Review Exam II

Complex Analysis

Underlined Definitions: May be asked for on exam

Underlined Propositions or Theorems: Proofs may be asked for on exam

Chapter 5.2

<u>Definition</u>. Let f have an isolated singularity at z = a. Then the residue of f at z = a is ...

Residue Theorem Let G be a region and let $f \in A$ (G) except for isolated singularities a_1, a_2, \dots, a_m . If \mathbf{g} is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\mathbf{g} \approx 0$ in G, then

$$\frac{1}{2\boldsymbol{p}} \int_{\boldsymbol{g}} f = \sum_{k=1}^{m} n(\boldsymbol{g}; a_k) \operatorname{Res}(f; a_k).$$

Computation of Residues:

<u>Lemma 1.</u> Suppose f has a pole of order m at z = a. Let $g(z) = (z - a)^m f(z)$. Then,

Res
$$(f; a) = \lim_{z \to a} \frac{1}{(m-1)!} g^{(m-1)}(z)$$
.

<u>Lemma 2.</u> Suppose f has a simple pole at z = a. Then, $\operatorname{Res}(f, a) = \lim_{z \to a} (z - a) f(z)$

Lemma 3. Suppose $f = \frac{g}{h}$ where g, h are analytic on a neighborhood of z = a. If $g(a) \neq 0$ and h has a simple zero at z = a, then, $\operatorname{Res}(f, a) = \frac{g(a)}{h'(a)}$.

Problems about computing residues.

Theorems for Calculation of Integrals using the Residue Theorem

See PDF file: Integration Topics

Problems about computing integrals using the Residue Theorem

Chapter 5.3

<u>Definition</u>. Let G be a region. A function f is meromorphic on G if . . .

Argument Principle Let G be a region and let f be meromorphic on G with poles $\{p_1, p_2, \cdots, p_m\}$ and zeros $\{z_1, z_2, \cdots, z_n\}$, counted according to multiplicity. Let \mathbf{g} be a closed rectifiable curve in G which does not pass through any of the points p_j and z_k and let $\mathbf{g} \approx 0$ in G. Then, $\frac{1}{2\mathbf{p}i}\int_{\mathbf{g}} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^n n(\mathbf{g}; z_k) - \sum_{j=1}^m n(\mathbf{g}; p_j)$.

Corollary Let G be a region and let f be meromorphic on G with poles $\{p_1,p_2,\cdots,p_m\}$ and zeros $\{z_1,z_2,\cdots,z_n\}$, counted according to multiplicity. Let ${\bf g}$ be a simple closed rectifiable curve in G which is positively oriented which does not pass through any of the points p_j and z_k and let ${\bf g} \approx 0$ in G. Let $\inf({\bf g})$ denote the bounded component of $\mathbb{C}\setminus\{{\bf g}\}$. Let $P_{f,{\bf g}}$ and $Z_{f,{\bf g}}$ denote the cardinality of $\{p_1,p_2,\cdots,p_m\}\cap\inf({\bf g})$ and $\{z_1,z_2,\cdots,z_n\}\cap\inf({\bf g})$, respectively. Then, $\frac{1}{2{\bf p}\,i}\int_{{\bf g}}\frac{f'(z)}{f(z)}\,dz=Z_{f,{\bf g}}-P_{f,{\bf g}}$.

Corollary Let G be a region and let f be analytic on G with zeros $\{z_1, z_2, \cdots, z_n\}$, counted according to multiplicity. Let \mathbf{g} be a simple closed rectifiable curve in G which is positively oriented which does not pass through any of the points z_k and let $\mathbf{g} \approx 0$ in G. Let $\mathrm{int}(\mathbf{g})$ denote the bounded component of $\mathbb{C} \setminus \{\mathbf{g}\}$. Let $Z_{f,\mathbf{g}}$ denote the cardinality of $\{z_1, z_2, \cdots, z_n\} \cap \mathrm{int}(\mathbf{g})$. Then, $\frac{1}{2\mathbf{p}} i \int_{\mathbf{g}} \frac{f'(z)}{f(z)} \, dz = Z_{f,\mathbf{g}}$.

