

<u>Definition</u> A set $F \subset A$ (G) is locally bounded if . . .

Lemma A set $F \subset A$ (G) is locally bounded if and only if for each $K \subset C$ there exists a constant M such that $|f(z)| \leq M$ for all $f \in F$ and for all $z \in K$.

Montel's Theorem

Chapter 7.4

Homework 7.4 Page 163 $\frac{4}{5}$, $\frac{5}{5}$, 6, 7

 $\underline{ ext{Definition}}$ A region G_1 is conformally equivalent to a region G_2 if . . .

Riemann Mapping Theorem

Chapter 7.5

Homework 7.5 Page 173 4, 5, 6, 7, 9

<u>Definition</u> Let $\{z_n\} \subset \mathbb{C}$. Then, the infinite product $\prod_{n=1}^{\infty} z_n = \cdots$

Proposition Let $\operatorname{Re} z_n > 0$ for all n. Then, the product $\prod_{n=1}^{\infty} z_n$ converges to a non-zero number if and only if the series $\sum_{n=1}^{\infty} \log z_n$ converges.

Proposition Let $\operatorname{Re} z_n > 0$ for all n. Then, the series $\sum_{n=1}^{\infty} \log z_n$ converges absolutely if and only if the

series $\sum_{n=1}^{\infty} z_n - 1$ converges absolutely.

<u>Definition</u> Let $\operatorname{Re} z_n > 0$ for all n. The product $\prod_{n=1}^{\infty} z_n$ converges absolutely if . . .

Corollary Let $\operatorname{Re} z_n > 0$ for all n. Then, the product $\prod_{n=1}^{\infty} z_n$ converges absolutely if and only if series

 $\sum_{n=1}^{\infty} z_n - 1$ converges absolutely.

Theorem Let G be a region. Let $\{f_n\} \subset A$ (G) be such that no f_n is identically 0. If $\sum [f_n(z)-1]$ converges in A (G), then $\prod f_n(z)$ converges in A (G). Further, each zero of $\prod f_n(z)$ is a zero of one or more of the factors $f_n(z)$.

<u>Definition</u> An elementary factor $E_p(z) = \cdots$

Lemma If $\mid z \mid \leq 1$, then $\mid E_p(z) - 1 \mid \leq \mid z \mid^{p+1}$

Theorem Let $\{a_n\}\subset\mathbb{C}$ be such that $\lim_{n\to\infty}|a_n|=\infty$, $a_n\neq 0$ for all n. If $\{p_n\}$ is a sequence of integers such

that

$$\sum_{n=1}^{\infty} \left(\frac{r}{|a_n|} \right)^{p_n+1} < \infty \tag{*}$$

for all r > 0, then $\prod_{n=1}^{\infty} E_{p_n}(\sqrt[r]{a_n})$ converges to an entire function whose zero set is precisely $\{a_n\}$.

Furthermore, (*) is always satisfied if $p_n = n - 1$.

Weierstrass Factorization Theorem

Chapter 7.6

Theorem.
$$\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right)$$
.

Chapter 7.7

Homework 7.7 Page 185 1, 2, 3, 7, 8

<u>Definition</u> The gamma function $\Gamma(z) = \cdots$

Gauss's Formula

Gauss's Functional Equation For $z \neq 0, -1, -2, \dots$, $\Gamma(z+1) = z\Gamma(z)$.

Bohr-Mollerup Theorem

Integral Representation For Re z > 0, $\Gamma(z) = \int_{0}^{\infty} e^{-t} t^{z-1} dt$.

Lemma
$$\left\{ \left(1 + \frac{z}{n} \right)^n \right\}$$
 converges to e^z in A (G)

Chapter 7.8

<u>Definition</u> The Riemann zeta function $\zeta(z) = \cdots$

Integral Representation 1. For $\operatorname{Re} z > 1$, $\zeta(z)\Gamma(z) = \int_0^\infty \frac{1}{e^t - 1} t^{z-1} dt$.

Extension 1. For
$$\operatorname{Re} z > 0$$
, $\zeta(z)\Gamma(z) = \int_{0}^{1} \left(\frac{1}{e^{t}-1} - \frac{1}{t}\right) t^{z-1} dt + \frac{1}{z-1} + \int_{1}^{\infty} \frac{1}{e^{t}-1} t^{z-1} dt$

Integral Representation 2. For
$$0 < \operatorname{Re} z < 1$$
, $\zeta(z)\Gamma(z) = \int_{0}^{\infty} \left(\frac{1}{e^{t}-1} - \frac{1}{t}\right) t^{z-1} dt$.

Extension 2. For -1 < Re z < 1,

$$\zeta(z)\Gamma(z) = \int_{0}^{1} \left(\frac{1}{e^{t} - 1} - \frac{1}{t} + \frac{1}{2}\right) t^{z-1} dt - \frac{1}{2z} + \int_{1}^{\infty} \left(\frac{1}{e^{t} - 1} - \frac{1}{t}\right) t^{z-1} dt$$

Integral Representation 3. For
$$-1 < \operatorname{Re} z < 0$$
, $\zeta(z)\Gamma(z) = \int\limits_0^\infty \left(\frac{1}{e^t-1} - \frac{1}{t} + \frac{1}{2}\right) t^{z-1} \ dt$

Riemann's Functional Equation

Theorem $\zeta(z) \in A$ $(\mathbb{C} \setminus \{1\})$ with a simple pole at z = 1 with residue 1. Outside of the strip $0 \le \text{Re } z \le 1$,

 $\zeta(z)$ is non-vanishing except for simple zeros at $z=-2,-4,-6,\cdots$.

Riemann Hypothesis

Euler's Theorem For $\operatorname{Re} z > 0$, $\zeta(z) = \prod_{n=1}^{\infty} \left(\frac{1}{1 - p_n^{-z}} \right)$, where $\{p_n\}$ is an enumeration of the prime numbers.