MATH 5321

Exam II

Answer the problems on separate paper. You do <u>not</u> need to rewrite the problem statements on your answer sheets. Work carefully. Do your own work. <u>Show all relevant supporting steps!</u>

- 1. (25 pts) State and prove Schwarz's Lemma.
- 2. (25 pts) Give the definition for each of the following:
 - a. Let f have an isolated singularity at z = a. Then the residue of f at z = a is ...
 - b. Let G be a region and let $f: G \to \mathbb{R}$. Let $a \in \partial G$ or $a = \infty$. Then,

 $\limsup_{z\to a} f(z) = \dots$

- c. The Poisson kernel $P_r(\boldsymbol{q}) = \dots$
- d. A set $F \subset C(G,\Omega)$ is normal ...
- e. A set $F \subset C(G,\Omega)$ is equicontinuous on a set $E \subset G$ if ...
- 3. (25 pts) Show that exactly four of the roots of $z^5 + 15z + 1 = 0$ lie in the annulus $\operatorname{ann}(0; \frac{3}{2}, 2)$.
- 4. (25 pts) Let G be a bounded region in \mathbb{C} .
 - a. Let $\{f_n\} \subset C(\overline{G}, \mathbb{C}) \cap A(G)$ and let $f \in C(\overline{G}, \mathbb{C}) \cap A(G)$. Suppose that $f_n \to f$ uniformly on ∂G . Show that $f_n \to f$ in $C(G, \mathbb{C})$.
 - b. Give an example of a sequence $\{g_n\} \subset C(\overline{G}, \mathbb{C})$ and a function $g \in C(\overline{G}, \mathbb{C})$ such that $g_n \to g$ uniformly on ∂G but g_n does not converge to g in $C(G, \mathbb{C})$.