Problems about counting the number of zeros of a given function in a given region using Argument Principle

Rouche's Theorem (Ver #1) Let G be a region and let f and g be mereomorphic on G. Let $\overline{B(a,r)} \subset G$ such that f and g have no zeros or poles on C(a,r). Let Z_f , Z_g , P_f , P_g denote the cardinality of the zeros of f and g and the cardinality of the poles of f and g inside C(a,r), respectively. If |f(z)+g(z)| < |f(z)|+|g(z)| on C(a,r), then $Z_f - P_f = Z_g - P_g$.

Corollary Let G be a region and let f and g be analytic on G. Let $\overline{B(a,r)} \subset G$ such that f and g have no zeros on C(a,r). Let z_f, z_g denote the cardinality of the zeros of f and g inside C(a,r), respectively. If |f(z)+g(z)| < |f(z)|+|g(z)| on C(a,r), then z_f = z_g.

Rouche's Theorem (Ver #2) Let G be a region and let f and g be mereomorphic on G. Let $B(a,r) \subset G$ such that f and g have no zeros or poles on C(a,r). Let $Z_f, Z_{f+g}, P_f, P_{f+g}$ denote the cardinality of the zeros of f and g and the cardinality of the poles of f and f+g inside C(a,r), respectively. If $f \in G$ in G i

Corollary Let G be a region and let f and g be analytic on G. Let $\overline{B(a,r)} \subset G$ such that f and g have no zeros on C(a,r). Let Z_f, Z_g denote the cardinality of the zeros of f and g inside C(a,r), respectively. If |f(z)+g(z)| < |f(z)| + |g(z)| on C(a,r), then $z_f = z_{f+g}$.

<u>Problems</u> about counting the number of zeros of a given function in a given region using Rouche's Theorem

Chapter 6.1

Maximum Modulus Theorem (Ver #1) Let G be a region and let $f \in A$ (G). If there exists $a \in G$ such that $|f(a)| \ge |f(z)|$ for all $z \in G$, then f is constant.

Maximum Modulus Theorem (Ver #2) Let G be a bounded region and let $f \in A$ $(G) \cap C$ (\overline{G}) . Then, $\max_{z \in G} |f(z)| = \max_{z \in \partial G} |f(z)|$.

<u>Definition</u>. Let G be a region and let $f:G\to\mathbb{R}$. Let $a\in\partial G$ or $a=\infty$. Then, $\limsup_{z\to a}f(z)=\ldots$ Definition. Let G be a region. Then, $\partial_\infty G=\ldots$

Maximum Modulus Theorem (Ver #3) Let G be a region and let $f \in A$ (G). Suppose there exists a constant M such that $\limsup_{z \to a} |f(z)| \le M$ for all $a \in \partial_{\infty} G$. Then, $|f(z)| \le M$ for all $z \in G$.

Definition. Let D denote the open unit disk (centered at 0) and let D_r denote open disk of radius r (centered at 0).

Supplement Maximum Modulus

Theorem For $f \in A$ (D) let

a)
$$M(r, f) = \max_{|z|=r} |f(z)|$$
 b) $A(r, f) = \max_{|z|=r} \text{Re } f(z)$

c)
$$I_p(r,f) = \frac{1}{2\mathbf{p}} \int_{-\mathbf{p}}^{\mathbf{p}} |f(re^{i\mathbf{q}})|^p d\mathbf{q}$$

Then,

- (i) M(r, f) is a strictly increasing function of r on (0,1) unless f is constant.
- (i) A(r, f) is a strictly increasing function of r on (0,1) unless f is constant.
- (i) $I_p(r, f)$ is a strictly increasing function of r on (0,1) unless f is constant, for $p \in \mathbb{N}$

