100 Points

- 1. Let $p(z) = 3z^3 2z^2 + 3iz 9$. Prove that all of the roots of p lie in the annulus ann(0,1,2).
- 2. State and prove Rouche's Theorem.
- 3. Let *G* be a region and let *u* be harmonic on *G*. Prove (without using the maximum theorem for harmonic functions): If there exists an $a \in G$ such that $u(a) \le u(z)$ for all $z \in G$, then *u* is constant on *G*.
- 4. Suppose $\{f_n\}$ is a sequence in $C(G,\mathbb{C})$ such that $f_n \to f$. Suppose $\{z_n\}$ is a sequence in G such that $z_n \to z$. Prove that $f_n(z_n) \to f(z)$.