
Review Exam III
Complex Analysis

Underlined Definitions: May be asked for on exam
Underlined Propositions or Theorems: Proofs may be asked for on exam
Underlined Homework Exercises: Problems may be asked for on exam
Double Underlined Homework Exercises: Similar problems will be asked for on exam
Double Underlined Named Theorems/Results: Statements may be asked for on exam

Chapter 7.2

Homework 7.2 Page 154 4, 6, 8, 10, 13

Definition  Let G  be a region.  ( )G A

Theorem  Let G  be a region.  Let and let .  If , then{ } ( )nf GA ( , )f G C nf f

and  for each .( )f GA ( ) ( )k k
nf f 1k 

Hurwitz's Theorem

Corollary  Let G  be a region.  Let and be such that .  If each is{ } ( )nf GA ( )f GA nf f nf

non-vanishing on G , then either f is non-vanishing on G or else .0f 

Definition  A set is locally bounded if . . . ( )GF A

Lemma  A set is locally bounded if and only if for each there exists a constant M such( )GF A K G
that .| ( ) | for all and for allf z M f z K  F

Montel's Theorem

Chapter 7.4

Homework 7.4 Page 163  , , 6, 74 5

Definition  A region is conformally equivalent to a region if . . . 1G 2G

Riemann Mapping Theorem

Chapter 7.5

Homework 7.5 Page 173 4, 5, , 7, 96
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Proposition  Let .  Then, the series converges absolutely if and only if theRe 0 for allnz n
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Definition  Let .  The product converges absolutely if . . . Re 0 for allnz n
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Corollary  Let .  Then, the product converges absolutely if and only if  seriesRe 0 for allnz n
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Theorem  Let G  be a region.  Let be such that no  is identically 0.  If{ } ( )nf GA nf

converges in , then converges in .  Further, each zero of[ ( ) 1]nf z  ( )GA ( )nf z ( )GA

 is a zero of one or more of the factors .  ( )nf z ( )nf z

Definition  An elementary factor ( )pE z 

Lemma   If , then | | 1z  1| ( ) 1| | |p
pE z z  

Theorem  Let be such that ,  for all n.  If is a sequence of integers such{ }na   lim | |nn
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Furthermore, (*) is always satisfied if .1np n 

Weierstrass Factorization Theorem

Chapter 7.6
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Chapter 7.7

Homework 7.7 Page 185 1, 2, 3, 7, 8

Definition The gamma function ( )z 

Gauss's Formula

Gauss’s Functional Equation  For ,   .0, 1, 2,z     ( 1) ( )z z z   

Bohr-Mollerup Theorem

Integral Representation  For , .Re 0z  1
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Chapter 7.8

Definition  The Riemann zeta function ( )z 

Integral Representation 1.  For , .Re 1z  1
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Extension 1.  For , Re 0z 
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Integral Representation 2.  For , .0 Re 1z  1
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Extension 2.  For ,1 Re 1z  
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Integral Representation 3.  For , 1 Re 0z   1
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Riemann's Functional Equation

Theorem  with a simple pole at  z = 1 with residue 1.  Outside of the strip ,( ) ( \{1})z  A 0 Re 1z 



is non-vanishing except for simple zeros at .( )z 2, 4, 6,z     

Riemann Hypothesis
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