Parseval's Identity Let $f \in A$ (D), $f(z) = \sum_{n=0}^{\infty} a_n z^n$. For 0 < r < 1,

$$I_{2}(r,f) = \frac{1}{2\mathbf{p}} \int_{-\mathbf{p}}^{\mathbf{p}} |f(re^{i\mathbf{q}})|^{2} d\mathbf{q} = \sum_{n=0}^{\infty} |a_{n}|^{2} r^{2n}$$

Chapter 6.2

Let D denote the open unit disk (centered at 0) and let D_r denote open disk of radius r (centered at 0).

Schwarz's Lemma (Ver #1) Let $f \in A$ (D) such that (a) $|f(z)| \le 1$ for all $z \in D$ and (b) f(0) = 0. Then, (i) $|f(z)| \le |z|$ for all $z \in D$ and (ii) $|f'(0)| \le 1$. Moreover, equality occurs in (i) or (ii) if and only if f(z) = zz for some z, |z| = 1.

Schwarz's Lemma (Ver #2) Let $f \in A$ (D) such that (a) $f(D) \subset D$ and (b) f(0) = 0. Then, (i) $f(D_r) \subset D_r$ and (ii) $|f'(0)| \le 1$. Moreover, equality occurs in (i) or (ii) if and only if $f(z) = \mathbf{z} z$ for some $\mathbf{z} \in \partial D$.

Proposition. For $a \in D$ let $\boldsymbol{j}_a(z) = \frac{z-a}{1-az}$. Then, $\boldsymbol{j}_a \in A$ (D), $\boldsymbol{j}_a: D \to D$ and, \boldsymbol{j}_a is one-to-one and onto. Further, for |z|=1, $|\boldsymbol{j}_a(z)|=1$ and $\boldsymbol{j}_a'(0)=1-|a|^2$, $|\boldsymbol{j}_a'(a)|=(1-|a|^2)^{-1}$.

Proposition Let $f \in A(D)$, $f:D \to D$. For $a \in D$ let $f(a) = \mathbf{a}$. Then, $|f'(a)| \le \frac{1 - |\mathbf{a}|^2}{1 - |\mathbf{a}|^2}$. Equality occurs if and only if $f(z) = \mathbf{j}_{-\mathbf{a}}(\mathbf{z}\mathbf{j}_a(z))$ for some $\mathbf{z} \notin \partial D$.

Theorem Let $f \in A$ (D), $f: D \to D$ such that f is one-to-one and onto. Then, there exists $a \in D$ and $\mathbf{z} \in \partial D$ such that $f = \mathbf{z}\mathbf{j}_a$.

Supplement Subordination

<u>Definition</u> Let $f, g \in A$ (D). Then, f is subordinate to g ($f \prec g$) if ...

Theorem Let $f \prec g$, $f(z) = \sum_{n=0}^{\infty} a_n z^n$, $g(z) = \sum_{n=0}^{\infty} b_n z^n$. Then,

i)
$$f(0) = g(0), |f'(0)| \le |g'(0)|$$

ii)
$$f(D) \subset g(D)$$

iii)
$$f(D_r) \subset g(D_r)$$

iv)
$$M(r, f) \le M(r, g)$$

v)
$$I_p(r, f) \le I_p(r, g)$$

vi)
$$\sum_{k=0}^{m} |a_k|^2 \le \sum_{k=0}^{m} |b_k|^2, \quad m = 0, 1, 2, 3, \dots$$

vii)
$$\max_{z \in \overline{D_r}} (1 - |z|^2) |f'(z)| \le \max_{z \in \overline{D_r}} (1 - |z|^2) |g'(z)|$$

Proposition. Let $f, g \in A$ (D). Suppose (a) f(0) = g(0), (b) $f(D) \subset g(D)$, (c) g is one-to-one. Then, $f \prec g$.

