Exam II Take Home Due: 6 April

Answer the problems on separate paper. You do <u>not</u> need to rewrite the problem statements on your answer sheets. Work carefully. Do your own work. <u>Show all relevant supporting steps!</u>

- 1. How many roots does $e^z = (e+1)z^5$ inside |z|=1?
- 2. Show that the equation $z + 3 + 2e^{z} = 0$ has exactly one solution in the left half-plane.
- 3. Show that four of the roots of $z^5 + 15z + 1 = 0$ belong to $\operatorname{ann}(0; \frac{3}{2}, 2)$.
- 4. Find the number of roots in the first quadrant of $p(z) = z^4 + z^3 + 5z^2 + 2z + 4$.
- 5. Let *D* denote the open unit disk (centered at 0) and let *RHP* denote the right half-plane. Let $F = \{ f \in A(D) : f : D \to RHP, f(0) = 4 \}$. Find the value of $\alpha = \max_{f \in F} |f'(0)|$.
- 6. Suppose that *u* is harmonic on \mathbb{C} and that for each $z \in \mathbb{C}$ that |u(z)| > 1. Prove that *u* is constant.
- 7. Let Ω and G be regions in \mathbb{C} . Let $f \in A(\Omega)$ such that $f(\Omega) \subset G$ and let u be harmonic on G. Show that $u \circ f$ is harmonic on Ω .
- 8. Let f be an entire function such that (i) f(0) = 4+3i and (ii) $|f(z)| \le 5$ for $|z| \le 1$. Find f'(0).
- 9. Consider the following two "theorems". One is true and one is false.
 - A. Let G be a region in \mathbb{C} and let F be a normal subset of A(G). Let $F' = \{f' : f \in F\}$. Then, F' is normal.
 - B. Let G be a region in \mathbb{C} and let F be a normal subset of A(G). Let $F = \{f : f' \in F\}$. Then, F is normal.

Determine which is true and prove it. Give a counter-example to show that the other is false.