Example. Let $P = \{ f \in A \mid (D) : \text{Re } f(z) > 0 \text{ for all } z \in D, \ f(0) = 1 \}$. Let $p(z) = \frac{1+z}{1-z}$. Then, $f \in P$ implies $f \prec p$.

Chapter 10.1

Definition. Let G be a region and let $f:G\to\mathbb{R}$. f is harmonic on G if . . .

Definition. Let G be a region and let $f:G\to\mathbb{R}$. f satisfies the Mean Value Property (MVP) on G if ...

Proposition. Let G be a region. Let f be harmonic on G. Then, f satisfies the MVP on G.

<u>Maximum Principle (Ver. #1)</u> Let G be a region and let $u : G \to R$ satisfy the MVP on G. If there exists $a \in G$ such that $u(a) \ge u(z)$ for all $z \in G$, then u is constant.

Maximum Principle (Ver. #2) Let G be a region and let $u, v : G \to \mathbb{R}$ be bounded functions satisfying the MVP on G. Suppose for each $a \in \partial_{\infty} G$ that $\limsup u(z) \le \limsup v(z)$, then either

u(z) < v(z) for all $z \in G$ or else $u \equiv v$.

Minimum Principle (Ver. #1) Let G be a region and let $u: G \to R$ satisfy the MVP on G. If there exists $a \in G$ such that $u(a) \le u(z)$ for all $z \in G$, then u is constant.

Chapter 10.2

<u>Definition</u>. The Poisson kernel $P_r(\mathbf{q}) = \dots$

Proposition
$$P_r(\mathbf{q}) = \text{Re} \frac{1 + re^{i\mathbf{q}}}{1 - re^{i\mathbf{q}}} = \frac{1 - r^2}{1 - 2r\cos(\mathbf{q}) + r^2} = \text{Re} \frac{e^{i\mathbf{q}} + r}{e^{i\mathbf{q}} - r}$$

Proposition. The Poisson kernel satisfies

(i)
$$\frac{1}{2p} \int_{-p}^{p} P_r(q) dq = 1, \ 0 < r < 1$$

(ii)
$$P_r(q) > 0$$
, $P_r(q) = P_r(-q)$

(iii)
$$P_r(\mathbf{q}) < P_r(\mathbf{d})$$
 for $0 < \mathbf{d} < |\mathbf{q}| < \mathbf{p}$, i.e., $P_r(\mathbf{q})$ is strictly decreasing on $(0, \mathbf{p})$

(iv)
$$\lim_{r \to 1^-} P_r(\boldsymbol{d}) = 0$$
 for each \boldsymbol{d} , $0 < \boldsymbol{d} \le \boldsymbol{p}$

Theorem Let $f \in C(\partial D)$, $f: \partial D \to \mathbb{R}$. Then, there exists $u \in C(\overline{D}) \cap Har(D)$ such that

- (i) $u(e^{iq}) = f(e^{iq})$
- (ii) u is unique

Corollary Let
$$u \in C(\overline{D}) \cap Har(D)$$
. Then, $u(re^{iq}) = \frac{1}{2p} \int_{-p}^{p} P_r(q-t)u(e^{it}) dt$, $0 < r < 1$

Corollary Let $h \in C(C(a,r))$, $h: C(a,r) \to \mathbb{R}$. Then, there exists $w \in C(\overline{B(a,r)}) \cap H(B(a,r))$ such that $w(x) = H(x) \circ n(C(a,r))$.

Corollary Let
$$u \in C(\overline{R(a,r)}) \cap -tr(R(a,r))$$
. Then,
 $u(a+ne^{iq}) = \frac{1}{2p} \int_{-p}^{p} \frac{r^2 - r^2}{r^2 - 2rrcc(q+t) + r^2} u(a+ne^i) dt$, $0 < r < r$

Harnack's Inequality Let $u \in C(\overline{B(a,r)}) \cap Har(B(a,r))$, $u(z) \ge 0$. Then,

$$\frac{r-\mathbf{r}}{r+\mathbf{r}}u(a) \le u(a+\mathbf{r}e^{iq}) \le \frac{r+\mathbf{r}}{r-\mathbf{r}}u(a)$$

Chapter 7.1

<u>Definition</u>. Let G be a region and let (Ω, d) be a complete metric space. Then, $C(G, \Omega) = \dots$

Proposition. Let G be a region. Then there exists a sequence of subsets $\{K_n\}$ of G such that

- (i) $K_n \subset\subset G$
- (ii) $K_n \subset \operatorname{int}(K_{n+1})$
- (iii) $\bigcup_{n=1}^{\infty} K_n = G$
- (iv) $K \subset\subset G$ implies $K \subset K_n$ for some $n \in \mathbb{N}$

Lemma If (S,d) is a metric space, then (S, \mathbf{m}) is a metric space, where $\mathbf{m}(s,t) = \frac{d(s,t)}{1+d(s,t)}$. A set O is open in (S,d) if and only if O is open in (S,\mathbf{m}) .

Definition. For $K \subset\subset G$ and $f,g\in C$ (G,Ω) , let $\mathbf{r}_{K}(f,g)=\sup_{z\in K}d(f(z),g(z))$,

$$\mathbf{s}_{K}(f,g) = \frac{\mathbf{r}_{K}(f,g)}{1 + \mathbf{r}_{K}(f,g)}, B_{\mathbf{r}_{K}}(f,d) = \{g : \mathbf{r}_{K}(f,g) < d\}.$$

<u>Definition</u>. For $\{K_n\}$ a compact exhaustion of a region G and for $f, g \in C$ (G, Ω) let $\mathbf{r}(f, g) = \dots$

Proposition. $(C(G,\Omega), r)$ is a metric space.

Lemma 1.7 (i) Given e > 0 there exists d > 0 and $K \subset G$ such that for $f, g \in C(G, \Omega)$

$$r_K(f,g) < d \Rightarrow r(f,g) < e$$

(ii) Given d > 0 and there exists e > 0 such that

$$r(f,g) < e \implies r_{\kappa}(f,g) < d$$

Lemma 1.10 (i) A set $O \subset C$ (G,Ω) is open if and only if for each $f \in O$ there exists d>0 and $K \subset G$ such that $O \supset B_{r_v}(f,d)$

(ii) A sequence $\{f_n\} \subset C$ (G,Ω) converges to f (in the r metric) if and only if for each $K \subset \subset G$ $\{f_n\}$ converges to f in the r metric.

Proposition $(C(G,\Omega), r)$ is a complete metric space.

<u>Definition</u>. A set $F \subset C(G,\Omega)$ is normal ...

Proposition. A set $F \subset C(G,\Omega)$ is normal if and only if \overline{F} is compact.

Proposition. A set $F \subset C$ (G,Ω) is normal if and only if for each d>0 and $K \subset C$ there exist functions $f_1,\,f_2\,,\cdots\,,\,f_n\in F$ such that $F\subset\bigcup_{k=1}^n B_{r_k}\,(f_k\,,\boldsymbol{d})\,.$

<u>Definition</u>. A set $F \subset C(G,\Omega)$ is equicontinuous at a point $z_0 \in G$ if ...

<u>Definition</u>. A set $F \subset C(G,\Omega)$ is equicontinuous on a set $E \subset G$ if ...

Proposition. Suppose a set $F \subset C(G,\Omega)$ is equicontinuous at each point of G. Then, F is equicontinuous on each $K \subset G$.

Arzela-Ascoli Theorem A set $F \subset C$ (G,Ω) is normal if and only if (a) for each $z \in G$ the orbit of z under F, *i.e.*, $\{f(z): f \in F\}$, has compact closure and (b) $F \subset C$ (G,Ω) is equicontinuous at each point of G.